UM

Browse/Search Results:  1-10 of 10 Help

Selected(0)Clear Items/Page:    Sort:
Slow traveling-wave solutions for the generalized surface quasi-geostrophic equation Journal article
Cao, Daomin, Lai, Shanfa, Qin, Guolin. Slow traveling-wave solutions for the generalized surface quasi-geostrophic equation[J]. Journal of Functional Analysis, 2024, 287(8), 110570.
Authors:  Cao, Daomin;  Lai, Shanfa;  Qin, Guolin
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.7/1.9 | Submit date:2024/08/05
Nonlinear Stability  The Gsqg Equation  Traveling-wave Solutions  Variational Methods  
Scaling limit of a directed polymer among a Poisson field of independent walks Journal article
Hao Shen, Jian Song, Rongfeng Sun, Lihu Xu. Scaling limit of a directed polymer among a Poisson field of independent walks[J]. Journal of Functional Analysis, 2021, 281(5), 109066.
Authors:  Hao Shen;  Jian Song;  Rongfeng Sun;  Lihu Xu
Favorite | TC[WOS]:4 TC[Scopus]:3  IF:1.7/1.9 | Submit date:2021/12/08
Directed Polymer  Poisson Random Walks  Stochastic Heat Equation  
A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Levy noises Journal article
Dong, Zhao, Xiong, Jie, Zhai, Jianliang, Zhang, Tusheng. A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Levy noises[J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272(1), 227-254.
Authors:  Dong, Zhao;  Xiong, Jie;  Zhai, Jianliang;  Zhang, Tusheng
Favorite | TC[WOS]:34 TC[Scopus]:36  IF:1.7/1.9 | Submit date:2018/10/30
Moderate Deviation Principles  Stochastic Navier-stokes Equations  Poisson Random Measures  Tightness  
The H∞ functional calculus based on the S-spectrum for quaternionic operators and for n-tuples of noncommuting operators Journal article
Daniel Alpay, Fabrizio Colombo, Tao Qian, Irene Sabadini. The H∞ functional calculus based on the S-spectrum for quaternionic operators and for n-tuples of noncommuting operators[J]. Journal of Functional Analysis, 2016, 271(6), 1544-1584.
Authors:  Daniel Alpay;  Fabrizio Colombo;  Tao Qian;  Irene Sabadini
Favorite | TC[WOS]:30 TC[Scopus]:34 | Submit date:2019/02/11
H∞ Functional Calculus  N-tuples Of Noncommuting Operators  Quaternionic Operators  S-spectrum  
Gradient estimates for SDEs driven by multiplicative Lévy noise Journal article
Feng-YuWang, Lihu Xu, Xicheng Zhang. Gradient estimates for SDEs driven by multiplicative Lévy noise[J]. Journal of Functional Analysis, 2015, 269(10), 3195.
Authors:  Feng-YuWang;  Lihu Xu;  Xicheng Zhang
Favorite | TC[WOS]:29 TC[Scopus]:32  IF:1.7/1.9 | Submit date:2018/10/30
Derivative Formula  Gradient Estimate  Lévy Process  Time-change  
A sharper uncertainty principle Journal article
Dang P., Deng G.-T., Qian T.. A sharper uncertainty principle[J]. Journal of Functional Analysis, 2013, 265(10), 2239-2266.
Authors:  Dang P.;  Deng G.-T.;  Qian T.
Favorite | TC[WOS]:46 TC[Scopus]:50 | Submit date:2019/02/11
Hardy Spaces  Phase Derivative  Self-adjoint Operator  Sobolev Spaces  Uncertainty Principle  
A class of Fourier multipliers on starlike Lipschitz surfaces Journal article
Li P., Leong I.T., Qian T.. A class of Fourier multipliers on starlike Lipschitz surfaces[J]. Journal of Functional Analysis, 2011, 261(6), 1415-1445.
Authors:  Li P.;  Leong I.T.;  Qian T.
Favorite | TC[WOS]:1 TC[Scopus]:2 | Submit date:2019/02/11
Clifford Analysis  Fourier Multiplier  Monogenic Function  Singular Integral  Starlike Lipschitz Surface  
Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces Journal article
Li P., Zhai Z.. Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces[J]. Journal of Functional Analysis, 2010, 259(10), 2457.
Authors:  Li P.;  Zhai Z.
Favorite | TC[WOS]:72 TC[Scopus]:71 | Submit date:2018/10/30
Atomic Decomposition  Carleson Measures  Duality  Navier-stokes Equations  Qα β(r{Double-struck}n)  Regularity  Tent Spaces  Well-posedness  
The Paley-Wiener theorem in Rn with the Clifford analysis setting Journal article
Kou K.-I., Qian T.. The Paley-Wiener theorem in Rn with the Clifford analysis setting[J]. Journal of Functional Analysis, 2002, 189(1), 227-241.
Authors:  Kou K.-I.;  Qian T.
Favorite | TC[WOS]:32 TC[Scopus]:32 | Submit date:2019/02/11
Clifford Analysis  Conjugate Harmonic System  Fourier Analysis  Paley-wiener Theorem  
Fourier Analysis on Starlike Lipschitz Surfaces Journal article
Qian T.. Fourier Analysis on Starlike Lipschitz Surfaces[J]. Journal of Functional Analysis, 2001, 183(2), 370.
Authors:  Qian T.
Favorite | TC[WOS]:37 TC[Scopus]:38 | Submit date:2018/10/30
Functional Calculus  Dirac Operator  The Unit Sphere In Rn  Fourier Multiplier  Singular Integral