UM

Browse/Search Results:  1-10 of 12 Help

Selected(0)Clear Items/Page:    Sort:
Modulus-based matrix splitting iteration methods with new splitting scheme for horizontal implicit complementarity problems Journal article
He, Jiewen, Zheng, Hua, Vong, Seakweng. Modulus-based matrix splitting iteration methods with new splitting scheme for horizontal implicit complementarity problems[J]. Linear and Multilinear Algebra, 2023, 71(14), 2392-2408.
Authors:  He, Jiewen;  Zheng, Hua;  Vong, Seakweng
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:0.9/1.0 | Submit date:2023/11/13
Hermitian And skew-Hermitian  Horizontal Implicit Complementarity Problems  Modulus-based Matrix Splitting Iteration Methods  Relaxation Splitting  
A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations Journal article
Huang,Xin, Fang,Zhi Wei, Sun,Hai Wei, Zhang,Chun Hua. A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations[J]. Linear and Multilinear Algebra, 2022, 70(16), 3081-3096.
Authors:  Huang,Xin;  Fang,Zhi Wei;  Sun,Hai Wei;  Zhang,Chun Hua
Favorite | TC[WOS]:11 TC[Scopus]:7  IF:0.9/1.0 | Submit date:2021/03/09
Distributed-order  Space-fractional Diffusion Equations  Circulant Preconditioner  Preconditioned Conjugated Gradient Method  
An optimal preconditioner for tensor equations involving Einstein product Journal article
Xie,Ze Jia, Jin,Xiao Qing, Sin,Vai Kuong. An optimal preconditioner for tensor equations involving Einstein product[J]. Linear and Multilinear Algebra, 2020, 68(5), 886-902.
Authors:  Xie,Ze Jia;  Jin,Xiao Qing;  Sin,Vai Kuong
Favorite | TC[WOS]:11 TC[Scopus]:13  IF:0.9/1.0 | Submit date:2021/03/09
Tensor  Circulant Tensor  Toeplitz Tensor  Optimal Preconditioner  Tensor Equation  
Improved convergence theorems of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems Journal article
Zheng,Hua, Vong,Seakweng. Improved convergence theorems of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems[J]. Linear and Multilinear Algebra, 2019, 67(9), 1773-1784.
Authors:  Zheng,Hua;  Vong,Seakweng
Favorite | TC[WOS]:23 TC[Scopus]:24  IF:0.9/1.0 | Submit date:2021/03/09
65f10  90c33  H-splitting  Linear Complementarity Problem  Synchronous Multisplitting  Two-step Modulus-based Method  
On the unsolvability of inverse singular value problems almost everywhere Journal article
Chen,Xiao Shan, Sun,Hai Wei. On the unsolvability of inverse singular value problems almost everywhere[J]. Linear and Multilinear Algebra, 2019, 67(5), 987-994.
Authors:  Chen,Xiao Shan;  Sun,Hai Wei
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.9/1.0 | Submit date:2019/05/27
Inverse Singular Value Problem  Unsolvability  Zero Singular Value  
On perturbation bounds of the linear complementarity problem Journal article
Zheng,Hua, Vong,Seakweng, Li,Wen. On perturbation bounds of the linear complementarity problem[J]. Linear and Multilinear Algebra, 2018, 66(3), 625-638.
Authors:  Zheng,Hua;  Vong,Seakweng;  Li,Wen
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:0.9/1.0 | Submit date:2021/03/09
Linear Complementarity Problems  Perturbation Bound  Sign Patterns  
Improved convergence theorems of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems Journal article
Hua Zheng, Seakweng Vong. Improved convergence theorems of the two-step modulus-based matrix splitting and synchronous multisplitting iteration methods for solving linear complementarity problems[J]. Journal Linear and Multilinear Algebra, 2018.
Authors:  Hua Zheng;  Seakweng Vong
Favorite | TC[WOS]:23 TC[Scopus]:24  IF:0.9/1.0 | Submit date:2019/03/22
Linear Complementarity Problem  Two-step Modulus-based Method  Synchronous Multisplitting  H-splitting  
3 × 3 pure imaginary quaternionic solutions of the Hurwitz matrixequations Journal article
Cheng C.-M., Cheok K.-L., Leong I.-T.. 3 × 3 pure imaginary quaternionic solutions of the Hurwitz matrixequations[J]. Linear and Multilinear Algebra, 2010, 58(7), 863-874.
Authors:  Cheng C.-M.;  Cheok K.-L.;  Leong I.-T.
Favorite | TC[WOS]:2 TC[Scopus]:2 | Submit date:2019/02/13
Hurwitz Matrix Equations  Quaternion  
Some Geometrical Properties of the Decomposable Numerical Range Journal article
Cheng C.-M., Li C.-K.. Some Geometrical Properties of the Decomposable Numerical Range[J]. Linear and Multilinear Algebra, 1994, 37(1-3), 207-212.
Authors:  Cheng C.-M.;  Li C.-K.
Favorite | TC[Scopus]:1 | Submit date:2019/02/13
On the Decomposable Numerical Range of λI − N Journal article
Cheng,Che Man. On the Decomposable Numerical Range of λI − N[J]. Linear and Multilinear Algebra, 1994, 37(1-3), 197-205.
Authors:  Cheng,Che Man
Favorite | TC[Scopus]:1  IF:0.9/1.0 | Submit date:2021/03/09