UM

Browse/Search Results:  1-10 of 21 Help

Selected(0)Clear Items/Page:    Sort:
A variable-step high-order scheme for time-fractional advection-diffusion equation with mixed derivatives Journal article
Feng, Junhong, Lyu, Pin, Vong, Seakweng. A variable-step high-order scheme for time-fractional advection-diffusion equation with mixed derivatives[J]. Numerical Methods for Partial Differential Equations, 2024, 40(6).
Authors:  Feng, Junhong;  Lyu, Pin;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.1/2.8 | Submit date:2024/09/03
High-order Method  Mixed Derivatives  Time-fractional Advection-diffusion Equation  Variable Time Steps  
A class of one-parameter alternating direction implicit methods for two-dimensional wave equations with discrete and distributed time-variable delays Journal article
Tang, Changyang, Zhang, Chengjian, Sun, Hai wei. A class of one-parameter alternating direction implicit methods for two-dimensional wave equations with discrete and distributed time-variable delays[J]. Numerical Methods for Partial Differential Equations, 2023, 39(1), 600-621.
Authors:  Tang, Changyang;  Zhang, Chengjian;  Sun, Hai wei
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.1/2.8 | Submit date:2023/02/08
Discrete And Distributed Time-variable Delays  Error Analysis  Numerical Stability  One-parameter Adi Methods  Two-dimensional Wave Equations  
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony‐type equation with nonsmooth solutions Journal article
Pin, Lyu, Seakweng, Vong. A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony‐type equation with nonsmooth solutions[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019.
Authors:  Pin, Lyu;  Seakweng, Vong
Favorite | TC[WOS]:11 TC[Scopus]:13  IF:2.1/2.8 | Submit date:2022/07/01
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions Journal article
Lyu,Pin, Vong,Seakweng. A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 36(3), 579-600.
Authors:  Lyu,Pin;  Vong,Seakweng
Favorite | TC[WOS]:11 TC[Scopus]:13  IF:2.1/2.8 | Submit date:2021/03/09
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
High accuracy error estimates of a Galerkin finite element method for nonlinear time fractional diffusion equation Journal article
Ren,Jincheng, Shi,Dongyang, Vong,Seakweng. High accuracy error estimates of a Galerkin finite element method for nonlinear time fractional diffusion equation[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 36(2), 284-301.
Authors:  Ren,Jincheng;  Shi,Dongyang;  Vong,Seakweng
Favorite | TC[WOS]:14 TC[Scopus]:15  IF:2.1/2.8 | Submit date:2021/03/09
Fast Convolution Algorithm  Galerkin Finite Element Method  Nonlinear Time Fractional Diffusion Equation  Superconvergent Result  
A study on a second order finite difference scheme for fractional advection–diffusion equations Journal article
Vong,Seakweng, Shi,Chenyang, Lyu,Pin. A study on a second order finite difference scheme for fractional advection–diffusion equations[J]. Numerical Methods for Partial Differential Equations, 2019, 35(2), 493-508.
Authors:  Vong,Seakweng;  Shi,Chenyang;  Lyu,Pin
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:2.1/2.8 | Submit date:2021/03/09
Finite Difference Method  Fractional Advection–diffusion Equations  Second Order Scheme  
A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein-Gordon-Schrodinger equation Journal article
Lyu, Pin, Vong, Seakweng. A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein-Gordon-Schrodinger equation[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34(6), 2153-2179.
Authors:  Lyu, Pin;  Vong, Seakweng
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:2.1/2.8 | Submit date:2018/10/30
Fractional Klein-gordon-schrodinger Equations  Linearized Scheme  Second-order Convergent  Unconditionally Convergent And Stable  
Fast solution algorithms for exponentially tempered fractional diffusion equations Journal article
Lei,Siu Long, Fan,Daoying, Chen,Xu. Fast solution algorithms for exponentially tempered fractional diffusion equations[J]. Numerical Methods for Partial Differential Equations, 2018, 34(4), 1301-1323.
Authors:  Lei,Siu Long;  Fan,Daoying;  Chen,Xu
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:2.1/2.8 | Submit date:2021/03/11
Circulant And skew-Circulant Representation Of Toeplitz Inversion  Circulant Preconditioner  Fast Fourier Transform  Tempered Fractional Diffusion Equations  Toeplitz Matrix  
Fast solution algorithms for exponentially tempered fractional diffusion equations Journal article
Lei, Siu-Long, Fan, Daoying, Chen, Xu. Fast solution algorithms for exponentially tempered fractional diffusion equations[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34(4), 1301-1323.
Authors:  Lei, Siu-Long;  Fan, Daoying;  Chen, Xu
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:2.1/2.8 | Submit date:2018/10/30
Circulant And skew-Circulant Representation Of Toeplitz Inversion  Circulant Preconditioner  Fast Fourier Transform  Tempered Fractional Diffusion Equations  Toeplitz Matrix  
High-order compact schemes for fractional differential equations with mixed derivatives Journal article
Vong S., Shi C., Lyu P.. High-order compact schemes for fractional differential equations with mixed derivatives[J]. Numerical Methods for Partial Differential Equations, 2017, 33(6), 2141-2158.
Authors:  Vong S.;  Shi C.;  Lyu P.
Favorite | TC[WOS]:3 TC[Scopus]:3 | Submit date:2018/12/24
Fractional Differential Equation  High-order Compact Scheme  Mixed Derivatives