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Abstract—As a spotlighted nonlocal image representation
model, group sparse representation (GSR) has demonstrated
a great potential in diverse image restoration tasks. Most of
the existing GSR-based image restoration approaches exploit
the nonlocal self-similarity (NSS) prior by clustering similar
patches into groups and imposing sparsity to each group coeffi-
cient, which can effectively preserve image texture information.
However, these methods have imposed only plain sparsity over
each individual patch of the group, while neglecting other
beneficial image properties, e.g., low-rankness (LR), leads to
degraded image restoration results. In this article, we propose a
novel low-rankness guided group sparse representation (LGSR)
model for highly effective image restoration applications. The
proposed LGSR jointly utilizes the sparsity and LR priors of
each group of similar patches under a unified framework. The
two priors serve as the complementary priors in LGSR for
effectively preserving the texture and structure information of
natural images. Moreover, we apply an alternating minimization
algorithm with an adaptively adjusted parameter scheme to solve
the proposed LGSR-based image restoration problem. Extensive
experiments are conducted to demonstrate that the proposed
LGSR achieves superior results compared with many popular
or state-of-the-art algorithms in various image restoration tasks,
including denoising, inpainting, and compressive sensing (CS).

Index Terms— Adaptively adjusted parameter, alternating min-
imization, image restoration, low-rankness guided group sparse
representation (LGSR), nonlocal self-similarity (NSS).
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Fig. 1. Example image Monarch is decomposed into an image with large
singular values and an image with small singular values. The non-low-rank
(non-LR) (small singular) components contain important texture information
of the image.

I. INTRODUCTION

T is well known that effective image priors play a sub-

stantial role in many ill-posed inverse problems [1]-[11].
The representative prior sparsity [2], [12], [13] argues that
natural images are sparsifiable by certain dictionary or trans-
form, which has been proven to be effective for various
image restoration applications [14]-[17]. The classical spar-
sity models characterize each patch as a coefficient vector
within a few nonzero elements in certain dictionary domains
[2], [4], [18], [19]; meanwhile, others conduct adaptive spar-
sity in some transform domains [7], [20]. For instance, Elad
and Aharon [2] learned an over-complete dictionary using the
greedy algorithm to represent image patches. Wen et al. [7]
proposed an effective image restoration method via the union
of sparsity transform model. Nonetheless, most classical spar-
sity models employ the individual patch as the basic unit for
sparse representation. They have only considered the local
image structure but ignored the strong correlation among
similar patches, such as self-similarity, especially the nonlocal
ones [19], [21].

Via employing the nonlocal self-similarity (NSS) prior
[21], [23] in images and clustering the nonlocal similar patches
into groups, group sparse representation (GSR) [15] conducts
each group for sparse representation, which has shown a great
potential in image restoration studies [17], [19], [24]-[26].
For example, Dong et al. [24] designed a Laplacian-scale-
mixture-based GSR model for image restoration. The so-called
GSRC-NLP [17] enforced an effective group sparsity residual
constraint, which has achieved a superior performance for
various image restoration tasks. Zha et al. [4] established
the connection between GSR and low-rank (LR) models by
devising an adaptive dictionary. These mentioned GSR-based
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Fig. 2.

Image denoising results are achieved by our proposed LGSR and two state-of-the-art GSR and LR methods at a noise level of o, = 30. (a) Original

image. (b) Noisy image. (¢) GSRC-NLP [17] (31.19 dB). (d) Weighted nuclear norm minimization (WNNM) [22] (31.18 dB). (e) LGSR (31.34 dB).

image restoration methods exploit the strong correlation of
nonlocal similar patches to preserve image texture information
effectively [4], [17], [24], [26]. However, they have imposed
only plain sparsity over the individual patch of the group
in image modeling, and the restoration results are limited
by ignoring other beneficial image properties. Since all the
patches (each patch is unfolded into a vector) in each group
have similar patterns, the constructed group matrix has the
LR property [27], [28]. The LR model [6], [8], [9], [29]-[33],
i.e., each patch group lives in a low-dimensional subspace
[34], [35], has also been shown effective in many image
restoration tasks [3], [8], [9]. For example, Zhang et al. [3]
proposed an LR-based dictionary learning approach for image
restoration. Gu et al. [8] proposed an effective nonlocal-based
image denoising algorithm by enforcing the weighted nuclear
norm minimization (WNNM) to the constructed group within
many similar patches. Zha et al. [9] designed a rank residual
constraint (RRC) model from the perspective of approximation
theory, which has achieved a better performance than the
traditional LR methods for various image restoration tasks.
It is worth noting that the constructed group of nonlocal
similar patches that are modeled by LR can well restore the
structure information of natural images in general [6], [8], [9]
but usually tend to be over-smooth due to the truncation of
the non-LR components. Fig. 1 shows a widely used image
Monarch, which is decomposed into an image with large
singular values and an image with small singular values.
It is clear that the image with small singular values (non-LR
components) also contains important texture information.
Bearing these concerns in mind, in this article, we pro-
pose a novel low-rankness guided group sparse representa-
tion (LGSR) model and demonstrate its effectiveness in many
image restoration tasks, including denoising, inpainting, and
compressive sensing (CS). The proposed LGSR model recon-
ciles the reconstruction estimates based on the group sparsity
and LR, which are mutually complementary by preserving
the image texture and structure information for high-quality
image restoration. Fig. 2 shows an example of image denoising
results by comparing our proposed LGSR with the state-of-the-
art GSR (i.e., GSRC-NLP [17]) and LR (i.e., WNNM [22])
methods. We can see that the proposed LGSR is able to recover
finer image details than other competing methods. The main
contributions of this article are summarized as follows.

1) We propose a novel LGSR model that jointly exploits
the sparsity and LR priors of each group under a unified
framework.

2) We develop a simple yet effective algorithm to solve
the proposed LGSR-based image restoration problem
by alternating minimization. Moreover, some strategies
to adaptively adjust parameters are provided in the
optimization.

The remainder of this article is organized as follows.
Section II introduces some related works for image restora-
tion. Section III presents some preliminaries, including the
GSR and LR approximation models. Section IV presents the
proposed LGSR model and explores its applications to image
restoration. Section V uses an alternating minimization method
with an adaptively adjusted parameter scheme to solve the
optimization problem. The experimental results are presented
in Section VI, and Section VII provides several concluding
remarks.

II. RELATED WORKS

In the processing of image formulation, degradation
(e.g., noise, blurry, pixel missing, and down-sampling)
inevitably exists in many digital imaging devices, which leads
to the acquired image being diverged from the unknown latent
clean image. Therefore, reconstructing the latent high-quality
image from its degraded observation has increasingly attracted
more interest in recent years. Image restoration is an ill-posed
inverse problem in nature [36]. To cope with this, image prior
knowledge is widely applied to improve the quality of the
reconstructed images. Therefore, employing image prior to
design the effective regularization models plays an essential
role in image restoration [1]-[4], [8], [9], [15], [36], [37],
[37], [38].

Early image priors mainly focus on exploiting the local
correlation of image pixels. A well-known regularization
model, termed total variation (TV) [1], assumes that the image
gradient can be modeled as a Laplacian distribution. Most
TV-based image restoration methods can effectively remove
noise artifacts but are apt to over-smooth the images. Thus,
they usually result in missing fine details. Alternatively, it is
well known that natural images can be modeled by the patch
prior [2]. The representative one is the sparse representation
model [2], [14], which signifies that each patch as a sparse
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coefficient in which most of the elements are zeros through the
learned dictionaries [3], [14], [19], while others have proposed
adaptive sparsity in the transform domains [7], [20]. Nonethe-
less, most patch-based sparse representation models have only
considered the local image structures while neglecting the
strong correlation among similar patches, such as the image
NSS property [15], [17], [19], [24].

Combining image NSS with sparsity priors, GSR models
utilize each group (including many nonlocal similar patches)
as the basic unit of sparse representation, which have achieved
an excellent performance in numerous image restoration appli-
cations [3], [17], [19], [26], [39]. For instance, BM3D [39] first
utilized both image NSS and sparsity priors for image denois-
ing, which remains an image denoising benchmark method.
The LSSC model [19] enforced that all sparse coefficients in
each group share the same support. Zhang et al. [3] designed
an adaptive dictionary under the framework of GSR for image
restoration. Xu et al. [26] proposed a GSR model with learning
an external NSS prior to image denoising. Zha et al. [17]
designed an effective GSR model with a structural residual
constraint for image restoration, which has attained a state-of-
the-art performance. Another representative method is the LR
approximation [6], [8], [9], which exploits the LR property
of the constructed group matrix. Some LR approximation
methods (e.g., SAIST [6], WNNM [8], and RRC [9]) have
also been verified to be effective for various image restoration
tasks.

Most recently, deep convolutional neural networks (CNN5s)
have been proven as a powerful tool for image restora-
tion [10], [11], [24], [40]-[43]. For example, the most
representative work is the SRCNN [24] for image super-
resolution, which learns two hidden layers directly to map
low-/high-resolution images. Zhang et al. [40] designed an
end-to-end trainable deep CNN framework for image restora-
tion, which employs the residual learning strategy to estimate
the restored image from degraded observation. Dong ef al. [41]
learned a denoiser prior-driven deep CNN for image restora-
tion, which utilizes both the optimization and discriminative
learning techniques. Shi et al. [42] devised an image CS
method based on CNN, which jointly optimizes the sampling
network and the reconstructed network. Nevertheless, most
of the existing deep CNN-based image restoration methods
merely focus on considering the local properties of images
while do not explicitly use image NSS prior [44], which
may limit their performance. Therefore, in order to ameliorate
this shortcoming, the self-attention mechanism of CNN is
considered to exploit NSS for image restoration [45]-[48]. For
instance, Liu et al. [45] designed a nonlocal recurrent network
for image restoration. Zhang et al. [36] proposed a residual
nonlocal attention network for image restoration.

III. PRELIMINARIES

In this section, we briefly introduce the GSR model
[31, [4], [17] and the LR approximation model [6], [8], [9].

A. Group Sparse Representation

GSR is usually a two-stage strategy: patch grouping for
depicting the self-similarity of an image, followed by sparsity

enforcement for each group of similar patches [3], [4], [17].
Specifically, given an image x € RY, it is divided into n
overlapped patches x; of size ~/b x +/b. Then, for each
exemplar patch x;, we perform a variant of the k-nearest-
neighbor (KNN) algorithm [49]-[51] within a local window
L x L to search m most similar patches. After this, the
selected m similar patches are making up a group matrix
X; e R e X; = {xi1,Xi2,...,Xin}, where each column
x;; in X; denotes the j-th patch similar to the exemplar
patch x; Vj = 1,..., m. The matrix X; consisting of patches
with similar structures is thereby called a group. In general,
the GSR model learns a dictionary D; from each group X;
[3], [4], [26]. Considering the learned dictionary D;, each
group X; can be sparsely represented by solving the following
minimization problem [4]:

n 1
A,»=argmin(5||xi—D,»Ain%HnAinl) Vi (1)
A;

where the notation || || denotes the Frobenius norm, and
[ll; denotes the £;-norm, which is imposed on each column
in A;, and here it is extended to be the {;-norm on matrix.
A is a nonnegative constant. Once all group sparse coefficients
{fl,-}f':l are attained by solving (1), the underlying desired
image X can be reconstructed by ¥ = DA, where D and A
represent a set of {D;}?_, and {fli}?:l, respectively.

B. LR Approximation

Based on the group construction procedure in Section III-A,
the constructed group matrix X; within many nonlocal sim-
ilar patches has the LR property [27], [28]. Inspired by
this crucial property, the LR approximation methods have
been widely used for a variety of image restoration applica-
tions [6], [8], [9]. The most representative work is nuclear
norm minimization (NNM) [6]. Specifically, given a matrix
X; € R the goal of NNM is to achieve an LR matrix Z;
of rank r <« min(b, m), which is formulated as follows:

. A .
Z; =arg mm(EHXi — Zill7 + A11Z; ||*) Vi ()
Z;

where || ||, represents the nuclear norm [52]. The underlying
desired image X can be reconstructed by aggregating all the
LR matrices {Zi}:'l=1- In recent years, some advanced LR
approximation methods are developed to improve the accuracy
of rank estimation, such as WNNM [8] and RRC [9], which
have achieved an excellent performance for various image
restoration tasks.

IV. PROPOSED METHOD

In this section, we propose the LGSR model, which jointly
investigates the group sparsity and LR properties of natural
images. Furthermore, we apply the proposed LGSR model to
image restoration.

A. Low-Rankness Guided Group Sparse Representation

As mentioned earlier, most of the existing GSR models
exploit the strong correlation of similar nonlocal patches to
preserve image texture information effectively [4], [19], [26].
However, they have imposed only plain sparsity over the
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Fig. 3. Flowchart of the proposed LGSR for image denoising. The noisy image is reconstructed using our proposed LGSR model by jointly employing

group sparsity with LR priors under a unified framework.

individual patch of the group in image modeling, and the
restoration results are limited by neglecting other beneficial
image properties. To further mine the intrinsic property of
natural images, the dual regularizers are employed in our
proposed model, i.e., the group sparsity and LR penalties. This
leads to the following LGSR problem:

1

(Ai, 2;) = argmin 2 |X; — Didi |} + ZllAil
A Z;
1
+;||DiAi_Zi||%?+T”Zi”* Vi (3)
where || ||; and | ||« are employed to impose the group

sparsity penalty and the LR penalty, respectively. p is a balance
factor to make the solution of (3) more feasible, and 7 is a
regularization parameter. Apparently, unlike the conventional
GSR models [4], [17], [24], [26], [39], in the proposed LGSR
model, the LR approximation Z; is jointly estimated for each
reconstructed group D;A;, which not only further explores the
LR property of each group but also serves as the complemen-
tary priors for preserving the texture and structure information
of natural images. Finally, similar to GSR in (1), the optimal
group sparse codes {Ai};':l are employed to reconstruct the
latent desired image. We use image denoising as an example,
and the flowchart of the proposed LGSR for image denoising
is illustrated in Fig 3.

Note that the LR property of the group coefficient is
employed in the LR-GSC method [53], which may lead to
a suboptimal solution, because each group coefficient cannot
guarantee that it has an LR property. Compared with the
LR-GSC method, the LR property of each reconstructed
group is explicitly employed to improve the accuracy of the
group sparse codes in our proposed LGSR model (3). In the

experiments, we demonstrate that the proposed LGSR is more
effective than the LR-GSC method [53] (see Section VI-D for
more details).

B. LGSR for Image Restoration

The goal of image restoration is to restore the high-quality
image x from its degraded observation y, which can be
mathematically modeled as

y=Hx+n 4)

where H is the degradation operator relating to an imaging
system, and n is usually assumed to be additive Gaussian
white noise with variance o2. Specifying different degradation
operators H corresponds to different image restoration prob-
lems. For instance, (4) reduces to a simple image denoising
problem [22], [39] when H is an identity matrix; (4) becomes
an image deblurring problem [3], [10] when H is a convolution
operator; (4) becomes an image inpainting problem [4], [6]
when H is a diagonal masking matrix; and (4) represents an
image CS problem [53], [54] when H is a random projection
matrix.

Due to the ill-posed nature of the image restoration prob-
lem (4), a common practice is to employ regularization
techniques to adjust the solution spaces. In order to design
a high-effective regularizer for image restoration, it is critical
to exploit the prior information of the original image x. There-
fore, based on certain image priors of the original image x, the
regularization-based models for image restoration are usually
represented as [4], [23]

1

%= argminﬁﬂy—HxH% + 1D (x) ®)
x o,
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where the first term denotes the data fidelity, and ||-||, repre-
sents the ¢-norm. The second term is the regularizer based
on the prior knowledge of image x, and A represents the
regularization parameter.

In this section, we employ the proposed LGSR model
for image restoration. More specifically, the proposed LGSR
prior model (3) is integrated into the regularization-based
framework of (5), and then, the proposed LGSR-based image
restoration is expressed as

& (AN 7 \n . 1
(& (A1), (Zi)i)) = argmin — lly — Hx|l;

x,A;,Z; n

+—Z IRx—D;A; ||F+AZ 1A 111

+5- ZHDA Z||F+TZ||Z I
(6)

where R; denotes a KNN operator [8], [39] that picks up
the group X; from the image x, namely, Rix = [x;1,...,
Xim] € Rbxm represents the group matrix X; formed by
m closest patches for each exemplar patch x;. x has the
same role as p. It is clearly seen that the proposed LGSR-
based image restoration model (6) not only jointly utilizes
the group sparsity and LR properties of each group but also
plays a mutually complementary role in preserving the image
texture and structure information. Therefore, our proposed
LGSR-based image restoration algorithm can achieve better
restoration results than some existing methods based on a
single prior (see Section VI for more details). In the following,
we describe how to solve the proposed LGSR-based image
restoration problem (6).

V. OPTIMIZATION FOR THE LGSR PROBLEM

In this section, an alternating minimization method
[55]-[57] is employed to solve the proposed LGSR-based
image restoration problem (6) concerning three subproblems,
ie., A;, Z;, and x subproblems. Moreover, we present an
adaptively adjusted strategy to make the optimization more
robust and practical.

A. A; Subproblem

For fixed Z; and x and given D;, A; subproblem in (6) can
be reduced to the following problem:

(A; Y 1—argmln—ZHRx DA||F
i=1

1 2
3, ; ID:A; — Zi} +z§ 14 I
. 1
= argmmZ(E||Gi—D,»Ai||2F+Aﬂp||Ai||1) )

where G; £ (pR;x + uZ;)/(p + w). It can be seen that how
to devise an effective dictionary D; is a crucial procedure for
solving A; subproblem. Generally speaking, the dictionaries

are over-complete, which should satisfy very redundant prop-
erties representing diverse image local structures. However,
learning an over-complete dictionary is unstable for image
restoration, because it is easy to produce visual artifacts [58].
In this section, in order to better adapt to image local
structures, we learn a principal component analysis (PCA)
subdictionary D; from each group G; [59]. Because the
learned PCA dictionaries are unitary, then (7) can be equally
solved by

{A}ll—argmmz(—nP — A%+ ZuplA; ||1) @®)

A i=1

where P; = DiTG,-. It can be seen that A; subproblem is now
simplified to solve (8). Fortunately, we can obtain a closed-
form solution for each A;, namely

A; = Soft(P;, Aup) Vi 9)

where Soft(-) represents the soft-thresholding operator [60],
namely, Soft(P, Aup) = max(P;r — Aup,0), where Pj;
denotes the elements of arbitrary matrix P.

B. Z; Subproblem
For fixed A; and given D;, Z; subproblem in (6) becomes

ATES argmmZ( IDiA; = Zill7 + prlZ; II*) (10)

where |Z; ]|+ >0 Vi = .,d and ¢;; is the
Jj-th singular value of matrix Z;. Based on the singular value
thresholding (SVT) algorithm [52], we can obtain a closed-
form solution of (10) as follows:

Zi = U;Soft(A;, pr)V] Vi (11)

where D;A; = U;A; VT represents the singular value decom-
position (SVD) of the reconstructed group D;A; among group
sparsity, and the soft-thresholding is enforced to the diagonal
elements of the singular value matrix A;.

C. x Subproblem

For fixed A; and given D;, x subproblem in (6) becomes

J?:argmln ||y Hx||2—+——ZIIRx DA% (12)

Apparently, (12) has a closed-form solution, because it is
a quadratic minimization problem. In this section, in order
to accelerate the optimization, a much faster algorithm is
developed to solve (12) via an alternating direction method
of multipliers (ADMM) [61] technique. Specifically, we intro-
duce an auxiliary variable s and define x = s; in this manner,
(12) can be transformed into the following constrained form:

- 1
(%,5) = argmin — |ly — Hx|; + — Z IRis — DiA; |}
. 26” i=1

s.t. § = x. (13)
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By invoking the ADMM algorithm, the minimization of (13)
is now transformed into three iterative steps

1 1 2
TR . 2 1 1
¥ = argmin 302 ly —Hx|; + 2 |x—s" =<', (4

1 n
at+l ih s —D:A: 2
§"" = argmin o z IR:s — DiA;||%

i=1

o —s =]} as)

2y
_ (xz+1 _sz+1)

where t denotes the z-th iteration, and ¢ represents the
Lagrangian multiplier. One can observe that the minimization
for (13) involves two subproblems, namely, x and § sub-
problems. Fortunately, there is an efficient solution to each
subproblem, which will be introduced later. To be simple
and without confusion, we will omit the subscript ¢ for
conciseness.

1) Solution of s Subproblem: For fixed D;A;, x, and ¢, s
admits a closed-form solution, that is

n -1 n
§= (y > RIR; + /u) (#x—ﬂc +9 ZRiTD,»A,») (17)

i=1 i=l1

At+1 t

¢ =c (16)

where I denotes an identity matrix, RiTRi = E;?’:lRiT,jRi,j, and
R'DA; = ZT:IRZjDi,in,j' Note that (17) can be efficiently
solved by an elementwise division, as (y >\, RiTR,- + ul) is
essentially a diagonal matrix.

2) Solution of x Subproblem: For fixed s and ¢, the variable
x also has a closed-form solution, namely

i=(HH+0d) (yHy+ok+ok). (I8

However, in image CS, H is a random projection matrix with
no specific structure, which usually needs a high computational
cost due to computing matrix inverse. As a result, in order
to avert calculating the matrix inverse, we employ a gradient
descent method [62] to solve (14) for the image CS task,
namely

F=x—1q (19)

where g denotes the gradient direction of (14), and 7 is the step
size. In this manner, we only require an iterative calculation
to solve the x subproblem, namely

T=x- n(%(HTHx—HTy)—f- yl(x—s —c)) (20)

where H'H and H"y can be calculated in advance to make
the aforementioned computation efficient.

D. Adaptively Adjusted Parameters

We can see that there are four hyperparameters in the pro-
posed LGSR-based image restoration model (6), i.e., i, p, 4,
and 7. We usually empirically choose the fixed values for
these parameters. Nevertheless, in this way, it cannot assure
the stability of the whole algorithm. Therefore, we present an
adaptively adjusted parameter strategy to make the proposed
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Algorithm 1 Image Restoration by LGSR
Require: The degraded image y and the measurement matrix
H.
1: Initialization: ° = y and parameters b, m, W, a, f, y
and o.
2: for + = 1 to Max-Iter do
. Compute o, via (22).
x@ is divided into a set of overlapping patches with size
Vb x \/b;
5. for Each patch x; in x' do
Discover nonlocal similar patches to generate a group
X; and let D;A; = X;.
7:  end for
8: for Each group X; in x' do
o: Perform [U;, A;, V;] = SVD(D;A;);
10: Compute S via (21);
11: Compute 7 via (23);
122 Compute Z; via (11);
13: Constructing dictionary D; by G; using PCA;
14: Compute a via (21);
15: Compute 1 via (23);
16: Compute f\i via (9);
17:  end for
18:  ADMM:
19; Initialization: ¢ = 0 and s = £,
20:  if H is not random projection operator then

21 Compute x“*D via (18);
22: else

23 Compute x“*D via (20);
24:  end if

25:  Compute s+ via (17);

26:  Compute ¢V via (16);

27: end for

28: Output: The final restored image & = x(+D,

algorithm more robust and practical. Expressly, we set the bal-
ance factors ¢ and p of the quadratic term to be proportional
to the noise variance o2 in each iteration, that is

W =a(02) 50 =p (02)"

where o and f represent the scaling factors. We can see that
the balance factors u and p depend on the estimation of
noise variance ag. In this article, the iterative regularization
strategy [1] is used for updating og’)

ol =w o2 — |2V —yl3

where @ denotes a scaling factor. This iterative regularization
strategy has been widely used in image denoising with the
Gaussian noise removal [8], [9], [26].

Besides, in each iteration, the regularization parameters A4
and 7 are adaptively adjusted for the sparsity and LR penalties,
respectively, by [6]

2
Jo - W2@0)

(i +¢) ’

21

(22)

_2V2(e)’
R 23)
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TABLE I

AVERAGE PSNR (dB) AND SSIM COMPARISON RESULTS WITH DIFFERENT NOISE LEVELS ON TESTING
THE BSD200 DATASET [63] VIA DIFFERENT IMAGE DENOISING METHODS

¢|
i

Fig. 4. Some test images for the experiments. Top row: Cowboy, Bear,
House, Lake, Leaves, and Lena. Bottom row: Lily, Flowers, Nanna, Agaric,
Fireman, and Girls.

where «; and B; are the estimated standard variance of A; and
A;, respectively. ¢ and € represent small constants to avoid
dividing by zero.

Until now, we have introduced an adaptively adjusted para-
meter strategy in the proposed LGSR-based image restoration
model to solve the aforementioned three subproblems, i.e.,
A;, Z;, and x. We can achieve an efficient solution by solv-
ing each subproblem individually, bringing about the entire
algorithm more stable and practical. We summarize the com-
plete procedure of the proposed LGSR for image restoration
in Algorithm 1.

VI. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to
illustrate the effectiveness of the proposed LGSR-based
image restoration algorithm. Three classic image restoration
tasks are considered, including denoising, inpainting, and CS.
We jointly utilize the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [66] as evaluation metrics for
restoration results. Some test images are presented in Fig. 4.
Because human visual perception is sensitive to luminance
changes in color images, in this article, we only focus on
the restoration of the luminance component for color images.
The restoration results of all competing methods are attained
by performing the codes with the default parameter settings
derived from the original authors. The source code of our
proposed LGSR model for image restoration is available at:
https://drive.google.com/file/d/10pVoV11r3virKLLEgcxMwRZ
3F2JiGqw2/view?usp=sharing.

o, BMB3D [39] | LSSC [19] | EPLL [64] | NCSR [14] | PGPD [26] | OGLR [65] | RRC [9] N(iSPRS;] WNNM [22] | LGSR
20 29.86 30.02 29.96 29.89 29.89 29.67 29.98 29.90 30.11 30.11
0.8476 0.8520 0.8528 0.8449 0.8393 0.8448 0.8518 0.8397 0.8481 0.8533

30 27.93 28.05 28.00 27.92 27.96 27.84 28.02 2791 28.17 28.15
0.7875 0.7936 0.7902 0.7861 0.7803 0.7852 0.7926 0.7758 0.7905 0.7956

40 26.58 26.75 26.71 26.58 26.73 26.65 26.73 26.68 26.88 26.87
0.7387 0.7459 0.7387 0.7337 0.7359 0.7444 0.7471 0.7351 0.7412 0.7478

50 25.71 25.80 25.71 25.65 25.82 25.69 25.81 25.73 25.96 25.94
0.7041 0.7068 0.6963 0.6976 0.6986 0.7000 0.7108 0.6939 0.7089 0.7120

75 24.22 24.18 24.18 24.04 24.30 24.16 24.28 24.17 24.42 24.38
0.6337 0.6364 0.6160 0.6320 0.6330 0.6234 0.6433 0.6336 0.6446 0.6452

100 2321 23.12 23.15 23.00 23.29 22.85 23.27 23.02 23.37 23.34
0.5814 0.5873 0.5566 0.5889 0.5810 0.5528 0.5986 0.5882 0.5949 0.6040

Average 26.25 26.32 26.30 26.18 26.33 26.14 26.35 26.24 26.49 26.47
0.7155 0.7203 0.7084 0.7139 0.7114 0.7084 0.7240 0.7111 0.7214 0.7263

A. Image Denoising

In this section, we apply the proposed LGSR to image
denoising. The parameters of the proposed LGSR used for
image denoising are set as follows. Similar to [22], the patch
size v/b x +/b and the nonlocal similar patches m are set to
(6 x 6, 60), (7 x 7, 80), (8 x 8, 100), and (9 x 9, 120)
for o, < 20,20 <o, <40,40 <0, <60, and o, > 60,
respectively. f is set to 0.4 and 0.7 for 0, < 30 and o, > 30,
respectively. Moreover, we fix @ = 0.3 for all noise levels.

First, we compare our proposed LGSR with several state-
of-the-art classic denoising approaches, including BM3D [39],
LSSC [19], EPLL [64], NCSR [14], PGPD [26], OGLR [65],
RRC [9], GSRC-NLP [17], and WNNM [22]. Note that
the nonlocal redundancies are used in all compared meth-
ods. Among them, BM3D, LSSC, EPLL, NCSR, PGPD,
OGLR, and GSRC-NLP are the GSR-based image restora-
tion methods. RRC and WNNM are the LR approximation
methods, which provide superior results for image denoising.
We comprehensively evaluate the denoising performance of
all compared methods on testing 200 natural images from
the Berkeley Segmentation Dataset (BSD200) [63]. Due to
the limited space, we have only presented six noise levels,
i.e., o, = 20, 30, 40, 50, 75, and 100. Table I summarizes
the average PSNR and SSIM results among all competing
methods. As can be seen in Table I, based on the PSNR metric,
our proposed LGSR achieves the comparative PSNR results
compared with the WNNM method on all noise levels and
higher PSNR results than other competing methods. Based
on the SSIM metric, our proposed LGSR obtains the highest
performance than other competing methods. In particular,
our proposed LGSR achieves an SSIM gain over BM3D by
0.0108, over LSSC by 0.0060, over EPLL by 0.0179 dB,
over NCSR by 0.0125, over PGPD by 0.0150, over OGLR
by 0.0179, over RRC by 0.0023, over GSRC-NLP by 0.0153,
and over WNNM by 0.0050. However, we find a fascinating
phenomenon: though the PSNR results of the LGSR method
are slightly lower than WNNM, the SSIM results of the
LGSR method are better than WNNM. As far as we know,
the human visual system is considered in SSIM, which leads
to more accurate evaluation results [67]. These quantitative
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Fig. 5. Denoising results on image 249021 (o, = 40). (a) Original
image. (b) Noisy image. (c) BM3D [39] (PSNR = 27.82 dB and SSIM =
0.7212). (d) LSSC [19] (PSNR = 2329 dB and SSIM = 0.6819).
(e) EPLL [64] (PSNR = 27.75 dB and SSIM = 0.8195). (f) NCSR [14]
(PSNR = 27.52 dB and SSIM = 0.7008). (g) PGPD [26] (PSNR = 27.96 dB
and SSIM = 0.7213). (h) OGLR [65] (PSNR = 27.97 dB and SSIM =
0.7313). (i) RRC [9] (PSNR = 27.93 dB and SSIM = 0.7214). (j) GSRC-
NLP [17] (PSNR = 27.93 dB and SSIM = 0.7246). (k) WNNM [22]
(PSNR = 27.94 dB and SSIM = 0.7194). () LGSR (PSNR = 28.21 dB
and SSIM = 0.7475).

Fig. 6. Denoising results on image 223004 (¢, = 100). (a) Original image.
(b) Noisy image. (c) BM3D [39] (PSNR = 23.99 dB and SSIM = 0.6614).
(d) LSSC [19] (PSNR = 24.01 dB and SSIM = 0.7061). (e) EPLL [64]
(PSNR = 23.81 dB and SSIM = 0.6336). (f) NCSR [14] (PSNR = 23.60 dB
and SSIM = 0.6865). (g) PGPD [26] (PSNR = 24.17 dB and SSIM =
0.6697). (h) OGLR [65] (PSNR = 23.81 dB and SSIM = 0.6337). (i) RRC [9]
(PSNR = 24.32 dB and SSIM = 0.7097). (j) GSRC-NLP [17] (PSNR =
24.27 dB and SSIM = 0.7138). (k) WNNM [22] (PSNR = 24.19 dB and
SSIM = 0.6951). (1) LGSR (PSNR = 24.46 dB and SSIM = 0.7153).

results clearly verify the effectiveness of exploiting both the
group sparsity and LR properties jointly, as in our proposed
LGSR approach.

Human subject perception is the ultimate judge of image
quality, which also plays a crucial role in the estimated
denoising algorithm. The visual quality comparisons for image
249021 with , = 40 and image 223004 with o, = 100 are
shown in Figs. 5 and 6, respectively. For image 249021,
we can see that all compared methods are apt to over-smooth
the images. For image 223 004, BM3D, EPLL, NCSR, OGLR,
and WNNM approaches still suffer from unwished visual
artifacts, while LSSC, PGPD, and GSRC-NLP approaches are
easy to over-smooth the images and thus lead to some missing
details. The RRC method generates better visual comparison
results than other competing methods, but it presents a ringing
effect. By contrast, the proposed LGSR algorithm not only
preserves fine image details but also eliminates the visual
artifacts effectively.
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TABLE II

AVERAGE PSNR (dB) RESULTS ARE OBTAINED BY OUR PROPOSED LGSR
AND THREE DEEP-LEARNING METHODS ON TESTING 12 WIDELY
USED IMAGES FROM THE SET12 DATASET [40]

on TNRD [68] N2N [69] S2S [70] LGSR
15 32.51 32.44 32.09 32.64
25 30.06 30.09 30.04 30.20

50 26.81 26.96 26.50 27.00
Average 29.79 29.83 29.54 29.95

(c) (d) () ()

@ ®)

Fig. 7. Denoising results on image 02 (o, = 50). (a) Original image.
(b) Noisy image. (c) TNRD [68] (PSNR = 29.49 dB and SSIM = 0.8071).
(d) N2N [69] (PSNR = 29.95 dB and SSIM = 0.8156). (e) S2S [70]
(PSNR = 27.46 dB and SSIM = 0.6771). (f) LGSR (PSNR = 30.20 dB
and SSIM = 0.8274).

Fig. 8. Denoising results on image 09 (o, = 50). (a) Original image.
(b) Noisy image. (c) TNRD [68] (PSNR = 25.70 dB and SSIM = 0.7421).
(d) N2N [69] (PSNR = 25.89 dB and SSIM = 0.7536). (e) S2S [70]
(PSNR = 27.34 dB and SSIM = 0.7967). (f) LGSR (PSNR = 27.84 dB
and SSIM = 0.8265).

To further verify the superiority of the proposed LGSR
image denoising algorithm, we now compare it with
three deep-learning-based methods, including TNRD [68],
N2N [69], and S2S [70]. Note that TNRD and N2N are
supervised algorithms, while our proposed LGSR and S2S
are self-supervised algorithms. In particular, S2S exploits the
strong CNN [71] to train the denoising model from the
noisy image itself, which is a state-of-the-art self-supervised
deep-learning-based image denoising algorithm. We evaluate
the denoising performance of these competing methods on
testing the Setl2 dataset [40], which is a benchmark dataset
for image denoising. We have only provided the comparison
results at o, = 15, 25, and 50, because many models in
the source code of these competing methods are unavailable.
The average PNSR results of these competing methods are
shown in Table II, with the best results highlighted in bold.
It can be seen that the proposed LGSR achieves the best PSNR
results than other competing methods. The average gains of
the proposed LGSR over TNRD, N2N, and S2S are as much
as 0.15, 0.11, and 0.40 dB, respectively.

Figs. 7 and 8 present the visual comparison results for image
02 and image 09, with o, = 50, respectively. For image
02, it can be seen that TNRD and S2S methods produce
agonizing visual artifacts, while the N2N approach tends to
over-smooth the image. For image 09, we can see that TNRD
and N2N are prone to over-smooth the images, which lose
many vital details. Although S2S obtains better visual results
than TNRD and N2N approaches, it generates unpleasant
visual artifacts. By contrast, the proposed LGSR not only
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TABLE III

PSNR (dB) COMPARISON RESULTS OF IMAGE INPAINTING ARE ACH

IEVED BY DIFFERENT METHODS ON TESTING 12 NATURAL IMAGES

80% pixels missing
Imag Cowboy | Bear | House | Lake | Leaves | Lena Lily | Flowers | Nanna | Agaric | Girls | Fireman | Average
SALSA [/2] 2372 29.42 | 29.54 | 2494 | 22.03 28.20 | 26.57 26.81 24.12 27.42 23.79 24.38 2591
BPFA [73] 24.93 30.04 | 30.80 | 25.82 | 23.78 29.50 | 27.30 27.30 24.71 27.93 24.80 24.88 26.82
IPPO [74] 25.38 30.08 | 33.65 | 25.48 25.56 30.64 | 28.33 27.70 25.60 29.10 | 2531 25.56 27.70
JSM [75] 25.40 29.97 | 34.31 25.82 | 26.18 30.46 | 27.99 27.41 25.33 28.25 25.18 25.31 27.64
GSR [3] 25.35 30.28 | 35.57 | 25.68 27.46 31.42 | 28.86 27.09 25.23 29.47 25.50 25.45 28.11
Aloha [76] 25.06 2997 | 3379 | 25.32 25.90 30.89 | 27.70 27.49 25.54 28.63 25.16 25.03 27.54
NGS [77] 24.21 29.83 | 31.34 | 25.10 23.87 28.87 | 27.08 27.03 24.58 27.86 24.27 24.54 26.55
TSLRA [78] 25.36 29.68 | 32.37 | 2547 25.47 30.58 | 28.17 27.72 25.55 28.85 25.15 25.69 27.50
JPG-SR [79] 25.57 30.13 | 3499 | 2592 | 27.36 31.48 | 28.97 27.46 25.65 29.16 25.61 25.47 28.15
LGSR 25.65 30.55 | 35.83 | 26.33 | 2748 | 31.69 | 29.07 28.03 25.91 29.61 | 25.81 25.79 28.48
70% pixels missing
Images Cowboy | Bear | House | Lake | Leaves | Lena Lily Flowers | Nanna | Agaric | Girls | Fireman | Average
SALSA [72] 25.70 31.01 31.58 | 26.76 | 2436 | 28.82 | 28.35 28.24 25.44 28.69 25.47 25.82 27.52
BPFA [73] 26.76 31.70 | 33775 | 27.93 26.98 31.62 | 29.30 28.92 26.62 29.65 26.86 26.55 28.89
IPPO [74] 27.40 31.92 | 36.64 | 27.56 28.58 32.97 | 30.28 29.20 27.44 31.14 | 27.43 27.44 29.83
JSM [75] 27.11 31.59 | 36.71 | 27.88 29.28 32.69 | 29.83 29.06 27.34 30.31 27.20 27.16 29.68
GSR [3] 27.63 32.01 37.62 | 28.07 31.18 33.54 | 31.10 29.56 27.89 31.42 27.86 27.48 30.45
Aloha [760] 27.24 31.25 | 36.68 | 27.58 29.04 32.80 | 29.58 29.02 2743 30.78 27.08 26.52 29.58
NGS [77] 26.19 31.42 | 3391 | 27.01 26.44 30.77 | 28.83 28.48 26.35 29.49 26.18 26.29 28.45
TSLRA [78] 27.12 31.66 | 36.15 | 27.32 | 28.03 32.64 | 29.92 29.32 27.32 30.82 27.09 27.22 29.55
JPG-SR [79] 27.51 32.18 | 3742 | 27.99 30.92 33.56 | 31.08 29.26 27.94 31.24 | 27.89 27.55 30.38
LGSR 30.50 3228 | 37.98 | 2872 | 31.31 33.76 | 31.19 29.99 28.21 31.61 28.14 27.89 30.96
60% pixels missing
Images Cowboy | Bear | House | Lake | Leaves | Lena Lily | Flowers | Nanna | Agaric | Girls | Fireman | Average
SALSA [72] 26.99 3221 | 3276 | 28.14 26.29 31.49 | 29.65 29.36 26.94 30.08 27.02 27.15 29.01
BPFA [73] 28.42 33.09 | 36.40 | 29.75 29.83 33.54 | 31.35 30.61 28.63 31.60 | 28.75 28.23 30.85
IPPO [74] 29.58 33.61 | 38.25 | 29.30 30.88 34.89 | 32.17 30.81 29.41 32.89 29.32 29.13 31.69
JSM [75] 28.89 33.10 | 38.55 | 29.49 31.47 34.56 | 31.59 30.52 29.09 32.10 | 29.01 28.79 31.43
GSR [3] 29.51 33.61 | 39.68 | 29.86 33.31 35.78 | 33.05 31.71 30.09 33.12 29.47 29.34 32.38
Aloha [76] 28.92 32.69 | 38.68 | 29.24 31.41 3472 | 31.47 30.72 29.51 3220 | 2891 28.24 31.39
NGS [77] 27.78 3290 | 36.29 | 28.68 28.87 32.81 | 30.53 29.84 28.06 31.12 27.83 27.67 30.20
TSLRA [78] 28.83 3277 | 37.23 | 29.01 30.19 34.26 | 31.55 30.65 29.17 32.34 | 28.79 28.73 31.13
JPG-SR [79] 29.57 33.60 | 39.25 | 30.05 33.26 35.72 | 33.09 31.41 30.22 32.93 29.86 29.47 32.37
LGSR 29.72 33.94 | 39.82 | 30.66 | 33.70 | 35.97 | 33.31 31.97 30.40 33.57 | 30.13 29.83 32.75
50% pixels missing
Images Cowboy | Bear | House | Lake | Leaves | Lena Lily | Flowers | Nanna | Agaric | Girls | Fireman | Average
SALSA [72] 28.59 33.86 | 35.17 | 29.69 28.11 33.08 | 31.13 30.92 28.53 31.51 28.60 28.54 30.64
BPFA [73] 30.21 3454 | 39.24 | 31.78 3279 35.61 | 33.41 32.55 30.68 33.32 30.58 30.12 32.90
IPPO [74] 31.30 3528 | 40.02 | 30.98 33.32 36.50 | 34.04 32.49 31.17 34.55 31.05 30.82 33.46
JSM [75] 30.75 34774 | 40.53 | 31.18 33.78 36.39 | 33.46 32.04 30.75 33.94 | 30.68 30.37 33.22
GSR [3] 31.70 35.62 | 41.61 32.14 35.86 37.64 | 35.41 33.48 32.15 35.31 31.93 31.01 34.49
Aloha [76] 30.46 3429 | 40.58 | 31.17 34.01 36.41 | 33.33 32.40 31.24 33.85 30.59 29.88 33.18
NGS [77] 29.32 3440 | 38.85 | 30.22 31.23 34.56 | 32.31 31.40 29.71 32.89 29.60 29.22 31.98
TSLRA [78] 30.45 33.01 | 40.22 | 30.53 32.56 35.52 | 33.20 32.04 30.87 33.68 30.48 30.25 32.74
JPG-SR [79] 31.64 3552 | 40.85 | 31.91 35.84 37.40 | 35.20 33.20 32.27 34.82 31.90 30.96 34.29
LGSR 31.80 3589 | 41.78 | 32.57 | 36.35 37.90 | 35.43 33.69 32.50 3542 | 32.19 31.43 34.74

Fig. 9. (a) Denoising images are obtained by (b) N2N [69] method and
(c) our proposed LGSR method.

achieves a better visual perception of both textures and details
but also significantly eliminates visual artifacts.

Furthermore, we apply the proposed LGSR to the real image
denoising. Due to the unknown noise level for real noisy
images, we need to exploit some noise estimation methods to
estimate the noise level. To this end, we employ the scheme
proposed in [80] to evaluate the noise level. The proposed
LGSR is comparable to the N2N method [69], which is a
state-of-the-art real image denoising method. Fig. 9 shows an
example of real image denoising by comparing N2N with our
proposed LGSR method. We can see that the proposed LGSR
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achieves more image details than the N2N method. Hence,
this experiment demonstrates the feasibility of the proposed
LGSR algorithm for the real image denoising problem.

B. Image Inpainting

In this section, we employ the proposed LGSR algorithm
for image inpainting. We mainly consider that the masks are
generated with different partial random samples, including
90%, 80%, 70%, 60%, and 50% pixels missing. The main
parameters of the proposed LGSR-based image inpainting
algorithm are set as follows. The size of the patch is set to
7 x 7, and the number of nonlocal similar patches m is set
to 60. We empirically set the scale factor y = 0.001 and
0.0008 for 90% pixels missing and others, respectively. Two
parameters p and u are set to (le—35, le—5), (3e -5, 2¢ —5),
(le—5, 3e—5), and (4e—5, 3e—5) for 90% pixels missing, 80%
pixels missing, 70% pixels missing, and others, respectively.
Moreover, for all the cases, o, is set to V2.

To verify the effectiveness of the proposed LGSR model,
we first compare it with some leading methods, including
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Fig. 10. Image inpainting results on image Lake (80% pixels missing).
(a) Original image. (b) Degraded image. (c) SALSA [72] (PSNR = 24.94 dB
and SSIM = 0.8036). (d) BPFA [73] (PSNR = 25.82 dB and SSIM =
0.8360). (e) IPPO [74] (PSNR = 25.48 dB and SSIM = 0.8297). (f) JISM [75]
(PSNR = 25.82 dB and SSIM = 0.8357). (g) GSR [3] (PSNR = 25.68 dB and
SSIM = 0.8559). (h) Aloha [76] (PSNR = 25.32 dB and SSIM = 0.8559).
(i) NGS [77] (PSNR = 25.10 dB and SSIM = 0.8180). (j) TSLRA [78]
(PSNR = 25.47 dB and SSIM = 0.8184). (k) JPG-SR [79] (PSNR = 25.92 dB
and SSIM = 0.8506). (1) LGSR (PSNR = 26.33 dB and SSIM = 0.8611).

(a) (b) (d) (e) ®
(2) (h)

[0} (k) o

Fig. 11. Image inpainting results on image House (80% pixels missing).
(a) Original image. (b) Degraded image. (c) SALSA [72] (PSNR = 29.54 dB
and SSIM = 0.8643). (d) BPFA [73] (PSNR = 30.80 dB and SSIM =
0.8929). (e) IPPO [74] (PSNR = 33.65 dB and SSIM = 0.9215). (f) JSM [75]
(PSNR = 34.31 dB and SSIM = 0.9103). (g) GSR [3] (PSNR = 35.57 dB and
SSIM = 0.9314). (h) Aloha [76] (PSNR = 33.79 dB and SSIM = 0.9276).
(i) NGS [77] (PSNR = 31.34 dB and SSIM = 0.8868). (j) TSLRA [78]
(PSNR = 32.37 dB and SSIM = 0.9204). (k) JPG-SR [79] (PSNR = 34.99 dB
and SSIM = 0.9151). (1) LGSR (PSNR = 35.83 dB and SSIM = 0.9333).

