Residential College | false |
Status | 已發表Published |
Shared Linear Encoder-Based Multikernel Gaussian Process Latent Variable Model for Visual Classification | |
Li, Jinxing1,4; Lu, Guangming2; Zhang, Bob3; You, Jane4; Zhang, David1 | |
2021-02-01 | |
Source Publication | IEEE Transactions on Cybernetics |
ABS Journal Level | 3 |
ISSN | 2168-2267 |
Volume | 51Issue:2Pages:534-547 |
Abstract | Multiview learning has been widely studied in various fields and achieved outstanding performances in comparison to many single-view-based approaches. In this paper, a novel multiview learning method based on the Gaussian process latent variable model (GPLVM) is proposed. In contrast to existing GPLVM methods which only assume that there are transformations from the latent variable to the multiple observed inputs, our proposed method simultaneously takes a back constraint into account, encoding multiple observations to the latent variable by enjoying the Gaussian process (GP) prior. Particularly, to overcome the difficulty of the covariance matrix calculation in the encoder, a linear projection is designed to map different observations to a consistent subspace first. The obtained variable in this subspace is then projected to the latent variable in the manifold space with the GP prior. Furthermore, different from most GPLVM methods which strongly assume that the covariance matrices follow a certain kernel function, for example, radial basis function (RBF), we introduce a multikernel strategy to design the covariance matrix, being more reasonable and adaptive for the data representation. In order to apply the presented approach to the classification, a discriminative prior is also embedded to the learned latent variables to encourage samples belonging to the same category to be close and those belonging to different categories to be far. Experimental results on three real-world databases substantiate the effectiveness and superiority of the proposed method compared with state-of-the-art approaches. |
Keyword | Classification Gaussian Process (Gp) Latent Variable Model Multikernel Multiview |
DOI | 10.1109/TCYB.2019.2915789 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Automation & Control Systems ; Computer Science |
WOS Subject | Automation & Control Systems ; Computer Science, Artificial Intelligence ; Computer Science, Cybernetics |
WOS ID | WOS:000608690900005 |
Publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 |
Scopus ID | 2-s2.0-85099732944 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE |
Corresponding Author | Zhang, David |
Affiliation | 1.School of Science and Engineering, Chinese University of Hong Kong (Shenzhen), Shenzhen, 518000, China 2.Department of Computer Science, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518000, China 3.Department of Computer and Information Science, University of Macau, 999078, Macao 4.Department of Computing, Hong Kong Polytechnic University, Hong Kong, Hong Kong |
Recommended Citation GB/T 7714 | Li, Jinxing,Lu, Guangming,Zhang, Bob,et al. Shared Linear Encoder-Based Multikernel Gaussian Process Latent Variable Model for Visual Classification[J]. IEEE Transactions on Cybernetics, 2021, 51(2), 534-547. |
APA | Li, Jinxing., Lu, Guangming., Zhang, Bob., You, Jane., & Zhang, David (2021). Shared Linear Encoder-Based Multikernel Gaussian Process Latent Variable Model for Visual Classification. IEEE Transactions on Cybernetics, 51(2), 534-547. |
MLA | Li, Jinxing,et al."Shared Linear Encoder-Based Multikernel Gaussian Process Latent Variable Model for Visual Classification".IEEE Transactions on Cybernetics 51.2(2021):534-547. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment