UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Differential, difference, and asymptotic relations for Pollaczek–Jacobi type orthogonal polynomials and their Hankel determinants Journal article
Min, Chao, Chen, Yang. Differential, difference, and asymptotic relations for Pollaczek–Jacobi type orthogonal polynomials and their Hankel determinants[J]. Studies in Applied Mathematics, 2021, 147(1), 390-416.
Authors:  Min, Chao;  Chen, Yang
Favorite | TC[WOS]:10 TC[Scopus]:11  IF:2.6/2.6 | Submit date:2021/12/08
Asymptotic Expansions  Hankel Determinant  Ladder Operators  Orthogonal Polynomials  Painlevé v  Pollaczek–jacobi Type Weight  
Gaussian unitary ensembles with two jump discontinuities, PDEs, and the coupled Painlevé II and IV systems Journal article
Lyu,Shulin, Chen,Yang. Gaussian unitary ensembles with two jump discontinuities, PDEs, and the coupled Painlevé II and IV systems[J]. Studies in Applied Mathematics, 2020, 146(1), 118-138.
Authors:  Lyu,Shulin;  Chen,Yang
Favorite | TC[WOS]:6 TC[Scopus]:6  IF:2.6/2.6 | Submit date:2021/03/09
Gaussian Unitary Ensembles  Hankel Determinant  Orthogonal Polynomials  Painlevé Equations  
Gaussian Unitary Ensembles with two jump discontinuities, PDES, and the coupled Painleve II and IV systems Journal article
Lyu, S., Chen, Y.. Gaussian Unitary Ensembles with two jump discontinuities, PDES, and the coupled Painleve II and IV systems[J]. Studies in Applied Mathematics, 2020, 1-21.
Authors:  Lyu, S.;  Chen, Y.
Favorite | TC[WOS]:6 TC[Scopus]:6 | Submit date:2022/06/27
Painleve  Gaussian  Unitary Ensembles  
The Riemann–Hilbert analysis to the Pollaczek–Jacobi type orthogonal polynomials Journal article
Min Chen, Yang Chen, En‐Gui Fan. The Riemann–Hilbert analysis to the Pollaczek–Jacobi type orthogonal polynomials[J]. STUDIES IN APPLIED MATHEMATICS, 2019.
Authors:  Min Chen;  Yang Chen;  En‐Gui Fan
Favorite | TC[WOS]:12 TC[Scopus]:11  IF:2.6/2.6 | Submit date:2019/06/03
Asymptotic Analysis  Mathematical Physics  
Linear Quaternion Differential Equations: Basic Theory and Fundamental Results Journal article
Kou, Kit Ian, Xia, Yong-Hui. Linear Quaternion Differential Equations: Basic Theory and Fundamental Results[J]. STUDIES IN APPLIED MATHEMATICS, 2018, 141(1), 3-45.
Authors:  Kou, Kit Ian;  Xia, Yong-Hui
Favorite | TC[WOS]:62 TC[Scopus]:65  IF:2.6/2.6 | Submit date:2018/10/30
Gap Probability Distribution of the Jacobi Unitary Ensemble: An Elementary Treatment, from Finite n to Double Scaling Journal article
Chao Min, Yang Chen. Gap Probability Distribution of the Jacobi Unitary Ensemble: An Elementary Treatment, from Finite n to Double Scaling[J]. STUDIES IN APPLIED MATHEMATICS, 2017, 140(2), 202-220.
Authors:  Chao Min;  Yang Chen
Favorite | TC[WOS]:15 TC[Scopus]:14  IF:2.6/2.6 | Submit date:2018/10/30