Residential College | false |
Status | 已發表Published |
Learning discriminative domain-invariant prototypes for generalized zero shot learning | |
Wang, Yinduo1; Zhang, Haofeng1; Zhang, Zheng2,5; Long, Yang3; Shao, Ling4 | |
2020-05-21 | |
Source Publication | Knowledge-Based Systems |
ISSN | 0950-7051 |
Volume | 196Pages:105796 |
Abstract | Zero-shot learning (ZSL) aims to recognize objects of target classes by transferring knowledge from source classes through the semantic embeddings bridging. However, ZSL focuses the recognition only on unseen classes, which is unreasonable in realistic scenarios. A more reasonable way is to recognize new samples on combined domains, namely Generalized Zero Shot Learning (GZSL). Due to the fact that the source domain and target domain are disjoint and have unrelated classes potentially, ZSL and GZSL often suffer from the problem of projection domain shift. Besides, some semantic embeddings of prototypes are very similar, which makes the recognition less discriminative. To circumvent these issues, in this paper, we propose a novel method, called Learning Discriminative Domain-Invariant Prototypes (DDIP). In DDIP, both target and source domains are combined and projected into a hyper-spherical space, which is automatically learned by a regularized dictionary learning. In addition, an orthogonal constraint is employed to the latent hyper-spherical space to ensure all the class prototypes, including seen classes and unseen classes, to be orthogonal to each other to make them more discriminative. Extensive experiments on four popular benchmark and a large-scale datasets are conducted on both GZSL and standard ZSL settings, and the results show that our DDIP can outperform the state-of-the-art methods. |
Keyword | Generalized Zero Shot Learning (Gzsl) Domain-invariant Learning Orthogonal Constraint Dictionary Learning |
DOI | 10.1016/j.knosys.2020.105796 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Computer Science |
WOS Subject | Computer Science, Artificial Intelligence |
WOS ID | WOS:000527301700025 |
Publisher | ELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS |
Scopus ID | 2-s2.0-85082522037 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | Faculty of Science and Technology DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE |
Corresponding Author | Zhang, Haofeng |
Affiliation | 1.Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China 2.Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China 3.Univ Durham, Sch Comp Sci, Durham, England 4.IIAI, Abu Dhabi, U Arab Emirates 5.Harbin Inst Technol, Biocomp Res Ctr, Shenzhen, Peoples R China |
Recommended Citation GB/T 7714 | Wang, Yinduo,Zhang, Haofeng,Zhang, Zheng,et al. Learning discriminative domain-invariant prototypes for generalized zero shot learning[J]. Knowledge-Based Systems, 2020, 196, 105796. |
APA | Wang, Yinduo., Zhang, Haofeng., Zhang, Zheng., Long, Yang., & Shao, Ling (2020). Learning discriminative domain-invariant prototypes for generalized zero shot learning. Knowledge-Based Systems, 196, 105796. |
MLA | Wang, Yinduo,et al."Learning discriminative domain-invariant prototypes for generalized zero shot learning".Knowledge-Based Systems 196(2020):105796. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment