UM
Residential Collegefalse
Status已發表Published
Information Geometry of Generalized Bayesian Prediction Usingα-Divergences as Loss Functions
Fode Zhang1; Yimin Shi3; Hon Keung Tony Ng2; Ruibing Wang3
2018-03
Source PublicationIEEE TRANSACTIONS ON INFORMATION THEORY
ISSN0018-9448
Volume64Issue:3Pages:1812-1824
Abstract

In this paper, the methods of information geometry are employed to investigate a generalized Bayes rule for prediction. Taking α-divergences as the loss functions, optimality, and asymptotic properties of the generalized Bayesian predictive densities are considered. We show that the Bayesian predictive densities minimize a generalized Bayes risk. We also find that the asymptotic expansions of the densities are related to the coefficients of theα-connections of a statistical manifold. In addition, we discuss the difference between two risk functions of the generalized Bayesian predictions based on different priors. Finally, using the non-informative priors (i.e., Jeffreys and reference priors), uniform prior, and conjugate prior, two examples are presented to illustrate the main results.

KeywordInformation Geometry Bayesian Prediction (Β1,Β2)-bayes Risk Optimality Asymptotic Properties
DOI10.1109/TIT.2017.2774820
Indexed BySCIE
Language英語English
WOS Research AreaComputer Science ; Engineering
WOS SubjectComputer Science, Information Systems ; Engineering, Electrical & Electronic
WOS IDWOS:000425665200024
Scopus ID2-s2.0-85035152488
Fulltext Access
Citation statistics
Document TypeJournal article
CollectionUniversity of Macau
Corresponding AuthorHon Keung Tony Ng
Affiliation1.Center of Statistical Research, School of Statistics,Southwestern University of Finance and Economics, Chengdu 611130, China
2.Department of Applied Mathematics,Northwestern Polytechnical University, Xi’an 710072, China
3.Department of Statistical Science, South-ern Methodist University,Dallas, Texas 75275-0332 USA
Recommended Citation
GB/T 7714
Fode Zhang,Yimin Shi,Hon Keung Tony Ng,et al. Information Geometry of Generalized Bayesian Prediction Usingα-Divergences as Loss Functions[J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64(3), 1812-1824.
APA Fode Zhang., Yimin Shi., Hon Keung Tony Ng., & Ruibing Wang (2018). Information Geometry of Generalized Bayesian Prediction Usingα-Divergences as Loss Functions. IEEE TRANSACTIONS ON INFORMATION THEORY, 64(3), 1812-1824.
MLA Fode Zhang,et al."Information Geometry of Generalized Bayesian Prediction Usingα-Divergences as Loss Functions".IEEE TRANSACTIONS ON INFORMATION THEORY 64.3(2018):1812-1824.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Fode Zhang]'s Articles
[Yimin Shi]'s Articles
[Hon Keung Tony Ng]'s Articles
Baidu academic
Similar articles in Baidu academic
[Fode Zhang]'s Articles
[Yimin Shi]'s Articles
[Hon Keung Tony Ng]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Fode Zhang]'s Articles
[Yimin Shi]'s Articles
[Hon Keung Tony Ng]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.