UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Improved reciprocally convex inequality for stability analysis of neural networks with time-varying delay Journal article
Shi, Chenyang, Hoi, Kachon, Vong, Seakweng. Improved reciprocally convex inequality for stability analysis of neural networks with time-varying delay[J]. Neurocomputing, 2023, 527, 167-173.
Authors:  Shi, Chenyang;  Hoi, Kachon;  Vong, Seakweng
Favorite | TC[WOS]:8 TC[Scopus]:8  IF:5.5/5.5 | Submit date:2023/04/03
Lyapunov–krasovskii Functional  Neural Networks  Reciprocally Convex Inequality  Time-varying Delay  
A delay-variation-dependent stability criterion for discrete-time systems via a bivariate quadratic function negative-determination lemma Journal article
Ge, Xiao, Hoi, Kachon, Vong, Seakweng. A delay-variation-dependent stability criterion for discrete-time systems via a bivariate quadratic function negative-determination lemma[J]. Journal of the Franklin Institute, 2022, 359(10), 4976-4996.
Authors:  Ge, Xiao;  Hoi, Kachon;  Vong, Seakweng
Favorite | TC[WOS]:8 TC[Scopus]:10  IF:3.7/3.5 | Submit date:2022/08/02
Free-weighting-matrix inequality for exponential stability for neural networks with time-varying delay Journal article
Shi, Chenyang, Hoi, Kachon, Vong, Seakweng. Free-weighting-matrix inequality for exponential stability for neural networks with time-varying delay[J]. NEUROCOMPUTING, 2021, 466, 221-228.
Authors:  Shi, Chenyang;  Hoi, Kachon;  Vong, Seakweng
Favorite | TC[WOS]:7 TC[Scopus]:9  IF:5.5/5.5 | Submit date:2021/12/08
Exponential Stability  Lyapunov–krasovskii Functional  Neural Networks  Time-varying Delay