Residential College | false |
Status | 已發表Published |
Fractional gaussian noise: Spectral density and estimation methods | |
Shi, Shuping1; Yu, Jun2; Zhang, Chen2 | |
2024 | |
Source Publication | Journal of Time Series Analysis |
ABS Journal Level | 3 |
ISSN | 0143-9782 |
Abstract | The fractional Brownian motion (fBm) process, governed by a fractional parameter H ∈ (0, 1), is a continuous-time Gaussian process with its increment being the fractional Gaussian noise (fGn). This article first provides a computationally feasible expression for the spectral density of fGn. This expression enables us to assess the accuracy of a range of approximation methods, including the truncation method, Paxson's approximation, and the Taylor series expansion at the near-zero frequency. Next, we conduct an extensive Monte Carlo study comparing the finite sample performance and computational cost of alternative estimation methods for H under the fGn specification. These methods include two semi-parametric methods (based on the Taylor series expansion), two versions of the Whittle method (utilising either the computationally feasible expression or Paxson's approximation of the spectral density), a time-domain maximum likelihood (ML) method (employing a recursive approach for its likelihood calculation), and a change-of-frequency method. Special attention is paid to highly anti-persistent processes with H close to zero, which are of empirical relevance to financial volatility modelling. Considering the trade-off between statistical and computational efficiency, we recommend using either the Whittle ML method based on Paxson's approximation or the time-domain ML method. We model the log realized volatility dynamics of 40 financial assets in the US market from 2012 to 2019 with fBm. Although all estimation methods suggest rough volatility, the implied degree of roughness varies substantially with the estimation methods, highlighting the importance of understanding the finite sample performance of various estimation methods. |
Keyword | Change-of-frequency Fractional Brownian Motion Fractional Gaussian Noise Maximum Likelihood Realised Volatility Semi-parametric Method Whittle Likelihood |
DOI | 10.1111/jtsa.12750 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Mathematics |
WOS Subject | Science Categories Mathematics, Interdisciplinary Applications ; Statistics & Probability |
WOS ID | WOS:001227476100001 |
Publisher | WILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ |
Scopus ID | 2-s2.0-85193700844 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | Faculty of Business Administration DEPARTMENT OF FINANCE AND BUSINESS ECONOMICS |
Corresponding Author | Shi, Shuping |
Affiliation | 1.Department of Economics, Macquarie University, Sydney, Australia 2.Faculty of Business Administration, University of Macau, Macao |
Recommended Citation GB/T 7714 | Shi, Shuping,Yu, Jun,Zhang, Chen. Fractional gaussian noise: Spectral density and estimation methods[J]. Journal of Time Series Analysis, 2024. |
APA | Shi, Shuping., Yu, Jun., & Zhang, Chen (2024). Fractional gaussian noise: Spectral density and estimation methods. Journal of Time Series Analysis. |
MLA | Shi, Shuping,et al."Fractional gaussian noise: Spectral density and estimation methods".Journal of Time Series Analysis (2024). |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment