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Aspect-level sentiment classification aims to obtain fine-grained sentiment polarities of
different aspects in one sentence. Most existing approaches handle the classification by
acquiring the importance of context words towards each given aspect individually, and
ignore the benefits brought by aspect relations. Since the sentiment of one aspect can be
deduced through their relationship according to other aspects, in this paper, we propose
a novel relation construction multi-task learning network (RMN), which is the first attempt
to extract aspect relations as an auxiliary classification task. RMN generates aspect repre-
sentations through graph convolution networks with a semantic dependency graph and
utilizes the bi-attention mechanism to capture the relevance between the aspect and the
context. Unlike conventional multi-task learning methods that need extra datasets, we
construct an auxiliary relation-level classification task that extracts aspect relations from
the original dataset with shared parameters. Extensive experiments on five public datasets
from SemEval 14, 15, 16 and MAMS show that our RMN improves about 0.09% to 0.8% on
accuracy and about 0.04% to 1.19% on F1 score, compared to several comparative baselines.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

As an important Nature Language Processing (NLP) task, sentiment classification is widely applied in online review anal-
ysis [1], text mining [2] and emotion recognition [3]. Document-level [4,5] and sentence-level sentiment analyses [6,7] aim
to predict the overall sentiment of the input text, which can be considered as coarse-grained sentiment. Given a set of
aspects in one sentence, aspect-level sentiment analysis aims at identifying sentiment polarities towards these specific enti-
ties [8]. For example, in the sentence ‘‘The menu is limited but almost all of the dishes are excellent”, although the overall sen-
timent of the sentence is neutral, the polarity of ‘‘menu” is negative while the one for ‘‘dish” is positive.

For the aspect-level sentiment analysis, traditional methods mainly constructed sentiment lexicon dictionary [9] or
adopted a feature-based SVM [10] for classification. However, such kind of lexicon dictionary and feature-based methods
are labor-intensive. Recently, with the ability to handle complex structure sentences, neural network-based approaches have
become the mainstream of sentiment classification. Besides, the attention mechanism has been proved effective for captur-
ing potential semantic relations between the aspect and the context [8,11,12]. Apart from the attention mechanism, Zhang
et al. [13] applied Graph Convolutional Networks (GCNs) to extract syntactical dependencies among the context, and pre-
sented its advantages when handling long sentences.
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However, the above studies all associated a single aspect with its contextual words individually, and ignored the benefits
brought by multiple relations among aspects. One aspect can be better classified when considering its aspect relations. For
instance, as shown in Fig. 1, given the sentence ‘‘Nice food. The price is reasonable although the service is poor.”, we can obtain
that ‘‘food” and ‘‘price” are in positive semantic while ‘‘service” is negative. Meanwhile, three relations are extracted based on
three aspects, namely ‘‘food-price”, ‘‘food-service” and ‘‘price-service”. Suppose that the semantic word ‘‘reasonable” is masked,
and the polarity of ‘‘price” is unknown. If taken relations ‘‘food-price” and ‘‘price-service” into consideration, we can easily
deduce that the polarity of ‘‘price” is negative. Therefore, for the sake of better aspect-level sentiment analysis, two challenges
should be addressed: 1) how to model relations among aspects; and 2) how to utilize these aspect relations for the aspect-
level sentiment classification.

For the first challenge, several methods [14,15] adopted the attention mechanism or GCNs over aspects to capture poten-
tial relations. However, they exaggerated aspect information since the aspect with neutral polarity may generate noises if
considered. To address this issue, we only consider explicit aspect relations (‘‘similar” and ‘‘opposite”) to avoid neutral aspect
noises. Specifically, we model aspect relations by the subtraction between two aspect representations, then auto-annotate
their labels based on aspect polarities. For the second challenge, we construct an auxiliary task named relation-level classi-
fication, and train the basic aspect classification task and the auxiliary task simultaneously in a multi-task framework to
explore the benefits of the aspect relations. Our contributions are summarized as follows:

� To the best of our knowledge, this is the first attempt to extract aspect relations as an auxiliary task for aspect-level sen-
timent analysis, and we explore the benefits brought by aspect relations.
� We propose a novel relation construction multi-task learning network that utilizes the bi-attention mechanism to capture
bidirectional semantic information between the context and the aspect, and we adopt aspect disagreement regularization
to better identify aspect-specific features from overlapped representations.
� Extensive experiments on several benchmark datasets validate the effectiveness of the proposed model compared to sev-
eral comparative baselines, and show the ability to handle relatively small datasets.

