UM

Browse/Search Results:  1-9 of 9 Help

Selected(0)Clear Items/Page:    Sort:
PLAME: Piecewise-Linear Approximate Measure for Additive Kernel SVM (Extended abstract) Conference paper
Chan, Tsz Nam, Li, Zhe, Leong Hou, U., Cheng, Reynold. PLAME: Piecewise-Linear Approximate Measure for Additive Kernel SVM (Extended abstract)[C]:IEEE Computer Society, 2024, 5685-5686.
Authors:  Chan, Tsz Nam;  Li, Zhe;  Leong Hou, U.;  Cheng, Reynold
Favorite | TC[Scopus]:0 | Submit date:2024/09/03
Additive Kernel  Plame  Svm  
Kernel Density Visualization for Big Geospatial Data: Algorithms and Applications Conference paper
Chan, Tsz Nam, U, Leong Hou, Choi, Byron, Xu, Jianliang, Reynold Cheng. Kernel Density Visualization for Big Geospatial Data: Algorithms and Applications[C]:Institute of Electrical and Electronics Engineers Inc., 2023, 231-234.
Authors:  Chan, Tsz Nam;  U, Leong Hou;  Choi, Byron;  Xu, Jianliang;  Reynold Cheng
Favorite | TC[Scopus]:2 | Submit date:2023/09/07
Large-scale Geospatial Analytics: Problems, Challenges, and Opportunities Conference paper
Chan, Tsz Nam, Leong Hou, U., Choi, Byron, Xu, Jianliang, Cheng, Reynold. Large-scale Geospatial Analytics: Problems, Challenges, and Opportunities[C], 2023, 21-29.
Authors:  Chan, Tsz Nam;  Leong Hou, U.;  Choi, Byron;  Xu, Jianliang;  Cheng, Reynold
Favorite | TC[Scopus]:3 | Submit date:2023/07/20
Efficient Algorithm And Software Development  Geospatial Analytics  Gis  K-function  Kernel Density Visualization  
PLAME: Piecewise-Linear Approximate Measure for Additive Kernel SVM Journal article
Tsz Nam Chan, Zhe Li, Leong Hou U, Reynold Cheng. PLAME: Piecewise-Linear Approximate Measure for Additive Kernel SVM[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10), 9985 - 9997.
Authors:  Tsz Nam Chan;  Zhe Li;  Leong Hou U;  Reynold Cheng
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:8.9/8.8 | Submit date:2023/08/03
Additive Kernels  Plame  Svm  
Fast augmentation algorithms for network kernel density visualization Conference paper
Chan, Tsz Nam, Li, Zhe, U, Leong Hou, Xu, Jianliang, Cheng, Reynold. Fast augmentation algorithms for network kernel density visualization[C], NEW YORK:VLDB Endowment, 2021, 1503-1516.
Authors:  Chan, Tsz Nam;  Li, Zhe;  U, Leong Hou;  Xu, Jianliang;  Cheng, Reynold
Favorite | TC[WOS]:7 TC[Scopus]:10 | Submit date:2022/05/13
Kdv-explorer: A near real-time kernel density visualization system for spatial analysis Conference paper
Chan, Tsz Nam, Ip, Pak Lon, U, Leong Hou, Tong, Weng Hou, Mittal, Shivansh, Li, Ye, Cheng, Reynold. Kdv-explorer: A near real-time kernel density visualization system for spatial analysis[C]. Dong X.L., Naumann F., NEW YORK:VLDB Endowment, 2021, 2655-2658.
Authors:  Chan, Tsz Nam;  Ip, Pak Lon;  U, Leong Hou;  Tong, Weng Hou;  Mittal, Shivansh; et al.
Favorite | TC[WOS]:11 TC[Scopus]:18 | Submit date:2022/05/13
A Toolkit for Managing Multiple Crowdsourced Top-K Queries Conference paper
Shan,Caihua, Hou,Leong, Mamoulis,Nikos, Cheng,Reynold. A Toolkit for Managing Multiple Crowdsourced Top-K Queries[C], 2020, 3453-3456.
Authors:  Shan,Caihua;  Hou,Leong;  Mamoulis,Nikos;  Cheng,Reynold
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/11
Crowdsourcing  Query Management  Top-k Query  
A General Early-Stopping Module for Crowdsourced Ranking Conference paper
Shan, Caihua, U, Leong Hou, Mamoulis, Nikos, Cheng, Reynold, Li, Xiang. A General Early-Stopping Module for Crowdsourced Ranking[C], 2020, 314–330.
Authors:  Shan, Caihua;  U, Leong Hou;  Mamoulis, Nikos;  Cheng, Reynold;  Li, Xiang
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2022/09/05
Efficient Algorithms for Kernel Aggregation Queries Journal article
Chan, Tsz Nam, Hou, U. Leong, Cheng, Reynold, Yiu, Man Lung, Mittal, Shivansh. Efficient Algorithms for Kernel Aggregation Queries[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(6), 2726-2739.
Authors:  Chan, Tsz Nam;  Hou, U. Leong;  Cheng, Reynold;  Yiu, Man Lung;  Mittal, Shivansh
Favorite | TC[WOS]:3 TC[Scopus]:6  IF:8.9/8.8 | Submit date:2022/05/31
Karl  Kernel Functions  Lower And Upper Bounds