Residential College | false |
Status | 已發表Published |
Integrating PtNi nanoparticles on NiFe layered double hydroxide nanosheets as a bifunctional catalyst for hybrid sodium-air batteries | |
Yu,Xueqing1; Kang,Yao1; Wang,Shuo1; Hui,Kwan San2; Hui,Kwun Nam1; Zhao,Huajun1,3; Li,Jianding1; Li,Bo1; Xu,Jincheng1; Chen,Liang4,5; Shao,Huaiyu1 | |
2020-08 | |
Source Publication | Journal of Materials Chemistry A |
ISSN | 2050-7488 |
Volume | 8Issue:32Pages:16355-16365 |
Abstract | Hybrid sodium–air batteries (HSABs) are emerging systems for next-generation energy storage owing to their high theoretical energy density, high specific capacity, low cost, and environmental friendliness. However, the ungratified energy efficiency, large overpotential, and poor cycling stability associated with the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) at air electrodes hamper their further development. Herein, we report a facile electrodeposition method to construct three-dimensional nickel defect-rich nickel–iron layered double hydroxide nanosheets decorated with platinum–nickel alloyed nanoparticles grown on macroporous nickel foam substrates (PtNi/NixFe LDHs) as a binder-free electrocatalyst. The optimal catalyst (Pt3Ni1/NixFe LDHs) demonstrates a low overpotential (265 mV at the current density of 10 mA cm−2), a small Tafel slope (22.2 mV dec−1) towards the OER and a high half-wave potential (0.852 V) for ORR, as well as superior long-term stability in comparison to commercial catalysts. Theoretical calculations revealed that the Ni-top site of Pt3Ni1/NixFe LDHs works as an active site for enhanced OER/ORR activities. The fabricated HSAB with Pt3Ni1/NixFe LDHs as the air cathode displayed not only an initial low overpotential gap (0.50 V) but also superior rechargeability and structure stability with high round-trip efficiency (∼79.9%) of over 300 cycles. These results provide a novel design of bifunctional and binder-free catalyst as the cathode for metal–air batteries. |
DOI | 10.1039/d0ta04602g |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Chemistry ; Energy & Fuels ; Materials Science |
WOS ID | WOS:000561168500020 |
Publisher | ROYAL SOC CHEMISTRY, THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND |
Scopus ID | 2-s2.0-85093658828 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | INSTITUTE OF APPLIED PHYSICS AND MATERIALS ENGINEERING |
Corresponding Author | Hui,Kwun Nam; Chen,Liang; Shao,Huaiyu |
Affiliation | 1.University of Macau 2.University of East Anglia 3.Southern University of Science and Technology 4.Chinese Academy of Sciences 5.University of Chinese Academy of Sciences |
First Author Affilication | University of Macau |
Corresponding Author Affilication | University of Macau |
Recommended Citation GB/T 7714 | Yu,Xueqing,Kang,Yao,Wang,Shuo,et al. Integrating PtNi nanoparticles on NiFe layered double hydroxide nanosheets as a bifunctional catalyst for hybrid sodium-air batteries[J]. Journal of Materials Chemistry A, 2020, 8(32), 16355-16365. |
APA | Yu,Xueqing., Kang,Yao., Wang,Shuo., Hui,Kwan San., Hui,Kwun Nam., Zhao,Huajun., Li,Jianding., Li,Bo., Xu,Jincheng., Chen,Liang., & Shao,Huaiyu (2020). Integrating PtNi nanoparticles on NiFe layered double hydroxide nanosheets as a bifunctional catalyst for hybrid sodium-air batteries. Journal of Materials Chemistry A, 8(32), 16355-16365. |
MLA | Yu,Xueqing,et al."Integrating PtNi nanoparticles on NiFe layered double hydroxide nanosheets as a bifunctional catalyst for hybrid sodium-air batteries".Journal of Materials Chemistry A 8.32(2020):16355-16365. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment