×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [5]
THE STATE KEY LA... [2]
Authors
CHENGZHONG XU [5]
Document Type
Journal article [3]
Conference paper [2]
Date Issued
2022 [1]
2021 [1]
2020 [2]
2019 [1]
Language
英語English [5]
Source Publication
2019 Internation... [1]
ACM Transactions... [1]
Concurrency Comp... [1]
Journal of Paral... [1]
Proceedings - In... [1]
Indexed By
SCIE [3]
CPCI-S [2]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
The strong substructure and feature attention mechanism for image semantic segmentation
Journal article
Zhang,Yuhang, Ren,Hongshuai, Yang,Wensi, Wang,Yang, Ye,Kejiang, Xu,Cheng Zhong. The strong substructure and feature attention mechanism for image semantic segmentation[J]. Concurrency Computation, 2022, 34(12), e5920.
Authors:
Zhang,Yuhang
;
Ren,Hongshuai
;
Yang,Wensi
;
Wang,Yang
;
Ye,Kejiang
; et al.
Favorite
|
TC[WOS]:
2
TC[Scopus]:
3
IF:
1.5
/
1.5
|
Submit date:2021/03/09
a Cross-channel Structure
Satellite Image Recognition
Semantic Segmentation
AOAM: Automatic Optimization of Adjacency Matrix for Graph Convolutional Network
Conference paper
Yuhang Zhang, Hongshuai Ren, Jiexia Ye, Xitong Gao, Yang Wang, Kejiang Ye, Cheng-Zhong Xu. AOAM: Automatic Optimization of Adjacency Matrix for Graph Convolutional Network[C], IEEE COMPUTER SOC, 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE, 2021, 5130 - 5136.
Authors:
Yuhang Zhang
;
Hongshuai Ren
;
Jiexia Ye
;
Xitong Gao
;
Yang Wang
; et al.
Favorite
|
TC[WOS]:
5
TC[Scopus]:
3
|
Submit date:2021/09/18
Graph Convolutional Network
Adjacency Matrix
End-to-end
Node Information Entropy
SMig-RL: An evolutionary migration framework for cloud services based on deep reinforcement learning
Journal article
Ren,Hongshuai, Wang,Yang, Xu,Chengzhong, Chen,Xi. SMig-RL: An evolutionary migration framework for cloud services based on deep reinforcement learning[J]. ACM Transactions on Internet Technology, 2020, 20(4).
Authors:
Ren,Hongshuai
;
Wang,Yang
;
Xu,Chengzhong
;
Chen,Xi
Favorite
|
TC[WOS]:
7
TC[Scopus]:
7
IF:
3.9
/
3.6
|
Submit date:2021/03/09
Cloud Computing
Deep Reinforcement Learning
Dynamic Service Migration
Mobile Access
Q-learning
Rnn
Towards cost-effective service migration in mobile edge: A Q-learning approach
Journal article
Wang,Yang, Cao,Shan, Ren,Hongshuai, Li,Jianjun, Ye,Kejiang, Xu,Chengzhong, Chen,Xi. Towards cost-effective service migration in mobile edge: A Q-learning approach[J]. Journal of Parallel and Distributed Computing, 2020, 146, 175-188.
Authors:
Wang,Yang
;
Cao,Shan
;
Ren,Hongshuai
;
Li,Jianjun
;
Ye,Kejiang
; et al.
Favorite
|
TC[WOS]:
6
TC[Scopus]:
12
IF:
3.4
/
3.4
|
Submit date:2021/03/09
Mobile Edge Computing
Dynamic Service Migration
Reinforcement Learning
Q-learning
Software-defined Networking
FADN: Features attention with deep networks for remote-image classification
Conference paper
Zhang,Yuhang, Ren,Hongshuai, Yang,Wensi, Lv,Jingya, Xu,Cheng Zhong, Ye,Kejiang. FADN: Features attention with deep networks for remote-image classification[C], IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE, 2019, 79-84.
Authors:
Zhang,Yuhang
;
Ren,Hongshuai
;
Yang,Wensi
;
Lv,Jingya
;
Xu,Cheng Zhong
; et al.
Favorite
|
TC[WOS]:
1
TC[Scopus]:
2
|
Submit date:2021/03/09
Convolutional Neural Networks
Remote-image
End-to-end
Classification