Residential College | false |
Status | 已發表Published |
The effects of mismatch between SPECT and CT images on quantitative activity estimation – A simulation study | |
Yingqing Lyu1; Gefei Chen1; Zhonglin Lu1; Yue Chen2; Greta S.P. Mok1,3,4 | |
2022-05-27 | |
Source Publication | Zeitschrift fur Medizinische Physik |
ISSN | 0939-3889 |
Volume | 33Issue:1Pages:54-69 |
Abstract | Background: Quantitative activity estimation is essential in nuclear medicine imaging. Mismatch between SPECT and CT images at the same imaging time point due to patient movement degrades accuracy in both diagnostic studies and target radionuclide therapy dosimetry. This work aims to study the mismatch effects between CT and SPECT data on attenuation correction (AC), volume-of-interest (VOI) delineation, and registration for activity estimation. Methods: Nine 4D XCAT phantoms were generated at 1, 24, and 144 h post In-111 Zevalin injection, varying in activity distributions, body sizes, and organ sizes. Realistic noisy SPECT projections were generated by an analytical projector and reconstructed with a quantitative OS-EM method. CT images were shifted, corresponding to SPECT images at each imaging time point, from -5 to 5 voxels and also according to a clinical reference. The effect of mismatched AC maps was evaluated using mismatched CT images for AC in SPECT reconstruction while VOIs were mapped out from matched CTs. The effect of mismatched VOI drawings was evaluated using mismatched CTs to map out target organs while using matched CTs for AC. The effect of mismatched CT images for registration was evaluated by registering sequential mismatched CTs to align corresponding SPECT images, with no AC and VOI mismatch. Bi-exponential curve fitting was performed to obtain time-integrated activity (TIA). Organ activity errors (%OAE) and TIA errors (%TIAE) were calculated. Results: According to the clinical reference, %OAE was larger for organs near ribs for AC effect. For VOI effect, %OAE was larger for small and low uptake organs. For registration effect, %TIAE were larger when mismatch existed in more numbers of SPECT/CT images, while no substantial difference was observed when using mismatched CT at different imaging time points as registration reference. %TIAE was highest for VOI, followed by registration and AC, e.g., 20.62%±8.61%, 9.33%±4.66% and 1.13%±0.90% respectively for kidneys. Conclusions: The mismatch between CT and SPECT images poses a significant impact on the accuracy of quantitative activity estimation, attributed particularly from VOI delineation errors. It is recommended to perform registration between emission and transmission images at the same time point to ensure diagnostic and dosimetric accuracy. |
Keyword | Attenuation Correction Misregistration Segmentation Spect/ct Targeted Radionuclide Therapy |
DOI | 10.1016/j.zemedi.2022.03.004 |
URL | View the original |
Indexed By | SCIE |
Language | 英語English |
WOS Research Area | Radiology, Nuclear Medicine & Medical Imaging |
WOS Subject | Radiology, Nuclear Medicine & Medical Imaging |
WOS ID | WOS:001058611200001 |
Publisher | ELSEVIERRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS |
Scopus ID | 2-s2.0-85130914597 |
Fulltext Access | |
Citation statistics | |
Document Type | Journal article |
Collection | Faculty of Health Sciences Faculty of Science and Technology DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING INSTITUTE OF COLLABORATIVE INNOVATION Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau |
Corresponding Author | Yue Chen; Greta S.P. Mok |
Affiliation | 1.Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China 2.Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, No. 25, Taiping St., China 3.Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China 4.Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China |
First Author Affilication | Faculty of Science and Technology |
Corresponding Author Affilication | Faculty of Science and Technology; INSTITUTE OF COLLABORATIVE INNOVATION; University of Macau |
Recommended Citation GB/T 7714 | Yingqing Lyu,Gefei Chen,Zhonglin Lu,et al. The effects of mismatch between SPECT and CT images on quantitative activity estimation – A simulation study[J]. Zeitschrift fur Medizinische Physik, 2022, 33(1), 54-69. |
APA | Yingqing Lyu., Gefei Chen., Zhonglin Lu., Yue Chen., & Greta S.P. Mok (2022). The effects of mismatch between SPECT and CT images on quantitative activity estimation – A simulation study. Zeitschrift fur Medizinische Physik, 33(1), 54-69. |
MLA | Yingqing Lyu,et al."The effects of mismatch between SPECT and CT images on quantitative activity estimation – A simulation study".Zeitschrift fur Medizinische Physik 33.1(2022):54-69. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment