Residential College | false |
Status | 已發表Published |
Could or could not of Grid-Loc: grid BLE structure for indoor localisation system using machine learning | |
Quanyi Hu1; Jie Yang1,2; Peng Qin1; Simon Fong1; Jingzhi Guo1 | |
2020-04-20 | |
Source Publication | Service Oriented Computing and Applications |
ISSN | 1863-2386 |
Volume | 14Issue:3Pages:161-174 |
Abstract | Indoor localisation and its various applications have received significant attention in recent years. The state-of-the-art systems include a large number of complex hardware structures and algorithms making the system not suitable for practical applications. In this paper, we integrate a localisation system that consists of device development, model deployment, data collection and localisation algorithm to explore the localisation accuracy in a special static indoor environment (i.e. a meeting room or a parking lot). Compared with previous studies, the significance of our work is to find out a more convenient and practical way to deploy devices with a simple algorithm (e.g. machine learning algorithm) in such a scenario. Besides, it is meaningful to explore the technology of indoor localisation based on the application scenario. We propose a Grid-Loc system that presents a grid structure of Bluetooth low-energy devices to collect data assisting localisation. The system is easy to deploy for reducing the signal attenuation caused by the objects’ occlusion. Meanwhile, the system applies an algorithm that combines adaptive boosting with a support vector machine algorithm to support the system. In our deployed localisation scenario, we also compare localisation performances for several algorithms; the result shows the Grid-Loc system achieves the accuracy of 91.2%, computing time within 3 s in real time and a low cost. The system is also robust and scalable under the same indoor environments. |
Keyword | Bluetooth Low Energy Rfid Machine Learning |
DOI | 10.1007/s11761-020-00292-z |
URL | View the original |
Indexed By | ESCI |
Language | 英語English |
WOS Research Area | Computer Science |
WOS Subject | Computer Science, Interdisciplinary Applications |
WOS ID | WOS:000529532600001 |
Publisher | SPRINGERNATURE, CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND |
Scopus ID | 2-s2.0-85084147243 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE |
Affiliation | 1.Department of Computer and Information Science,University of Macau,Macao 2.Chongqing Industry & Trade Polytechnic,Chongqing,China |
First Author Affilication | University of Macau |
Recommended Citation GB/T 7714 | Quanyi Hu,Jie Yang,Peng Qin,et al. Could or could not of Grid-Loc: grid BLE structure for indoor localisation system using machine learning[J]. Service Oriented Computing and Applications, 2020, 14(3), 161-174. |
APA | Quanyi Hu., Jie Yang., Peng Qin., Simon Fong., & Jingzhi Guo (2020). Could or could not of Grid-Loc: grid BLE structure for indoor localisation system using machine learning. Service Oriented Computing and Applications, 14(3), 161-174. |
MLA | Quanyi Hu,et al."Could or could not of Grid-Loc: grid BLE structure for indoor localisation system using machine learning".Service Oriented Computing and Applications 14.3(2020):161-174. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment