Residential College | false |
Status | 已發表Published |
SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from Point Cloud | |
Wang, Yan1; Yin, Junbo1; Li, Wei2; Frossard, Pascal3; Yang, Ruigang2; Shen, Jianbing4 | |
2023-06-27 | |
Conference Name | 37th AAAI Conference on Artificial Intelligence |
Source Publication | Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
Volume | 37 |
Pages | 2707-2715 |
Conference Date | 2023/02/07-2023/02/14 |
Conference Place | Washington DC |
Country | USA |
Publisher | AAAI Press |
Abstract | LiDAR-based 3D object detection is an indispensable task in advanced autonomous driving systems. Though impressive detection results have been achieved by superior 3D detectors, they suffer from significant performance degeneration when facing unseen domains, such as different Li-DAR configurations, different cities, and weather conditions. The mainstream approaches tend to solve these challenges by leveraging unsupervised domain adaptation (UDA) techniques. However, these UDA solutions just yield unsatisfactory 3D detection results when there is a severe domain shift, e.g., from Waymo (64-beam) to nuScenes (32-beam). To address this, we present a novel Semi-Supervised Domain Adaptation method for 3D object detection (SSDA3D), where only a few labeled target data is available, yet can significantly improve the adaptation performance. In particular, our SSDA3D includes an Inter-domain Adaptation stage and an Intra-domain Generalization stage. In the first stage, an Inter-domain Point-CutMix module is presented to efficiently align the point cloud distribution across domains. The Point-CutMix generates mixed samples of an intermediate domain, thus encouraging to learn domain-invariant knowledge. Then, in the second stage, we further enhance the model for better generalization on the unlabeled target set. This is achieved by exploring Intra-domain Point-MixUp in semi-supervised learning, which essentially regularizes the pseudo label distribution. Experiments from Waymo to nuScenes show that, with only 10% labeled target data, our SSDA3D can surpass the fully-supervised oracle model with 100%target label. Our code is available at https://github.com/yinjunbo/SSDA3D. |
DOI | 10.48550/arXiv.2212.02845 |
URL | View the original |
Language | 英語English |
Scopus ID | 2-s2.0-85144254706 |
Fulltext Access | |
Citation statistics | |
Document Type | Conference paper |
Collection | DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE THE STATE KEY LABORATORY OF INTERNET OF THINGS FOR SMART CITY (UNIVERSITY OF MACAU) |
Co-First Author | Wang, Yan |
Corresponding Author | Shen, Jianbing |
Affiliation | 1.Beijing Institute of Technology, China 2.Inceptio, United States 3.École Polytechnique Fédérale de Lausanne (EPFL), Switzerland 4.SKL-IOTSC, CIS, University of Macau, Macao |
Corresponding Author Affilication | University of Macau |
Recommended Citation GB/T 7714 | Wang, Yan,Yin, Junbo,Li, Wei,et al. SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from Point Cloud[C]:AAAI Press, 2023, 2707-2715. |
APA | Wang, Yan., Yin, Junbo., Li, Wei., Frossard, Pascal., Yang, Ruigang., & Shen, Jianbing (2023). SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from Point Cloud. Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, 37, 2707-2715. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment