UM  > Faculty of Science and Technology
Residential Collegefalse
Status已發表Published
An efficient two-level overlapping domain decomposition method for recovering unsteady sources of 3D parabolic problems
Deng, Xiaomao1; Liao, Zi Ju2; Cai, Xiao Chuan3
2022-04-01
Source PublicationCOMPUTERS & MATHEMATICS WITH APPLICATIONS
ISSN0898-1221
Volume111Pages:98-108
Abstract

We develop a parallel two-level domain decomposition method for the 3D unsteady source identification problem governed by a parabolic partial differential equation (PDE). The domain of the PDE is firstly decomposed into several overlapping subdomains and the original inverse source identification problem is then transformed into smaller independent subproblems defined on these subdomains. Each subproblem is formulated as a PDE-constrained optimization problem with appropriate conditions prescribed on the inner boundaries and discretized by finite element method. The resulting coupled algebraic systems are solved simultaneously by restarted GMRES method with a space-time restricted additive Schwarz preconditioner. When forming the preconditioner, a second level of domain decomposition is introduced for each subdomain. The solutions of these subproblems are combined together to form an approximated global solution to the original inverse problem by discarding the overlapping parts of the solution. Since all the subproblems are solved independently, the two-level domain decomposition method provides higher degree of parallelism and saves much computing time. Numerical experiments conducted on a supercomputer with thousands of processor cores validate the efficiency and robustness of the proposed approach.

KeywordDomain Decomposition Inverse Problems Parallel Computing Source Identification
DOI10.1016/j.camwa.2022.02.010
URLView the original
Indexed BySCIE
Language英語English
WOS Research AreaMathematics
WOS SubjectMathematics, Applied
WOS IDWOS:000789919800008
Scopus ID2-s2.0-85125677053
Fulltext Access
Citation statistics
Document TypeJournal article
CollectionFaculty of Science and Technology
Corresponding AuthorDeng, Xiaomao; Liao, Zi Ju; Cai, Xiao Chuan
Affiliation1.School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, 510006, China
2.Department of Mathematics, Jinan University, Guangzhou, 510632, China
3.Department of Mathematics, University of Macau, Macau, China
Corresponding Author AffilicationUniversity of Macau
Recommended Citation
GB/T 7714
Deng, Xiaomao,Liao, Zi Ju,Cai, Xiao Chuan. An efficient two-level overlapping domain decomposition method for recovering unsteady sources of 3D parabolic problems[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 111, 98-108.
APA Deng, Xiaomao., Liao, Zi Ju., & Cai, Xiao Chuan (2022). An efficient two-level overlapping domain decomposition method for recovering unsteady sources of 3D parabolic problems. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 111, 98-108.
MLA Deng, Xiaomao,et al."An efficient two-level overlapping domain decomposition method for recovering unsteady sources of 3D parabolic problems".COMPUTERS & MATHEMATICS WITH APPLICATIONS 111(2022):98-108.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Deng, Xiaomao]'s Articles
[Liao, Zi Ju]'s Articles
[Cai, Xiao Chuan]'s Articles
Baidu academic
Similar articles in Baidu academic
[Deng, Xiaomao]'s Articles
[Liao, Zi Ju]'s Articles
[Cai, Xiao Chuan]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Deng, Xiaomao]'s Articles
[Liao, Zi Ju]'s Articles
[Cai, Xiao Chuan]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.