UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
A weighted ADI scheme with variable time steps for diffusion-wave equations Journal article
Pin Lyu, Seakweng Vong. A weighted ADI scheme with variable time steps for diffusion-wave equations[J]. CALCOLO, 2023, 60(4), 49.
Authors:  Pin Lyu;  Seakweng Vong
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:1.4/1.8 | Submit date:2023/12/04
Adi Method  Diffusion-wave Equation  Nonuniform Mesh  Weak Singularity  
A new preconditioned SOR method for solving multi-linear systems with an M -tensor Journal article
Liu,Dongdong, Li,Wen, Vong,Seak Weng. A new preconditioned SOR method for solving multi-linear systems with an M -tensor[J]. Calcolo, 2020, 57(2), 15.
Authors:  Liu,Dongdong;  Li,Wen;  Vong,Seak Weng
Favorite | TC[WOS]:19 TC[Scopus]:17  IF:1.4/1.8 | Submit date:2021/03/09
Multi-linear System  Preconditioned Method  Sor Method  Stong M-tensor  Tensor Splitting Algorithm  
Newton-type methods for solving quasi-complementarity problems via sign-based equation Journal article
Zheng,Hua, Vong,Seakweng, Guo,Wen Xiu. Newton-type methods for solving quasi-complementarity problems via sign-based equation[J]. Calcolo, 2019, 56(2).
Authors:  Zheng,Hua;  Vong,Seakweng;  Guo,Wen Xiu
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:1.4/1.8 | Submit date:2021/03/09
Hybrid Method  Newton Method  Quasi-complementarity Problem  Sign-based Equation  
The modulus-based nonsmooth Newton’s method for solving a class of nonlinear complementarity problems of P-matrices Journal article
Zheng H., Vong S.. The modulus-based nonsmooth Newton’s method for solving a class of nonlinear complementarity problems of P-matrices[J]. Calcolo, 2018, 55(3).
Authors:  Zheng H.;  Vong S.
Favorite | TC[WOS]:15 TC[Scopus]:16 | Submit date:2018/12/24
Modulus-based Method  Nonlinear Complementarity Problem  Nonsmooth Newton’s Method  P-matrix  
Preconditioning technique for symmetric M-matrices Journal article
Jin X.-Q., Wei Y.-M., Tam H.-S.. Preconditioning technique for symmetric M-matrices[J]. Calcolo, 2005, 42(2), 105-113.
Authors:  Jin X.-Q.;  Wei Y.-M.;  Tam H.-S.
Favorite | TC[WOS]:4 TC[Scopus]:4 | Submit date:2019/02/11
Strang-type preconditioners for solving linear systems from neutral delay differential equations Journal article
Bai Z.-J., Jin X.-Q., Song L.-L.. Strang-type preconditioners for solving linear systems from neutral delay differential equations[J]. Calcolo, 2003, 40(1), 21-31.
Authors:  Bai Z.-J.;  Jin X.-Q.;  Song L.-L.
Favorite | TC[WOS]:5 TC[Scopus]:5 | Submit date:2019/02/11