The rest of this paper is organized as follows: Section 2 reviews related works. The detailed modules of the proposed
method are presented in Section 3. Experimental results and further analyses are shown in Section 4. Section 5 concludes
the paper and discusses the future research.
2. Related works

2.1. Sentiment classification

Sentiment analysis has been served as an essential role in NLP tasks, and can be divided into three levels: document-level
[4,5], sentence-level [7,16], and aspect-level [17–19]. In the document-level sentiment classification, Dou et al. [4] proposed
a deep memory network to predict the sentiment polarity of a whole document. In the sentence-level classification, Liu et al.
[20] investigated domain representations of multitask learning for the multi-domain sentiment analysis towards each sen-
tence. Besides, a three-way enhanced convolutional neural network model was proposed in [21] to make the sentence-level
sentiment decision.

Unlike the document-level and the sentence-level that predict the overall sentiment towards the whole text, the aspect-
level sentiment analysis aims to identify the polarities of different aspects based on their contextual words [22,23]. Previous
studies [8,24,25] mainly utilized LSTMs to explore potential connections between an aspect and its context. Liu et al. [26]
proposed a bidirectional attention mechanism to capture the semantic relevance from both directions. Though the attention
Fig. 1. An example for illustrating multiple relations among aspects: 1) similar relation means that two aspects are similar semantics. 2) opposite relation
means that two aspects are opposite semantics.
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mechanism has been proved to be useful, some unrelated words may be mistakenly selected for calculating the weights for a
given aspect. To solve the issue, Zhang et al. [13] applied GCNs to obtain long-away aspect-relevant information, showing the
effectiveness of using semantic graph when generating aspect representations.

However, the above methods handled each given aspect individually, and neglected the relations among multiple aspects.
Recently, He et al. [27] learned the probability distribution over aspects and applied syntax-based attention mechanism to
generate aspect-specific representations. Hazarika et al. [28] utilized inter-aspect dependencies along with temporal depen-
dency processing of their corresponding sentence representations. In addition to the attention mechanism, graph-based
structures [15,29] were adopted. Zhao et al. [15] applied multi-GCNs to model the dependencies of aspects. Wang et al.
[29] proposed a relational graph attention network to model connections between aspects and opinion words. Zhang
et al. [30] designed a lexical graph to capture the global word co-occurrence information in training samples, and considered
different types of relations in syntactic graphs. Besides, Yuan et al. [31] assigned different weights to edges in a graph, and
applied a graph attention network with memory fusion to learn and exploit multi-word relations.

Although the above graph-based methods are promising, the uncertainly relationships between the neutral aspect and
other aspects may generate noises and lead to ambiguous semantic of the classification.
2.2. Multi-task learning

By learning different tasks synchronously with shared representations, Multi-Task Learning (MTL) can improve model
generalization by capturing correlations between related tasks. In recent years, MTL has been applied in many NLP tasks
[32,34]. Liu et al. [34] applied MTL for the implicit discourse relation classification by synthesizing the discourse analysis
tasks within different corpora. He et al. [32] explored the knowledge from document-level corpus for training aspect-
level sentiment classifiers. Besides, a message passing mechanism was applied in [35] to learn interactions between the
aspect and the opinion term co-extraction. Chen et al. [33] utilized the abundant document-labeled data and developed a
transfer learning framework to transfer knowledge from the document-level task to the aspect-level task. However, the
above methods needed extra corpus for training the auxiliary task.

Table 1 summaries the selected DNN models. As will be clear soon, our model differs from the above approaches in sev-
eral ways: 1) we construct more specific aspect relations for auxiliary sentiment classification; and 2) our model needs no
extra corpus since it can extract relations from the original datasets with shared parameters.
3. Problem definition and methodology

In this section, we first give the problem definition and the associated notations. Afterwards, we introduce the detailed
methodology and workflows. The overall architecture of our RMN is presented in Fig. 2, where aspect representations are
extracted from L-layer GCNs, context representations are encoded by position encoder, and the final aspect-specific repre-
sentations are generated by the bi-attention module.
3.1. Task definition and annotation

Taking aspect relations into consideration, we define two tasks: aspect-level classification task and relation-level classifica-
tion task.
Table 1
Summary of the selected DDN models.