(@)

SALSA [72], BPFA [73], IPPO [74], JSM [75], GSR [3],
Aloha [76], NGS [77], TSLRA [78], and JPG-SR [79]. What
is noteworthy is that all competing methods are using image
NSS priors, except for the SALSA method. GSR is an NSS-
prior-based baseline method for image inpainting. The TSLRA
method exploits a reweighted NNM that attains a superior
restoration performance. The JPG-SR method combines patch
sparsity and GSR priors to achieve a state-of-the-art inpainting
performance. We compare these competing methods by testing
12 natural images, whose scenes are shown in Fig. 4. As can be
seen in Table III, our proposed LGSR achieves the best PSNR
results than other competing methods. Concretely, on average,
our proposed LGSR roughly enhances 3.46, 1.87, 1.06, 1.24,
0.38, 1.31, 2.44, 1.50, and 0.44 dB, compared with SALSA,
BPFA, IPPO, JSM, GSR, Aloha, NGS, TSLRA, and JPG-SR,
respectively. Some visual comparison results of these compet-
ing methods are presented in Figs. 10 and 11. To be concrete,
for image Lake in Fig. 10, we can see that SALSA, IPPO,
JSM, NGS, and TSLRA methods are apt to over-smooth the
images. Meanwhile, BPFA, GSR, Aloha, and JPG-SR methods
usually produce some undesirable ring artifacts. For image
House in Fig. 11, it can be seen that SALSA, BPFA, JSM,
and NGS methods produce the worst visual results. Although
IPPO, GSR, and JPG-SR methods achieve better visual results
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TABLE IV

AVERAGE PSNR (dB) (Top ENTRY IN EACH CELL) AND SSIM
(BOTTOM ENTRY) RESULTS ARE OBTAINED BY THE
PROPOSED LGSR AND THREE DEEP-LEARNING
METHODS ON TESTING THE
BSD68 DATASET [63]

Methods 90% 80% 70% 60% Average
213 [ 2742 | 2973 | 3172 | 2835

IRCNN [101' 576806 1 0.8158 [ 0.8823 | 0.9200 | 0.8249
P (1] | 2467 | 269 | 2880 | 3028 | 2768
0.7135 [ 0.8049 | 0.8619 | 0.8883 | 08172
2410 | 2695 | 2908 | 3097 | 2778

IDBP [81] 1576054 107989 | 0.8594 | 0.9009 | 08137
Losc 2485 | 27.60 | 2970 | 3158 | 2843
0.7321 | 0.8332 | 0.8877 | 0.9230 | 0.8440

Fig. 12.  Image inpainting results on image 123074 (90% pixels missing).
(a) Original image. (b) Degraded image. (c) IRCNN [10] (PSNR = 25.61 dB
and SSIM = 0.6812). (d) DIP [11] (PSNR = 27.11 dB and SSIM = 0.7733).
(e) IDBP [81] (PSNR = 26.17 dB and SSIM = 0.7136). (f) LGSR (PSNR =
27.38 dB and SSIM = 0.7749).

than SALSA, BPFA, JSM, and NGS methods, they are prone
to generate the over-smooth phenomenon. TSLRA is good at
capturing repetitive image textures, because it uses a reliable
reweighted NNM algorithm, while this method generates some
undesirable black pieces. Compared with these competing
methods, our proposed LGSR method achieves the best visual
result on the whole, which not only preserves image textures
and small details but also effectively eliminates the undesirable
visual artifacts.

We also compare the proposed LGSR-based image inpaint-
ing algorithm with some deep-learning-based image inpainting
methods, including IRCNN [10], DIP [11], and IDBP [81]. It is
worth noting that they are state-of-the-art CNN-based image
inpainting methods with repairing pixels random missing
images. We comprehensively evaluate the inpainting perfor-
mance of these competing methods by testing the BSD68
dataset [63]. According to Table IV, we can observe that
our proposed LGSR attains better PSNR and SSIM results in
almost all the cases. In particular, our proposed LGSR consis-
tently outperforms other competing methods in terms of SSIM.
Specifically, the average SSIM gains of our proposed LGSR
over IRCNN, DIP, and IDBP methods are 0.0191, 0.0269,
and 0.0304, respectively. The visual comparison results with
90% pixels missing for image 23074 and image 159008 are
presented in Figs. 12 and 13, respectively. It is evident that
IRCNN and DIP methods still suffer from noticeable visual
artifacts, while the IDBP method is prone to over-smooth the
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TABLE V

AVERAGE PSNR (dB) AND SSIM COMPARISON RESULTS ARE OBTAINED BY Rcos [82], GSR [3], JASR [83],
ASNR [54], AND THE PROPOSED LGSR METHODS ON TESTING THE BSD68 DATASET [63]

Ratio Rcos [82] GSR [3] JASR [83] ASNR [54] LGSR

0.1 26.03 0.7135 25.83 0.7356 26.19 0.7325 26.32 0.7420 26.33 0.7445

0.2 28.68 0.8067 29.28 0.8408 29.46 0.8317 29.72 0.8471 29.78 0.8489

0.3 30.62 0.8621 31.82 0.8967 31.63 0.8847 32.10 0.9001 32.30 0.9013

0.4 32.33 0.8991 34.02 0.9315 33.52 0.9188 34.22 0.9335 34.32 0.9340
Average 29.42 0.8204 30.24 0.8512 30.20 0.8419 30.59 0.8557 30.68 0.8572

Fig. 13. Image inpainting results on image 159008 (90% pixels missing).
(a) Original image. (b) Degraded image. (c) IRCNN [10] (PSNR = 22.64 dB
and SSIM = 0.7013). (d) DIP [11] (PSNR = 23.31 dB and SSIM = 0.7578).
(e) IDBP [81] (PSNR = 22.94 dB and SSIM = 0.7286). (f) LGSR (PSNR =
23.89 dB and SSIM = 0.7808).

@ IO o @

Fig. 14. Image semantic inpainting for historical mural image 1. (a) Degraded
image. (b) TSLRA method [78]. (¢) IRCNN method [10]. (d) LGSR method.

Fig. 15. Image semantic inpainting for historical mural image 2. (a) Degraded
image. (b) TSLRA method [78]. (¢) IRCNN method [10]. (d) LGSR method.

images, leading to image details missing. By contrast, our
proposed LGSR generates much more visually pleasant results
than these deep-learning-based image inpainting approaches.

Moreover, our proposed LGSR method can be applied to
semantic image inpainting. The proposed LGSR is compara-
ble to TSLRA and IRCNN methods. Note that the TSLRA
method can be qualified for various image inpainting tasks,
while IRCNN utilizes strong deep priors to obtain a superior
performance. We exploit these competing methods to test two
historical mural images. As shown in Figs. 14 and 15, the
proposed LGSR can effectively reconstruct damaged regions
compared with other competing methods.

Fig. 16. Image CS results on image 21077 from the BSD68 dataset [63]
(0.2 N CS measurements). (a) Original image. (b) Rcos [82] (PSNR =
28.90 dB and SSIM = 0.8211). (¢) GSR [3] (PSNR = 29.04 dB and
SSIM = 0.8438). (d) JASR [83] (PSNR = 29.33 dB and SSIM = 0.8217).
(e) ASNR [54] (PSNR = 29.26 dB and SSIM = 0.8462). (f) LGSR (PSNR =
29.60 dB and SSIM = 0.8479).

C. Image Compressive Sensing

In this section, we employ the proposed LGSR method to
image CS. Similar to [3], [42], in our experiments, we produce
the CS measurements at the block level through a Gaussian
random projection matrix to test the image, namely, block-
based with a block size of 32 x 32. The parameters of our
proposed LGSR-based image CS algorithm are set as follows.
The patch size b x b is set to 7 x 7, the number of nonlocal
similar patches m is set to 60, and o, is set to 2. Two
parameters p and u are set to (7e —4, 5e —4), (e —4, 3e —4),
(9e — 4, le — 4), and (6¢ — 4, 3e — 4) for 0.1, 0.2, 0.3, and
0.4 N CS measurements, respectively.

