Residential College | false |
Status | 已發表Published |
Constructing better classifier ensemble based on weighted accuracy and diversity measure | |
Zeng X.; Wong D.F.; Chao L.S. | |
2014-03-06 | |
Source Publication | The Scientific World Journal |
ISSN | 1537744X |
Volume | 2014 |
Abstract | A weighted accuracy and diversity (WAD) method is presented, a novel measure used to evaluate the quality of the classifier ensemble, assisting in the ensemble selection task. The proposed measure is motivated by a commonly accepted hypothesis; that is, a robust classifier ensemble should not only be accurate but also different from every other member. In fact, accuracy and diversity are mutual restraint factors; that is, an ensemble with high accuracy may have low diversity, and an overly diverse ensemble may negatively affect accuracy. This study proposes a method to find the balance between accuracy and diversity that enhances the predictive ability of an ensemble for unknown data. The quality assessment for an ensemble is performed such that the final score is achieved by computing the harmonic mean of accuracy and diversity, where two weight parameters are used to balance them. The measure is compared to two representative measures, Kappa-Error and GenDiv, and two threshold measures that consider only accuracy or diversity, with two heuristic search algorithms, genetic algorithm, and forward hill-climbing algorithm, in ensemble selection tasks performed on 15 UCI benchmark datasets. The empirical results demonstrate that the WAD measure is superior to others in most cases. © 2014 Xiaodong Zeng et al. |
DOI | 10.1155/2014/961747 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Science & Technology - Other Topics |
WOS Subject | Multidisciplinary Sciences |
WOS ID | WOS:000330891600001 |
Scopus ID | 2-s2.0-84896847093 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE |
Affiliation | Universidade de Macau |
First Author Affilication | University of Macau |
Recommended Citation GB/T 7714 | Zeng X.,Wong D.F.,Chao L.S.. Constructing better classifier ensemble based on weighted accuracy and diversity measure[J]. The Scientific World Journal, 2014, 2014. |
APA | Zeng X.., Wong D.F.., & Chao L.S. (2014). Constructing better classifier ensemble based on weighted accuracy and diversity measure. The Scientific World Journal, 2014. |
MLA | Zeng X.,et al."Constructing better classifier ensemble based on weighted accuracy and diversity measure".The Scientific World Journal 2014(2014). |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment