×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Sci... [133]
Authors
CHEN CHUN LUNG ... [95]
ZHOU YICONG [30]
CHEN LONG [28]
PUN CHI MAN [9]
VONG CHI MAN [4]
MA SHAODAN [1]
More...
Document Type
Journal articl... [153]
Conference pap... [108]
Date Issued
2019 [4]
2018 [9]
2017 [22]
2016 [36]
2015 [30]
2014 [30]
More...
Language
英語English [259]
Source Publication
Conference Proc... [30]
IEEE Transactio... [20]
IEEE Transactio... [18]
IEEE Transactio... [18]
Neurocomputing [7]
Proceedings of S... [7]
More...
Indexed By
SCIE [61]
CPCI-S [14]
其他 [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 261
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Unsupervised Learning of 3-D Local Features From Raw Voxels Based on a Novel Permutation Voxelization Strategy
Journal article
Han Z., Liu Z., Han J., Vong C.-M., Bu S., Chen C.L.P.. Unsupervised Learning of 3-D Local Features From Raw Voxels Based on a Novel Permutation Voxelization Strategy[J]. IEEE Transactions on Cybernetics, 2019, 49(2), 481-494.
Authors:
Han Z.
;
Liu Z.
;
Han J.
;
Vong C.-M.
;
Bu S.
; et al.
Favorite
|
TC[WOS]:
31
TC[Scopus]:
31
IF:
9.4
/
10.3
|
Submit date:2019/02/11
3-d Local Features
3-d Voxelization
Deep Learning
Stacked Sparse Autoencoder (Ssae)
Unsupervised Feature Learning
SeqViews2SeqLabels: Learning 3D global features via aggregating sequential views by RNN with attention
Journal article
Han Z., Shang M., Liu Z., Vong C.-M., Liu Y.-S., Zwicker M., Han J., Chen C.L.P.. SeqViews2SeqLabels: Learning 3D global features via aggregating sequential views by RNN with attention[J]. IEEE Transactions on Image Processing, 2019, 28(2), 658-672.
Authors:
Han Z.
;
Shang M.
;
Liu Z.
;
Vong C.-M.
;
Liu Y.-S.
; et al.
Favorite
|
TC[WOS]:
157
TC[Scopus]:
195
IF:
10.8
/
12.1
|
Submit date:2019/02/14
3d Feature Learning
Attention
Rnn
Sequential Labels
Sequential Views
View Aggregation
A Regularized Variable Projection Algorithm for Separable Nonlinear Least-Squares Problems
Journal article
Chen G.-Y., Gan M., Chen C.L.P., Li H.-X.. A Regularized Variable Projection Algorithm for Separable Nonlinear Least-Squares Problems[J]. IEEE Transactions on Automatic Control, 2019, 64(2), 526-537.
Authors:
Chen G.-Y.
;
Gan M.
;
Chen C.L.P.
;
Li H.-X.
Favorite
|
TC[WOS]:
162
TC[Scopus]:
171
IF:
6.2
/
6.6
|
Submit date:2019/02/11
Data Fitting
Regularization
Separable Nonlinear Least Squares (Snlls)
Variable Projection (Vp)
Weighted Generalized Cross Validation (Wgcv)
Fuzzy adaptive finite-time control design for nontriangular stochastic nonlinear systems
Journal article
Sui S., Chen C.L.P., Tong S.. Fuzzy adaptive finite-time control design for nontriangular stochastic nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1), 172-184.
Authors:
Sui S.
;
Chen C.L.P.
;
Tong S.
Favorite
|
TC[WOS]:
283
TC[Scopus]:
300
IF:
10.7
/
9.7
|
Submit date:2019/02/11
Multiple-input And Multiple-output (Mimo) Stochastic Nonlinear Systems
Nontriangular Form
State Filter
Stochastically Finite-time Control
Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems
Journal article
Li Z., Yuan W., Chen Y., Ke F., Chu X., Chen C.L.P.. Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12), 6113-6122.
Authors:
Li Z.
;
Yuan W.
;
Chen Y.
;
Ke F.
;
Chu X.
; et al.
Favorite
|
TC[WOS]:
70
TC[Scopus]:
80
|
Submit date:2019/02/11
Formation Control
Multiple Mobile Robots
Neural-dynamic Optimization
Nonlinear Model Predictive Control (Nmpc)
Finite-time formation control of under-actuated ships using nonlinear sliding mode control
Journal article
Li T., Zhao R., Chen C.L.P., Fang L., Liu C.. Finite-time formation control of under-actuated ships using nonlinear sliding mode control[J]. IEEE Transactions on Cybernetics, 2018, 48(11), 3243-3253.
Authors:
Li T.
;
Zhao R.
;
Chen C.L.P.
;
Fang L.
;
Liu C.
Favorite
|
TC[WOS]:
278
TC[Scopus]:
321
|
Submit date:2019/02/11
Finite-time Stability
Formation Control
Nonlinear Sliding Mode Control
Under-actuated Ships
Optimized Multi-Agent Formation Control Based on an Identifier-Actor-Critic Reinforcement Learning Algorithm
Journal article
Wen G., Chen C.L.P., Feng J., Zhou N.. Optimized Multi-Agent Formation Control Based on an Identifier-Actor-Critic Reinforcement Learning Algorithm[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5), 2719-2731.
Authors:
Wen G.
;
Chen C.L.P.
;
Feng J.
;
Zhou N.
Favorite
|
TC[WOS]:
130
TC[Scopus]:
139
|
Submit date:2019/02/11
Fuzzy Logic Systems (Flss)
Identifier-actor-critic Architecture
Multi-agent Formation
Optimized Formation Control
Reinforcement Learning (Rl)
Event-triggered fault detector and controller coordinated design of fuzzy systems
Journal article
Su X., Xia F., Wu L., Chen C.L.P.. Event-triggered fault detector and controller coordinated design of fuzzy systems[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(4), 2004-2016.
Authors:
Su X.
;
Xia F.
;
Wu L.
;
Chen C.L.P.
Favorite
|
TC[WOS]:
67
TC[Scopus]:
72
|
Submit date:2019/02/11
Fault Detection (Fd)
Fuzzy Control
Fuzzy Systems
Packet Dropouts
Substructural Regularization with Data-Sensitive Granularity for Sequence Transfer Learning
Journal article
Sun S., Liu H., Meng J., Chen C.L.P., Yang Y.. Substructural Regularization with Data-Sensitive Granularity for Sequence Transfer Learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6), 2545-2557.
Authors:
Sun S.
;
Liu H.
;
Meng J.
;
Chen C.L.P.
;
Yang Y.
Favorite
|
TC[WOS]:
10
TC[Scopus]:
10
|
Submit date:2019/02/11
Data-sensitive Granularity
Hidden Markov Model (Hmm)
Relative Entropy (Re)
Sequence Transfer Learning
Substructural Regularization
Deep Spatiality: Unsupervised Learning of Spatially-Enhanced Global and Local 3D Features by Deep Neural Network with Coupled Softmax
Journal article
Han Z., Liu Z., Vong C.-M., Liu Y.-S., Bu S., Han J., Chen C.L.P.. Deep Spatiality: Unsupervised Learning of Spatially-Enhanced Global and Local 3D Features by Deep Neural Network with Coupled Softmax[J]. IEEE Transactions on Image Processing, 2018, 27(6), 3049-3063.
Authors:
Han Z.
;
Liu Z.
;
Vong C.-M.
;
Liu Y.-S.
;
Bu S.
; et al.
Favorite
|
TC[WOS]:
37
TC[Scopus]:
43
|
Submit date:2019/02/11
Coupled Softmax
Deep Spatial
Directed Circular Graph
Spatially-enhanced 3d Features