We first compare the proposed LGSR with four classic
methods: Rcos [82], GSR [3], JASR [83], and ASNR [54].
It is worth noting that image NSS priors are all used in
these competing methods. GSR is the block-based CS baseline
method. ASNR is our previous work that jointly exploits image
NSS and sparsity residual priors to achieve a state-of-the-
art CS reconstruction performance. Table V lists the average
PSNR and SSIM results of these competing methods on testing
the BSD68 dataset [63]. It can be seen that our proposed
LGSR achieves better quantitative results than other competing
methods. To be concrete, the average improvement of the
proposed LGSR over Rcos, GSR, JASR, and ASNR methods
are 1.27,0.44, 0.48, and 0.05 dB in PSNR and 0.0368, 0.0060,
0.0153, and 0.0015 in SSIM, respectively. The visual com-
parison of image 21077 with 0.2 N measurements for these
competing methods is shown in Fig. 16. One can observe that
the Rcos method generates the worst visible result, especially
it is prone to produce some sandy phenomena. The GSR and
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TABLE VI

AVERAGE PSNR (dB) COMPARISON RESULTS ARE OBTAINED BY
OUR PROPOSED LGSR WITH F1VE DEEP-LEARNING-BASED
CS METHODS ON TESTING THE SET11 DATASET [84]

Methods 0.1 0.3 0.4 0.5 Average
SDA [85] 22.65 | 26.63 | 27.79 | 28.95 26.51
ReconNet [84] | 24.28 | 28.74 | 30.58 | 31.50 28.78
IST-Net [86] 25.80 | 3291 | 3536 | 37.43 32.88
IST-Nett [86] | 26.64 | 33.82 | 36.06 | 38.07 33.65
CSNet [42] 28.11 | 33.87 | 36.13 | 37.54 3391
LGSR 28.24 | 3493 | 37.10 | 38.99 34.82

Fig. 17. Image CS results on image Barbara (0.1 N CS measurements).
(a) Original image. (b) ReconNet [84] (PSNR = 21.89 dB and SSIM =
0.5732). (c) IST-Net™ [86] (PSNR = 23.61 dB and SSIM = 0.6888).
(d) CSNet [42] (PSNR = 2437 dB and SSIM = 0.7217). (e) LGSR
(PSNR = 29.40 dB and SSIM = 0.8886).

‘ 4
@ © @ ©

Fig. 18. Image CS results on image House (0.1 N CS measurements).
(a) Original image. (b) ReconNet [84] (PSNR = 25.69 dB and SSIM =
0.6936). (c) IST-Net™ [86] (PSNR = 30.81 dB and SSIM = 0.8388).
(d) CSNet [42] (PSNR = 3236 dB and SSIM = 0.8686). () LGSR
(PSNR = 34.16 dB and SSIM = 0.8796).

(b)

JASR methods produce some unwished ringing artifacts, while
some over-smooth effects have existed in JASR. The ANSR
method generates some undesirable visual artifacts. By and
large, the proposed LGSR achieves better image details and
textures than other competing methods.

Recently, deep-learning-based techniques have achieved
favorable performance in image CS reconstruction. We now
compare our proposed LGSR with several deep-learning-
based image CS reconstruction methods, including SDA [85],
ReconNet [84], IST-Net [86], IST-Net* [86], and CSNet [42].
It is worth noting that CSNet jointly optimizes the sam-
pling and reconstruct networks that deliver a state-of-the-
art reconstruction performance. We compare these competing
methods by testing the Setll dataset [84], which is still a
benchmark dataset for image CS reconstruction. The average
PSNR comparison results are provided in Table VI, from
which we can see that the proposed LGSR achieves the best
PSNR results than other competing methods. The proposed
LGSR roughly achieves 8.31, 6.04, 1.94, 1.17, and 0.91 dB
improvements over SDA, ReconNet, IST-Net, IST-Net™, and
CSNet, respectively. Some visual comparison results of these
competing methods are shown in Figs. 17 and 18. We can
significantly see that SDA and ReconNet methods still produce
staircase artifacts, while CSNet is apt to produce some unde-
sirable visual artifacts. In contrast, our proposed LGSR not
only eliminates visual artifacts but also preserves fine image
details.
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TABLE VII

ABLATION STUDY: AVERAGE PSNR (dB) COMPARISON RESULTS ARE
ACHIEVED BY CLASSIC GSR, LR, AND THE PROPOSED LGSR
METHODS FOR IMAGE DENOISING ON TESTING
THE SET12 DATASET [40]

Methods | 10 20 30 40 50 75 100 | Average
GSR | 34.55|31.02|29.22 | 27.85|26.96 | 25.16 | 23.78 | 28.36
LR 34.53 | 31.10 | 29.17 | 27.85 | 26.81 | 24.95 | 23.66 | 28.30

LR-GSC | 34.66 | 31.27 | 29.36 | 28.04 | 27.00 | 25.25 | 23.95 | 28.50

TABLE VIII

AVERAGE (dB) COMPARISON RESULTS ARE OBTAINED BY LR-GSC [53]
AND OUR PROPOSED LGSR METHODS FOR THREE IMAGE
RESTORATION TASKS ON TESTING THE

BSD68 DATASET [63]
Image Denoising
Methods 10 20 30 40 50 Average
LR-GSC [53] | 34.05 | 30.26 | 28.34 | 27.15 | 26.30 29.22
LGSR 3421 | 30.49 | 28.56 | 27.29 | 26.37 29.38
Image Inpainting
Methods 90% 80% 70% 60% 50% | Average
LR-GSC [53] | 24.84 | 27.58 | 29.67 | 31.52 | 33.44 29.41
LGSR 24.85 | 27.60 | 29.70 | 31.58 | 33.50 29.45
Image CS
Methods 0.1 0.2 0.3 0.4 0.5 Average
LR-GSC [53] | 26.29 | 29.74 | 32.17 | 34.28 | 36.29 31.75
LGSR 26.33 | 29.78 | 32.30 | 34.32 | 36.33 31.81

D. Ablation Studies

In this section, we conduct several ablation studies to verify
the effectiveness of the proposed LGSR model. We first com-
pare the proposed LGSR-based image restoration model (6)
with two single-prior-based image restoration models, namely,
the GSR model [incorporating (1) into (5)] and the LR model
[incorporating (2) into (5)]. Then, we exploit typical GSR,
LR, and our proposed LGSR models to the image denoising
task, because image denoising is an ideal test bed for image
models and is less affected by external factors. In Table VII,
we evaluate these competing methods for testing the Setl2
dataset [40], from which we can see that our proposed LGSR
method achieves better quantitative results than classic GSR
and LR models. Accordingly, this ablation study demonstrates
that the proposed LGSR model is effective.

Second, the LR-GSC method [63] also jointly uses group
sparsity and LR priors to image restoration. However, LR-GSC
enforces the LR property to each group coefficient, leading to a
suboptimal solution, since each group coefficient cannot guar-
antee that it has an LR property. We now compare the proposed
LGSR with the LR-GSC method and test them on the BSD68
dataset [63] for three image restoration tasks. Table VIII
presents the average PSNR comparison results of these two
competing methods. We can observe that the proposed LGSR
consistently outperforms the LR-GSC method. Therefore, this
experiment result further demonstrates the effectiveness of our
proposed LGSR model.

E. Convergence

It is challenging to give a theoretical proof for conver-
gence of the proposed algorithm because of the existence
of the blocking matching (BM) operator [8], [39]. There-
fore, we hereby provide empirical evidence to depict the
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Fig. 19. Convergence behavior of the proposed LGSR algorithm.
(a) Convergence of image denoising with o, = 100. (b) Convergence of
image inpainting with 80% pixels missing. (c) Convergence of image CS
with sampling ratio 0.1 N.

convergence behavior of the proposed LGSR-based image
restoration algorithm. Fig. 19 plots the evaluations of PSNR
values versus the iteration numbers for image denoising with
o, = 100, image inpainting with 80% pixels missing, and
image CS with sampling ratio 0.1 N. In both the cases, we can
clearly see that with the increase in iteration numbers, the
PSNR curves monotonically increase and finally become flat
and stable. Hence, our proposed LGSR algorithm enjoys a
good convergence property.

VII. CONCLUSION

Traditional GSR-based image restoration models have
imposed only plain sparsity over individual patch of the group
in image modeling, and the restoration results are limited
by ignoring other beneficial image properties. This article
has proposed a novel LGSR model, and its applications into
image restoration have been explored. The proposed LGSR has
jointly exploited the sparsity and LR priors of the group under
a unified framework, which is mutually complementary by
preserving image texture and structure information for high-
quality image restoration. Moreover, we have developed an
alternating minimization algorithm with an adaptively adjusted
parameter scheme to solve the proposed optimization problem.
Experimental results on three image restoration tasks, includ-
ing denoising, inpainting, and CS, have demonstrated that the
proposed LGSR algorithm outperforms many popular or state-
of-the-art methods in both the objective and the perceptual
quality.
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