Residential College | false |
Status | 已發表Published |
Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice | |
Yin Dou1; Jiawei Guo1; Yue Chen1; Songling Han1; Xiaoqiu Xu1; Qing Shi1; Yi Jia1; Ya Liu1; Youcai Deng1; Ruibing Wang2; Xiaohui Li1; Jianxiang Zhang1 | |
2016-08-10 | |
Source Publication | Journal of Controlled Release |
ISSN | 0168-3659 |
Volume | 235Pages:48-62 |
Abstract | Increasing evidence has demonstrated special advantages of the nanomedicinal approach for the management of cardiovascular disease. We hypothesize that sustained delivery of rapamycin (RAP) may provide more desirable therapeutic effects than traditional oral administration by selectively inhibiting mammalian target of rapamycin complex 1 (mTORC1) signaling. To evidence this assumption and develop an effective, safe, and translational nanotherapy for atherosclerosis, this study was designed to examine antiatherosclerotic efficacy of a RAP nanotherapy based on an acetalated β-cyclodextrin (Ac-bCD) material in apolipoprotein E-deficient (ApoE) mice. First, biodegradable and biocompatible materials of Ac-bCDs were synthesized by kinetically controlled acetalation, giving rise to carrier materials that may not generate acidic byproducts after hydrolysis. Then RAP-loaded nanoparticles base on various Ac-bCDs were prepared by a nanoemulsion technique, which can sustain drug release for different periods of time, depending on the composition of Ac-bCDs. For a RAP/Ac-bCD180-derived nanotherapy (RAP-NP) that may continue RAP release for up to 20 days in vitro, it afforded constant drug levels in both the blood and aortic tissue after subcutaneous injection, while orally administered free RAP showed typical peak-valley profiles with remarkably high peak concentrations. Therapeutic studies conducted in an experimental model of atherosclerosis established in ApoE mice revealed that RAP-NP significantly reduced the formation of atherosclerotic lesions and dramatically enhanced the stability of plaques, which was more efficacious than orally delivered free RAP. Moreover, rupture-prone proinflammatory factors in both serum and aortas were significantly decreased after treatment. Whereas oral administration of RAP simultaneously inhibited mTORC1 and mTORC2 in the aorta, sustained delivery by RAP-NP selectively suppressed mTORC1, agreeing with in vitro results in smooth muscle cells. These findings demonstrated that antiatherosclerotic activity of RAP may be considerably improved by sustained release via the Ac-bCD material-derived nanocarrier, which was achieved through selectively inhibiting mTORC1. |
Keyword | Atherosclerosis Cyclodextrin Mtor Nanomedicine Rapamycin Sustained Delivery |
DOI | 10.1016/j.jconrel.2016.05.049 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Chemistry ; Pharmacology & Pharmacy |
WOS Subject | Chemistry, Multidisciplinary ; Pharmacology & Pharmacy |
WOS ID | WOS:000379702700005 |
Scopus ID | 2-s2.0-84971538904 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF PHARMACEUTICAL SCIENCES Institute of Chinese Medical Sciences THE STATE KEY LABORATORY OF QUALITY RESEARCH IN CHINESE MEDICINE (UNIVERSITY OF MACAU) |
Corresponding Author | Xiaohui Li; Jianxiang Zhang |
Affiliation | 1.Third Military Medical University 2.University of Macau |
Recommended Citation GB/T 7714 | Yin Dou,Jiawei Guo,Yue Chen,et al. Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice[J]. Journal of Controlled Release, 2016, 235, 48-62. |
APA | Yin Dou., Jiawei Guo., Yue Chen., Songling Han., Xiaoqiu Xu., Qing Shi., Yi Jia., Ya Liu., Youcai Deng., Ruibing Wang., Xiaohui Li., & Jianxiang Zhang (2016). Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice. Journal of Controlled Release, 235, 48-62. |
MLA | Yin Dou,et al."Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice".Journal of Controlled Release 235(2016):48-62. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment