Residential Collegefalse
Status已發表Published
Seismic response prediction of structures based on Runge-Kutta recurrent neural network with prior knowledge
Tianyu Wang1,2,3; Huile Li2,3; Mohammad Noori4,6; Ramin Ghiasi2,3; Sin-Chi Kuok5; Wael A. Altabey2,3,7
2023-01-11
Source PublicationEngineering Structures
ISSN0141-0296
Volume279Pages:115576
Abstract

In the seismic analysis of structural systems, dynamic response prediction is an essential problem and is significant in every stage during the structural life cycle. Conventionally, response analysis is carried out by numerical analysis. However, when the structural parameter is unknown, the establishment of a numerical model will be difficult. Enlightened by the Runge-Kutta (RK) numerical algorithm, this paper proposes a novel recurrent neural network named Runge-Kutta recurrent neural network (RKRNN) to realize the seismic response prediction. A partition training strategy is formulated to train the proposed neural network and to improve the efficiency of training. The proposed model can be trained by using a limited number of samples. Three numerical examples are utilized to validate the feasibility of RKRNN model including a linear three degrees of freedom (DOFs) system, a nonlinear single DOF system with Bouc-Wen hysteresis, and a numerical reinforced concrete bridge model. Additionally, the site monitoring data from a real-world bridge is utilized to further validate the proposed network. The results show that the proposed RKRNN model can effectively and efficiently predict the structural response under seismic load and exhibits robustness to noise, with good potential for applications in engineering practice.

KeywordRunge-kutta Recurrent Neural Network Prior Knowledge Response Prediction Seismic Excitation Nonlinear Structural System
DOI10.1016/j.engstruct.2022.115576
URLView the original
Indexed BySCIE
Language英語English
WOS Research AreaEngineering
WOS SubjectEngineering, Civil
WOS IDWOS:001017425300001
PublisherELSEVIER SCI LTD
Scopus ID2-s2.0-85146056716
Fulltext Access
Citation statistics
Document TypeJournal article
CollectionTHE STATE KEY LABORATORY OF INTERNET OF THINGS FOR SMART CITY (UNIVERSITY OF MACAU)
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING
Corresponding AuthorHuile Li
Affiliation1.School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
2.Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, School of Civil Engineering, Southeast University, Nanjing, 211189, China
3.National and Local Joint Engineering Research Center for Intelligent Construction and Maintenance, Southeast University, Nanjing, 211189, China
4.Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, 93405, United States
5.State Key Laboratory of Internet of Things for Smart City, Department of Civil and Environmental Engineering, Guangdong‐Hong Kong‐Macau Joint Laboratory for Smart City, University of Macau, China
6.School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
7.Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
Recommended Citation
GB/T 7714
Tianyu Wang,Huile Li,Mohammad Noori,et al. Seismic response prediction of structures based on Runge-Kutta recurrent neural network with prior knowledge[J]. Engineering Structures, 2023, 279, 115576.
APA Tianyu Wang., Huile Li., Mohammad Noori., Ramin Ghiasi., Sin-Chi Kuok., & Wael A. Altabey (2023). Seismic response prediction of structures based on Runge-Kutta recurrent neural network with prior knowledge. Engineering Structures, 279, 115576.
MLA Tianyu Wang,et al."Seismic response prediction of structures based on Runge-Kutta recurrent neural network with prior knowledge".Engineering Structures 279(2023):115576.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Tianyu Wang]'s Articles
[Huile Li]'s Articles
[Mohammad Noori]'s Articles
Baidu academic
Similar articles in Baidu academic
[Tianyu Wang]'s Articles
[Huile Li]'s Articles
[Mohammad Noori]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Tianyu Wang]'s Articles
[Huile Li]'s Articles
[Mohammad Noori]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.