×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [8]
Faculty of Busin... [1]
Authors
VONG CHI MAN [4]
CHEN CHUN LUNG P... [1]
SO MAN SHING [1]
Document Type
Journal article [10]
Journal [1]
Date Issued
2020 [2]
2019 [2]
2018 [3]
2017 [2]
2016 [2]
Language
英語English [9]
Source Publication
IEEE Transaction... [2]
IEEE Transaction... [2]
IEEE Transaction... [1]
IEEE Transaction... [1]
IEEE Transaction... [1]
IEEE Transaction... [1]
More...
Indexed By
SCIE [3]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 11
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Who is King in Factor Zoo? Case of the Chinese Stock Market
Journal
创刊日期: 2020, 出版者: Journal of Prediction Markets,
Authors:
So, M. S. Simon
;
Bu, Z. Y. Eunice
Favorite
|
|
Submit date:2022/08/27
Who is King in Factor Zoo? Case of the Chinese Stock Market
Journal article
Simon M. S. So, Eunice Z. Y. Bu. Who is King in Factor Zoo? Case of the Chinese Stock Market[J]. Journal of Prediction Markets, 2020, 14(2), 77-101.
Authors:
Simon M. S. So
;
Eunice Z. Y. Bu
Favorite
|
|
Submit date:2022/08/30
Unsupervised Learning 3-D Local Feature from Raw Voxels based on A Novel Permutation Voxelization Strategy-
Journal article
Han, Z. Z., Liu, Z. B., Han, J. W., Vong, C. M., Bu, S. H., Chen, C. L. P.. Unsupervised Learning 3-D Local Feature from Raw Voxels based on A Novel Permutation Voxelization Strategy-[J]. IEEE Transactions on Cybernetics (SCI-E) (Accepted for Publication), 2019, 2168-2267.
Authors:
Han, Z. Z.
;
Liu, Z. B.
;
Han, J. W.
;
Vong, C. M.
;
Bu, S. H.
; et al.
Favorite
|
|
Submit date:2022/08/09
3-D local features
3-D voxelization
deep learning
stacked sparse autoencoder (SSAE)
unsupervised feature learning
Unsupervised Learning of 3-D Local Features From Raw Voxels Based on a Novel Permutation Voxelization Strategy
Journal article
Han Z., Liu Z., Han J., Vong C.-M., Bu S., Chen C.L.P.. Unsupervised Learning of 3-D Local Features From Raw Voxels Based on a Novel Permutation Voxelization Strategy[J]. IEEE Transactions on Cybernetics, 2019, 49(2), 481-494.
Authors:
Han Z.
;
Liu Z.
;
Han J.
;
Vong C.-M.
;
Bu S.
; et al.
Favorite
|
TC[WOS]:
31
TC[Scopus]:
31
IF:
9.4
/
10.3
|
Submit date:2019/02/11
3-d Local Features
3-d Voxelization
Deep Learning
Stacked Sparse Autoencoder (Ssae)
Unsupervised Feature Learning
A Fully Integrated Low-Dropout Regulator with Differentiator-Based Active Zero Compensation
Journal article
Bu S., Leung K.N., Lu Y., Guo J., Zheng Y.. A Fully Integrated Low-Dropout Regulator with Differentiator-Based Active Zero Compensation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(10), 3578-3591.
Authors:
Bu S.
;
Leung K.N.
;
Lu Y.
;
Guo J.
;
Zheng Y.
Favorite
|
TC[WOS]:
33
TC[Scopus]:
39
|
Submit date:2019/02/14
Area-efficient
Current Density
Frequency Compensation
Low-dropout Regulator
Miller Compensation
Power Management
Deep Spatiality: Unsupervised Learning of Spatially-Enhanced Global and Local 3D Features by Deep Neural Network with Coupled Softmax
Journal article
Han Z., Liu Z., Vong C.-M., Liu Y.-S., Bu S., Han J., Chen C.L.P.. Deep Spatiality: Unsupervised Learning of Spatially-Enhanced Global and Local 3D Features by Deep Neural Network with Coupled Softmax[J]. IEEE Transactions on Image Processing, 2018, 27(6), 3049-3063.
Authors:
Han Z.
;
Liu Z.
;
Vong C.-M.
;
Liu Y.-S.
;
Bu S.
; et al.
Favorite
|
TC[WOS]:
37
TC[Scopus]:
43
|
Submit date:2019/02/11
Coupled Softmax
Deep Spatial
Directed Circular Graph
Spatially-enhanced 3d Features
Deep Spatiality: Unsupervised Learning of Spatially-Enhanced Global and Local 3D Features by Deep Neural Network with Coupled Softmax
Journal article
Han, Z. Z., Liu, Z. B., Vong, C. M., Liu, Y. S., Bu, S. H., Han, J. W., Chen, C. L. P.. Deep Spatiality: Unsupervised Learning of Spatially-Enhanced Global and Local 3D Features by Deep Neural Network with Coupled Softmax[J]. IEEE Transactions on Image Processing (SCI-E), 2018, 3049-3063.
Authors:
Han, Z. Z.
;
Liu, Z. B.
;
Vong, C. M.
;
Liu, Y. S.
;
Bu, S. H.
; et al.
Favorite
|
IF:
10.8
/
12.1
|
Submit date:2022/08/09
Deep spatial
spatially-enhanced 3D features
directed circular graph
coupled softmax
Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features with Structure Preservation on 3D Meshes
Journal article
Han, Z., Liu, Z., Han, J., Vong, C. M., Bu, S., Chen, C. L.. Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features with Structure Preservation on 3D Meshes[J]. IEEE Transactions on Neural Networks and Learning Systems (SCI-E), 2017, 2268-2281.
Authors:
Han, Z.
;
Liu, Z.
;
Han, J.
;
Vong, C. M.
;
Bu, S.
; et al.
Favorite
|
IF:
10.2
/
10.4
|
Submit date:2022/08/09
3D mesh
Laplace-Beltrami operator
Mesh Convolutional Restricted Boltzman Machines
Mesh Convolutional Deep Belief Networks
Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features with Structure Preservation on 3-D Meshes
Journal article
Han Z., Liu Z., Han J., Vong C.-M., Bu S., Chen C.L.P.. Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features with Structure Preservation on 3-D Meshes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10), 2268-2281.
Authors:
Han Z.
;
Liu Z.
;
Han J.
;
Vong C.-M.
;
Bu S.
; et al.
Favorite
|
TC[WOS]:
44
TC[Scopus]:
45
|
Submit date:2019/02/11
3-d Mesh
Laplace-beltrami Operator
Mesh Convolutional Deep Belief Networks (Mcdbns)
Mesh Convolutional Restricted Boltzmann Machines (Mcrbms)
Unsupervised 3D local Feature Learning by Circle Convolutional Restricted Boltzmann Machine
Journal article
Han, Z., Liu, Z., Han, J., Vong, C. M., Bu, S., Li, X.. Unsupervised 3D local Feature Learning by Circle Convolutional Restricted Boltzmann Machine[J]. IEEE Transactions on Image Processing (SCI-E), 2016, 5331-5344.
Authors:
Han, Z.
;
Liu, Z.
;
Han, J.
;
Vong, C. M.
;
Bu, S.
; et al.
Favorite
|
IF:
10.8
/
12.1
|
Submit date:2022/08/09
Three-dimensional displays
Shape
Machine learning
Convolution
Solid modeling
Feature extraction
Two dimensional displays