UM

Browse/Search Results:  1-10 of 11 Help

Selected(0)Clear Items/Page:    Sort:
Localization for general Helmholtz Journal article
Cheng, Xinyu, Li, Dong, Yang, Wen. Localization for general Helmholtz[J]. Journal of Differential Equations, 2024, 393, 139-154.
Authors:  Cheng, Xinyu;  Li, Dong;  Yang, Wen
Adobe PDF | Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.4/2.6 | Submit date:2024/05/16
Multiple symmetric periodic solutions of differential systems with distributed delay Journal article
Xiao, Huafeng, Wu, Xuan, Yu, Jianshe. Multiple symmetric periodic solutions of differential systems with distributed delay[J]. Journal of Differential Equations, 2023, 373, 626-653.
Authors:  Xiao, Huafeng;  Wu, Xuan;  Yu, Jianshe
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:2.4/2.6 | Submit date:2023/09/21
Delay Differential System  Distributed Delay  Periodic Solutions  Pseudoindex Theory  Variational Method  
Large deviations principle via Malliavin calculus for the Navier–Stokes system driven by a degenerate white-in-time noise Journal article
Nersesyan,Vahagn, Peng,Xuhui, Xu,Lihu. Large deviations principle via Malliavin calculus for the Navier–Stokes system driven by a degenerate white-in-time noise[J]. Journal of Differential Equations, 2023, 362, 230-249.
Authors:  Nersesyan,Vahagn;  Peng,Xuhui;  Xu,Lihu
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.4/2.6 | Submit date:2023/08/03
Degenerate Noise  Feynman–kac Semigroup  Large Deviations  Malliavin Calculus  Navier–stokes System  Uniform Feller Property  
The dynamics of the stochastic shadow Gierer-Meinhardt system Journal article
MatthiasWinter, Lihu Xu, Jianliang Zhai, Tusheng Zhang. The dynamics of the stochastic shadow Gierer-Meinhardt system[J]. Journal of differential equations, 2016, 260(1), 84-114.
Authors:  MatthiasWinter;  Lihu Xu;  Jianliang Zhai;  Tusheng Zhang
Favorite | TC[WOS]:13 TC[Scopus]:14  IF:2.4/2.6 | Submit date:2019/07/19
Integral representations of a class of harmonic functions in the half space Journal article
Yan Hui Zhang, Guan Tie Deng, Tao Qian. Integral representations of a class of harmonic functions in the half space[J]. Journal of Differential Equations, 2016, 260(2), 923-936.
Authors:  Yan Hui Zhang;  Guan Tie Deng;  Tao Qian
Favorite | TC[WOS]:6 TC[Scopus]:8 | Submit date:2019/02/11
Integral Representation  Modified Poisson Kernel  Positive Part  
Integral representation and asymptotic behavior of harmonic functions in half space Journal article
Zhang Y.H., Kou K.I., Deng G.T.. Integral representation and asymptotic behavior of harmonic functions in half space[J]. Journal of Differential Equations, 2014, 257(8), 2753-2764.
Authors:  Zhang Y.H.;  Kou K.I.;  Deng G.T.
Favorite | TC[WOS]:6 TC[Scopus]:8 | Submit date:2019/02/13
Carleman's Formula  Growth  Integral Representation  Nevanlinna's Representation  
Integral representation and asymptotic behavior ofharmonic functions in half space Journal article
Zhang, Y.H., Kou, K. I., Deng, G.T.. Integral representation and asymptotic behavior ofharmonic functions in half space[J]. Journal of Differential Equations, 2014, 2753-2764.
Authors:  Zhang, Y.H.;  Kou, K. I.;  Deng, G.T.
Favorite |   IF:2.4/2.6 | Submit date:2022/08/24
Carleman’s formula  Nevanlinna’s representation  Integral representation  Growth  
Lp polyharmonic Dirichlet problems in regular domains IV: The upper-half space Journal article
Du Z., Qian T., Wang J.. Lp polyharmonic Dirichlet problems in regular domains IV: The upper-half space[J]. Journal of Differential Equations, 2013, 255(5), 779-795.
Authors:  Du Z.;  Qian T.;  Wang J.
Favorite | TC[WOS]:4 TC[Scopus]:4 | Submit date:2019/02/11
Dirichlet Problems  Higher Order Poisson Kernels  Integral Representation  Polyharmonic Functions  
Lp polyharmonic Dirichlet problems in regular domains II: The upper half plane Journal article
Du Z., Qian T., Wang J.. Lp polyharmonic Dirichlet problems in regular domains II: The upper half plane[J]. Journal of Differential Equations, 2012, 252(2), 1789-1812.
Authors:  Du Z.;  Qian T.;  Wang J.
Favorite | TC[WOS]:10 TC[Scopus]:11 | Submit date:2019/02/11
30g30  Dirichlet Problems  Higher Order Schwarz Kernels  Integral Representation  Polyharmonic Functions  
The Boltzmann equation with frictional force Journal article
Vong,Seak Weng. The Boltzmann equation with frictional force[J]. Journal of Differential Equations, 2006, 222(1), 95-136.
Authors:  Vong,Seak Weng
Favorite | TC[WOS]:6 TC[Scopus]:6  IF:2.4/2.6 | Submit date:2021/03/09
Boltzmann Equation  H-theorem  Macro-micro-decomposition  Maxwellian States