Residential College | false |
Status | 已發表Published |
Siamese Transformer Network: Building an autonomous real-time target tracking system for UAV | |
Sun, Xiaolou1; Wang, Qi2; Xie, Fei1; Quan, Zhibin1,4; Wang, Wei3; Wang, Hao1; Yao, Yuncong1; Yang, Wankou1; Suzuki, Satoshi2 | |
2022-09 | |
Source Publication | Journal of Systems Architecture |
ISSN | 1383-7621 |
Volume | 130Pages:102675 |
Abstract | Currently, the common used vision-based tracking system faces two major challenges: (1) the trade-off between speed and accuracy of the tracker; (2) the robustness of the tracking servo control. In this paper, we propose a new framework composed of a transformer attached to the siamese-type feature extraction networks called Siamese Transformer Network (SiamTrans) to balance the speed and accuracy, avoiding complicated hand-designed components and tedious post-processing of most existing siamese-type trackers with pre-defined anchor boxes or anchor-free schemes. SiamTrans forces the final set of predictions via bipartite matching, significantly reducing hyper-parameters associated with the candidate boxes. Moreover, to enhance the robustness of the servo control, the high-level control part is also redesigned by fusing all the bounding box information and with the Tracking Drift Suppression Strategy (TDSS). The TDSS is mainly used to judge the target's loss. If the target is lost, it will feedback the previous information to reinitialize the tracker to track and update the template patch of SiamTrans, making the whole system more robust. Extensive experiments on visual tracking benchmarks, including GOT-10K, UAV123, demonstrate that SiamTrans achieves competitive performance and runs at 50 FPS. Specifically, SiamTrans outperforms the leading anchor-based tracker SiamRPN++ in the GOT-10K benchmark, confirming its effectiveness and efficiency. Furthermore, SiamTrans is deployed on the embedded device in which the algorithm can be run at 30FPS or 54FPS with TensorRT meeting the real-time requirements. In addition, we design the complete tracking system demo that can accurately track the target for multiple categories. The actual experimental results also show that the whole system is efficient and robust. The demo video link is as follows: https://youtu.be/UK37Q-M9ET4. |
Keyword | Object Tracking Siamese Network Transformer Uav Tracking |
DOI | 10.1016/j.sysarc.2022.102675 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Computer Science |
WOS Subject | Computer Science, Hardware & Architecture ; Computer Science, Software Engineering |
WOS ID | WOS:000842993200003 |
Scopus ID | 2-s2.0-85135109517 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE |
Corresponding Author | Wang, Wei; Yang, Wankou |
Affiliation | 1.School of Automation, Southeast University, Nanjing, China 2.Graduate School of Engineering, Chiba University, Chiba, Japan 3.School of Automation, Nanjing University of Information Science and Technology, Nanjing, China 4.Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, China |
Recommended Citation GB/T 7714 | Sun, Xiaolou,Wang, Qi,Xie, Fei,et al. Siamese Transformer Network: Building an autonomous real-time target tracking system for UAV[J]. Journal of Systems Architecture, 2022, 130, 102675. |
APA | Sun, Xiaolou., Wang, Qi., Xie, Fei., Quan, Zhibin., Wang, Wei., Wang, Hao., Yao, Yuncong., Yang, Wankou., & Suzuki, Satoshi (2022). Siamese Transformer Network: Building an autonomous real-time target tracking system for UAV. Journal of Systems Architecture, 130, 102675. |
MLA | Sun, Xiaolou,et al."Siamese Transformer Network: Building an autonomous real-time target tracking system for UAV".Journal of Systems Architecture 130(2022):102675. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment