UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Adaptative Decomposition: The Case of the Drury-Arveson Space Journal article
Alpay, Daniel, Colombo, Fabrizio, Qian, Tao, Sabadini, Irene. Adaptative Decomposition: The Case of the Drury-Arveson Space[J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23(6), 1426-1444.
Authors:  Alpay, Daniel;  Colombo, Fabrizio;  Qian, Tao;  Sabadini, Irene
Favorite | TC[WOS]:19 TC[Scopus]:22  IF:1.2/1.2 | Submit date:2018/10/30
Drury-arveson Space  Adaptative Decomposition  Blaschke Products  
Adaptive Decomposition by Weighted Inner Functions: A Generalization of Fourier Series Journal article
Qian T., Tan L.-H., Wang Y.-B.. Adaptive Decomposition by Weighted Inner Functions: A Generalization of Fourier Series[J]. Journal of Fourier Analysis and Applications, 2011, 17(2), 175.
Authors:  Qian T.;  Tan L.-H.;  Wang Y.-B.
Favorite | TC[WOS]:24 TC[Scopus]:28 | Submit date:2018/10/30
Adaptive Decomposition Of Functions  Analytic Signal  Blaschke Product  Fourier Series  Hardy Space  Inner And Outer Functions  Instantaneous Frequency And Amplitude  Mono-components  The Nevanlinna Factorization Theorem  
Hardy-Sobolev Spaces Decomposition in Signal Analysis Journal article
Dang P., Qian T., You Z.. Hardy-Sobolev Spaces Decomposition in Signal Analysis[J]. Journal of Fourier Analysis and Applications, 2011, 17(1), 36.
Authors:  Dang P.;  Qian T.;  You Z.
Favorite | TC[WOS]:32 TC[Scopus]:33 | Submit date:2018/10/30
Amplitude-phase Representation Of Signal  Covariance  Hardy Space  Hardy-sobolev Space  Hilbert Transform  Mean Of Frequency  Mean Of Time  Phase Derivative  Sobolev Space  Uncertainty Principle  
Hilbert transforms on the sphere with the Clifford algebra setting Journal article
Qian T., Yang Y.. Hilbert transforms on the sphere with the Clifford algebra setting[J]. Journal of Fourier Analysis and Applications, 2009, 15(6), 753-774.
Authors:  Qian T.;  Yang Y.
Favorite | TC[WOS]:14 TC[Scopus]:21  IF:1.2/1.2 | Submit date:2019/02/11
Cauchy Singular Integral  Clifford Analysis  Conjugate Poisson Kernel  Double-layer Potential  Hilbert Transformation  Poisson Kernel  Schwarz Kernel  
Direct sum decomposition of L2(R1n) into subspaces invariant under fourier transformation Journal article
Fei M.-G., Qian T.. Direct sum decomposition of L2(R1n) into subspaces invariant under fourier transformation[J]. Journal of Fourier Analysis and Applications, 2006, 12(2), 145-155.
Authors:  Fei M.-G.;  Qian T.
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:1.2/1.2 | Submit date:2019/02/11
Generalized Cauchy-riemann Operator  Monogenic Functions  Spherical Harmonics  Subspaces Invariant Under Fourier Transformation