UM  > Faculty of Science and Technology
Residential Collegefalse
Status已發表Published
Hardy–Sobolev derivatives of phase andamplitude, and their applications
Pei Dang1; Tao Qian2; Yan Yang3
2012-11-30
Source PublicationMathematical Methods in the Applied Sciences
ISSN‎0170-4214
Volume35Issue:17Pages:2017–2030
Abstract

In time-frequency analysis, there are fundamental formulas expressing the mean and variance of the Fourier frequency of signals,s, originally defined in the Fourier frequency domain, in terms of integrals against the density |s(t)|2  in  the time domain. In the literature, the existing formulas are only for smooth signals, for it is the classical derivatives of the phase  and  amplitude  of  the  signals  that  are  involved.  The  two  representations  of  the  covariance  also  rely  on  the  classical  derivatives  and  thus  are  restrictive.  In  this  fundamental  study,  by  introducing  a  new  type  of  derivatives,  called Hardy–Sobolev  derivatives,  we  extend  the  formulas  to  signals  in  the  Sobolev  space  that  do  not  usually  have  classical derivatives.  We  also  investigate  the  corresponding  formulas  for  periodic  (infinite  discrete)  and  finite  discrete  signals. 

KeywordAmplitude-phase Representation Of Signal Derivatives Of Phase Andamplitude Sobolev Space Hardy Space Hilbert Transform Instantaneous Frequency
DOI10.1002/mma.2632
Indexed BySCIE
Language英語English
WOS Research AreaMathematics
WOS SubjectMathematics, Applied
WOS IDWOS:000311604800003
Scopus ID2-s2.0-84870246048
Fulltext Access
Citation statistics
Document TypeJournal article
CollectionFaculty of Science and Technology
Personal research not belonging to the institution
Affiliation1.Macau University of Science and Technology Department of General Education Macao (Via Hong Kong) China
2.University of Macau Department of Mathematics Macao (Via Hong Kong) China
3.Sun Yat‐Sen University School of Mathematics and Computational Science Guangzhou Guangdong China
First Author AffilicationUniversity of Macau
Recommended Citation
GB/T 7714
Pei Dang,Tao Qian,Yan Yang. Hardy–Sobolev derivatives of phase andamplitude, and their applications[J]. Mathematical Methods in the Applied Sciences, 2012, 35(17), 2017–2030.
APA Pei Dang., Tao Qian., & Yan Yang (2012). Hardy–Sobolev derivatives of phase andamplitude, and their applications. Mathematical Methods in the Applied Sciences, 35(17), 2017–2030.
MLA Pei Dang,et al."Hardy–Sobolev derivatives of phase andamplitude, and their applications".Mathematical Methods in the Applied Sciences 35.17(2012):2017–2030.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Pei Dang]'s Articles
[Tao Qian]'s Articles
[Yan Yang]'s Articles
Baidu academic
Similar articles in Baidu academic
[Pei Dang]'s Articles
[Tao Qian]'s Articles
[Yan Yang]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Pei Dang]'s Articles
[Tao Qian]'s Articles
[Yan Yang]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.