Residential College | false |
Status | 已發表Published |
Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network | |
Deng, Fuquan1,2; Wan, Qian2,3; Zeng, Yingting4; Shi, Yanbin4; Wu, Huiying5; Wu, Yu5; Xu, Weifeng1; Mok, Greta S.P.6; Zhang, Xiaochun5; Hu, Zhanli2 | |
2022-05-01 | |
Source Publication | Quantitative Imaging in Medicine and Surgery |
ISSN | 2223-4292 |
Volume | 12Issue:5Pages:2755-2766 |
Other Abstract | Background: When the heart rate of a patient exceeds the physical limits of a scanning device, even retrospective electrocardiography (ECG) gating technology cannot correct motion artifacts. The purpose of this study was to use deep learning methods to correct motion artifacts in coronary computed tomography angiography (CCTA) images acquired with retrospective ECG gating. Methods: To correct motion artifacts in CCTA images, we used a cycle Wasserstein generative adversarial network with a gradient penalty (WGAN-GP) to synthesize CCTA images without motion artifacts, and applied objective image indicators and clinical quantitative scores to evaluate the images. The objective image indicators included peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and normalized mean square error (NMSE). For clinical quantitative scoring, we randomly selected 50 sets of images from the test data set as the scoring data set. We invited 2 radiologists from Zhongnan Hospital of Wuhan University to score the composite images. Results: In the test images, the PSNR, SSIM, NMSE and clinical quantitative score were 24.96±1.54, 0.769±0.055, 0.031±0.023, and 4.12±0.61, respectively. The images synthesized by cycle WGAN-GP performed better on objective image indicators and clinical quantitative scores than those synthesized by cycle least squares generative adversarial network (LSGAN), UNet, WGAN, and cycle WGAN. Conclusions: Our proposed method can effectively correct the motion artifacts of coronary arteries in CCTA images and performs better than other methods. According to the performance of the clinical score, correction of images by this method does not affect the clinical diagnosis. |
Keyword | Coronary Computed Tomography Angiography (Ccta) Cycle Generative Adversarial Network Motion Artifact |
DOI | 10.21037/qims-20-1400 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Radiology, Nuclear Medicine & Medical Imaging |
WOS Subject | Radiology, Nuclear Medicine & Medical Imaging |
WOS ID | WOS:000759110000001 |
Publisher | AME PUBL CO, FLAT-RM C 16F, KINGS WING PLAZA 1, NO 3 KWAN ST, SHATIN, HONG KONG 00000, PEOPLES R CHINA |
Scopus ID | 2-s2.0-85127052687 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING |
Co-First Author | Deng, Fuquan |
Corresponding Author | Zhang, Xiaochun; Hu, Zhanli |
Affiliation | 1.Computer Department, North China Electric Power University, Baoding, China 2.Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 3.Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China 4.Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan, China 5.Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China 6.Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Avenida da Universidade, Macao |
Recommended Citation GB/T 7714 | Deng, Fuquan,Wan, Qian,Zeng, Yingting,et al. Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(5), 2755-2766. |
APA | Deng, Fuquan., Wan, Qian., Zeng, Yingting., Shi, Yanbin., Wu, Huiying., Wu, Yu., Xu, Weifeng., Mok, Greta S.P.., Zhang, Xiaochun., & Hu, Zhanli (2022). Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network. Quantitative Imaging in Medicine and Surgery, 12(5), 2755-2766. |
MLA | Deng, Fuquan,et al."Image restoration of motion artifacts in cardiac arteries and vessels based on a generative adversarial network".Quantitative Imaging in Medicine and Surgery 12.5(2022):2755-2766. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment