UM

Browse/Search Results:  1-10 of 47 Help

Selected(0)Clear Items/Page:    Sort:
Ranking-based Client Selection with Imitation Learning for Efficient Federated Learning Journal article
Chunlin Tian, Zhan Shi, Xinpeng Qin, Li Li, ChengZhong Xu. Ranking-based Client Selection with Imitation Learning for Efficient Federated Learning[J]. International Conference on Machine Learning, 2024, 235, 48211 - 48225.
Authors:  Chunlin Tian;  Zhan Shi;  Xinpeng Qin;  Li Li;  ChengZhong Xu
Favorite | TC[Scopus]:1 | Submit date:2024/08/29
Deep Joint Source-Channel Coding Over the Relay Channel Conference paper
Bian, Chenghong, Shao, Yulin, Wu, Haotian, Gunduz, Deniz. Deep Joint Source-Channel Coding Over the Relay Channel[C]:Institute of Electrical and Electronics Engineers Inc., 2024, 139-144.
Authors:  Bian, Chenghong;  Shao, Yulin;  Wu, Haotian;  Gunduz, Deniz
Favorite | TC[WOS]:2 TC[Scopus]:1 | Submit date:2024/10/10
Cooperative Relay Networks  Decode-and-forward  Deep Joint Source-channel Coding  
Model Pruning and Acceleration for Autonomous Driving Presentation
会议地点: 2022 14th International Conference on Machine Learning and Computing, 报告日期: 2022-02-19
Authors:  Xu CZ(須成忠)
Favorite |  | Submit date:2022/08/16
RIFLE: Backpropagation in depth for deep transfer learning through re-initializing the fully-connected layer Conference paper
Li,Xingjian, Xiong,Haoyi, An,Haozhe, Xu,Chengzhong, Dou,Dejing. RIFLE: Backpropagation in depth for deep transfer learning through re-initializing the fully-connected layer[C], 2020, 5966-5975.
Authors:  Li,Xingjian;  Xiong,Haoyi;  An,Haozhe;  Xu,Chengzhong;  Dou,Dejing
Favorite | TC[Scopus]:12 | Submit date:2021/05/31
Training binary neural networks through learning with noisy supervision Conference paper
Han, Kai, Wang, Yunhe, Xu, Yixing, Xu, Chunjing, Wu, Enhua, Xu, Chang. Training binary neural networks through learning with noisy supervision[C], 2020, 3975-3984.
Authors:  Han, Kai;  Wang, Yunhe;  Xu, Yixing;  Xu, Chunjing;  Wu, Enhua; et al.
Favorite | TC[WOS]:5 TC[Scopus]:34 | Submit date:2023/04/17
Intelligent Machine Tools Recognition Based on Hybrid CNNs and ELMs Networks Conference paper
Zhang, K., Tang, L.L., Yang, Z. X., Luo, L.Q.. Intelligent Machine Tools Recognition Based on Hybrid CNNs and ELMs Networks[C], 2019.
Authors:  Zhang, K.;  Tang, L.L.;  Yang, Z. X.;  Luo, L.Q.
Favorite |  | Submit date:2022/08/31
Machine Tools Recognition  Convolutional Neural Networks(CNNs)  Extreme Learning Machine  Auto-Encoder  
Spectral-Spatial Sparse Subspace Clustering Based on Three-Dimensional Edge-Preserving Filtering for Hyperspectral Image Conference paper
Li A., Qin A., Hu S., Shang Z., Tang Y.Y.. Spectral-Spatial Sparse Subspace Clustering Based on Three-Dimensional Edge-Preserving Filtering for Hyperspectral Image[C], 2018, 167-172.
Authors:  Li A.;  Qin A.;  Hu S.;  Shang Z.;  Tang Y.Y.
Favorite | TC[Scopus]:1 | Submit date:2019/02/11
3-d Edge-preserving Filters (3-d Epfs)  Hyperspectral Images (Hsis)  Intensity Differences  Sparse Subspace Clustering (Ssc)  
Parameter Estimation of Gaussian Mixture Model Based on Variational Bayesian Learning Conference paper
Zhao L., Shang Z., Qin A., Tang Y.Y.. Parameter Estimation of Gaussian Mixture Model Based on Variational Bayesian Learning[C], 2018, 99-104.
Authors:  Zhao L.;  Shang Z.;  Qin A.;  Tang Y.Y.
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2019/02/11
Annealing Algorithm  Gaussian Mixture Model  Parameter Estimation  Tsallis-davbem  Variational Bayes Em  
Swarm search methods in weka for data mining Conference paper
Simon Fong, Robert P. Biuk-Aghai, Richard C. Millham. Swarm search methods in weka for data mining[C]:ASSOC COMPUTING MACHINERY, 1515 BROADWAY, NEW YORK, NY 10036-9998 USA, 2018, 122-127.
Authors:  Simon Fong;  Robert P. Biuk-Aghai;  Richard C. Millham
Favorite | TC[WOS]:25 TC[Scopus]:36 | Submit date:2019/02/13
Data Mining  Search Methods  Feature Selection  Metaheuristics  
An efficient ranking scheme for frequent subgraph patterns Conference paper
Saif Ur Rehman, Sohail Asghar, Simon Fong. An efficient ranking scheme for frequent subgraph patterns[C]:ASSOC COMPUTING MACHINERY, 1515 BROADWAY, NEW YORK, NY 10036-9998 USA, 2018, 257-262.
Authors:  Saif Ur Rehman;  Sohail Asghar;  Simon Fong
Favorite | TC[WOS]:4 TC[Scopus]:4 | Submit date:2019/02/13
Graph Mining  Frequent Subgraphs  Apriori-based Fsm  Pattern-growth Based Fsm