Residential College | false |
Status | 已發表Published |
SRY and human sex determination: The basic tail of the HMG box functions as a kinetic clamp to augment DNA bending | |
Phillips N.B.3; Jancso-Radek A.3; Ittah V.2; Singh R.3; Chan G.3; Haas E.2; Weiss M.A.3 | |
2006-04-21 | |
Source Publication | Journal of Molecular Biology |
ISSN | 00222836 |
Volume | 358Issue:1Pages:172-192 |
Abstract | Human testis-determining factor SRY contains a high-mobility-group (HMG) box, an α-helical DNA-binding domain that binds within an expanded minor groove to induce DNA bending. This motif is flanked on the C-terminal end by a basic tail, which functions both as a nuclear localization signal and accessory DNA-binding element. Whereas the HMG box is broadly conserved among otherwise unrelated transcription factors, tails differ in sequence and mode of DNA binding. Contrasting examples are provided by SRY and lymphoid enhancer factor 1 (LEF-1): whereas the SRY tail remains in the minor groove distal to the HMG box, the LEF-1 tail binds back across the center of the bent DNA site. The LEF-1 tail relieves electrostatic repulsion that would otherwise be incurred within the compressed major groove to enable sharp DNA bending with high affinity. Here, we demonstrate that the analogous SRY tail functions as a "kinetic clamp" to regulate the lifetime of the bent DNA complex. As in LEF-1, partial truncation of the distal SRY tail reduces specific DNA affinity and DNA bending, but these perturbations are modest: binding is reduced by only 1.8-fold, and bending by only 7-10°. "Tailed" and truncated SRY complexes exhibit similar structures (as probed by NMR) and distributions of long-range conformational substates (as probed by time-resolved fluorescence resonance energy transfer). Surprisingly, however, the SRY tail retards dissociation of the protein-DNA complex by 20-fold. The marked and compensating changes in rates of association and dissociation observed on tail truncation, disproportionate to perturbations in affinity or structure, suggest that this accessory element functions as a kinetic clamp to regulate the lifetime of the SRY-DNA complex. We speculate that the kinetic stability of a bent DNA complex is critical to the assembly and maintenance of a sex-specific transcriptional pre-initiation complex. © 2006 Elsevier Ltd. All rights reserved. |
Keyword | Gene Regulation Protein Structure Intersex Abnormalities Gonadal Dysgenesis Human Development |
DOI | 10.1016/j.jmb.2006.01.060 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Biochemistry & Molecular Biology |
WOS Subject | Biochemistry & Molecular Biology |
WOS ID | WOS:000236870700015 |
Scopus ID | 2-s2.0-33645101318 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | Institute of Chinese Medical Sciences |
Corresponding Author | Weiss M.A. |
Affiliation | 1.Epicentre 2.Bar-Ilan University 3.CASE School of Medicine |
Recommended Citation GB/T 7714 | Phillips N.B.,Jancso-Radek A.,Ittah V.,et al. SRY and human sex determination: The basic tail of the HMG box functions as a kinetic clamp to augment DNA bending[J]. Journal of Molecular Biology, 2006, 358(1), 172-192. |
APA | Phillips N.B.., Jancso-Radek A.., Ittah V.., Singh R.., Chan G.., Haas E.., & Weiss M.A. (2006). SRY and human sex determination: The basic tail of the HMG box functions as a kinetic clamp to augment DNA bending. Journal of Molecular Biology, 358(1), 172-192. |
MLA | Phillips N.B.,et al."SRY and human sex determination: The basic tail of the HMG box functions as a kinetic clamp to augment DNA bending".Journal of Molecular Biology 358.1(2006):172-192. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment