×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [6]
Authors
JIN XIAO QING [5]
SUN HAIWEI [1]
LEI SIU LONG [1]
Document Type
Journal article [7]
Date Issued
2021 [1]
2020 [1]
2019 [1]
2018 [1]
2003 [1]
1996 [1]
More...
Language
英語English [6]
Source Publication
BIT Numerical Ma... [5]
BIT NUMERICAL MA... [2]
Indexed By
SCIE [5]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-7 of 7
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
A Riemannian under-determined BFGS method for least squares inverse eigenvalue problems
Journal article
Zhao, Zhi, Jin, Xiao Qing, Yao, Teng Teng. A Riemannian under-determined BFGS method for least squares inverse eigenvalue problems[J]. BIT NUMERICAL MATHEMATICS, 2021, 62(1), 311-337.
Authors:
Zhao, Zhi
;
Jin, Xiao Qing
;
Yao, Teng Teng
Favorite
|
TC[WOS]:
0
TC[Scopus]:
1
IF:
1.6
/
1.8
|
Submit date:2022/03/28
Parameterized Least Squares Inverse Eigenvalue Problems
Riemannian Under-determined Bfgs Method
Under-determined Equation
A geometric Gauss–Newton method for least squares inverse eigenvalue problems
Journal article
Yao,Teng Teng, Bai,Zheng Jian, Jin,Xiao Qing, Zhao,Zhi. A geometric Gauss–Newton method for least squares inverse eigenvalue problems[J]. BIT Numerical Mathematics, 2020, 60(3), 825-852.
Authors:
Yao,Teng Teng
;
Bai,Zheng Jian
;
Jin,Xiao Qing
;
Zhao,Zhi
Favorite
|
TC[WOS]:
7
TC[Scopus]:
8
IF:
1.6
/
1.8
|
Submit date:2021/03/09
Geometric Gauss–newton Method
Parameterized Least Squares Inverse Eigenvalue Problem
Preconditioner
Riemannian inexact Newton method for structured inverse eigenvalue and singular value problems
Journal article
Chiang,Chun Yueh, Lin,Matthew M., Jin,Xiao Qing. Riemannian inexact Newton method for structured inverse eigenvalue and singular value problems[J]. BIT Numerical Mathematics, 2019, 59(3), 675-694.
Authors:
Chiang,Chun Yueh
;
Lin,Matthew M.
;
Jin,Xiao Qing
Favorite
|
TC[WOS]:
3
TC[Scopus]:
4
IF:
1.6
/
1.8
|
Submit date:2021/03/09
Inverse EigenValue And Singular Value Problems
Nonnegative Matrices
Riemannian Inexact Newton Method
Efficient preconditioner of one-sided space fractional diffusion equation
Journal article
Lin,Xue Lei, Ng,Michael K., Sun,Hai Wei. Efficient preconditioner of one-sided space fractional diffusion equation[J]. BIT Numerical Mathematics, 2018, 58(3), 729-748.
Authors:
Lin,Xue Lei
;
Ng,Michael K.
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
22
TC[Scopus]:
23
IF:
1.6
/
1.8
|
Submit date:2019/05/27
One-sided Space-fractional Derivative
Preconditioning
Toeplitz-like Matrix
Variable Diffusion Coefficients
Strang-type preconditioners for solving linear systems from delay differential equations
Journal article
Lin F.R., Jin X.Q., Lei S.L.. Strang-type preconditioners for solving linear systems from delay differential equations[J]. BIT Numerical Mathematics, 2003, 43(1), 139-152.
Authors:
Lin F.R.
;
Jin X.Q.
;
Lei S.L.
Favorite
|
TC[WOS]:
15
TC[Scopus]:
11
|
Submit date:2019/02/11
Block-circulant Pre-conditioner
Boundary Value Method
Delay Differential Equation
Gmres Method
A preconditioner for constrained and weighted least squares problems with Toeplitz structure
Journal article
Jin X.-Q.. A preconditioner for constrained and weighted least squares problems with Toeplitz structure[J]. BIT Numerical Mathematics, 1996, 36(1), 101-109.
Authors:
Jin X.-Q.
Favorite
|
TC[WOS]:
7
TC[Scopus]:
7
|
Submit date:2019/02/11
Circulant Matrix
Least Squares
Pcg Method
Toeplitz Matrix
Hartley preconditioners for Toeplitz systems generated by positive continuous functions
Journal article
Jin X.-Q.. Hartley preconditioners for Toeplitz systems generated by positive continuous functions[J]. BIT NUMERICAL MATHEMATICS, 1994, 34(3), 367-371.
Authors:
Jin X.-Q.
Favorite
|
TC[WOS]:
20
TC[Scopus]:
18
IF:
1.6
/
1.8
|
Submit date:2019/02/11
Ams Subject Classifications: 65f10, 65f15
Circulant Matrix
Conjugate Gradient Method
Generating Function
Hartley Preconditioner
Topelitz Matrix