Method RNN CNN Attention Graph Multi-tasks Datasets

TD-LSTM [24] U U Twitter
ATAE-LSTM [8] U U SemEval
AB-LSTM [25] U U Twitter
ABCDM [16] U U U Twitter, Review
BILSTM-ATT-G [26] U U Review
ASGCN [13] U U U Twitter, SemEval
He et al. [27] U U SemEval
Hazarika et al. [28] U U SemEval
ADGCN [15] U U U SemEval
R-GAT [29] U U U Twitter, SemEval
Bi-GCN [30] U U U Twitter, SemEval
PRET + MULT [32] U U U SemEval
Transcap [33] U U U SemEval
RMN (ours) U U U U SemEval, MAMS
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Fig. 2. The architecture of RMN. The input sentence is duplicated parallelly after Bi-LSTM encoding: one goes through L-layer GCNs for aspect
representations, the other one generates the context representation with position encoding. Then, the aspect-specific representation is obtained for aspect-
level classification by the bi-attention module. Finally, the aspect relation is obtained for relation-level classification by the subtraction of two aspect-
specific representations.
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3.1.1. Aspect-level classification task
Given a sentence S ¼ w1;w2; . . . ;wn½ � with n words and m aspects T ¼ A1;A2; . . . ;Am½ �, where the i-th aspect

Ai ¼ wj;wjþ1; . . . ;wk

� �
is the sub-sequence of S. The task is to classify sentiment polarity (negative, neutral, positive) of each

aspect Ai.
3.1.2. Relation-level classification task
For this task, we generally define three relations, namely ‘‘similar”, ‘‘unrelated” and ‘‘opposite”. As shown in Table 2, the

relation label is auto-annotated based on the polarities of two aspects, and no extra corpus is needed since all relations
are extracted from the original dataset. For ‘‘unrelated” relation, it means that there is at least one neutral aspect. The task
is to classify aspect relations according to their polarities in one sentence.
3.2. Word encoding

Distributed representations of words are unambiguous to express the semantic meanings in many NLP tasks [8,26], which
provides convenience to the neural network to perform mathematical operations. Formally, given a sentence
S ¼ w1;w2; . . . ;wn½ �, we employ the pre-trained model, GloVe [36], to map the i-th word vector wi 2 Rd, where d represents
the embedding dimension.

To further encode relation features inside the context, we adopt the Bidirectional Long Short-Term Memory network(Bi-
LSTM) [37] as our basic relation encoder, which can access the future context as well as the past. In this way, each sentence is

fed into Bi-LSTM to extract contextual information, where the forward hidden state h
!2 Rd0 and the backward hidden state
Table 2
Relation Annotation.

Aspect 1 Aspect 2 Relation

negative negative similar
neutral neutral similar
positive positive similar
negative positive opposite
negative neutral unrelated
positive neutral unrelated
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h
 
2 Rd0 , and d0 is the dimension of hidden state. Then, the encoded representation of each word is formed by concatenating

two hidden states:
1 Par
hi ¼ hi
!jjhi

 � �
; hi 2 R2d0 ; ð1Þ
where jj denotes the vertical concatenating operation. Therefore, the sentence with Bi-LSTM encoding can be denoted as:
S ¼ h1;h2; . . . ;hn½ �.
3.3. GCNs for aspect representations

Previous studies [8,26,15] fed aspect words into LSTM networks or average over LSTM hidden outputs to obtain aspect
representations, which will lose syntactically relevant words to the aspect, especially in long sentences. Inspired by Zhang
et al. [13], we take the syntactic structure of sentence into consideration and apply GCNs with dependency graph to acquire
aspect representations.

With the ability to handle the graph-structured data, GCNs perform well on acquiring neighboring information. As Fig. 3
presents, given a dependency graph1 on one sentence, we can obtain the corresponding undirectional adjacency matrix
A 2 Rn�n. In one layer GCN, the i-th node hi is updated by:
h 1ð Þ
i ¼ ReLU

Xn
j¼1

Aij þ Iij
� �

Whj þ b

 !

¼ ReLU
Xn
j¼1

AijWhj þWhi þ b

 !
;

ð2Þ
whereW 2 R2d0�2d0 is a weight matrix, b 2 R2d0 is a bias term, and I 2 Rn�n is the identity matrix considering self-connections.
With L-layer GCNs, features from L hops away can be propagated to a target node. In this way, the syntactically relevant

words can be transformed through the dependency graph based GCNs. The representation of the i-th node in the l-th layer
can be denoted as:
h lð Þ
i ¼ ReLU

Xn
j¼1

AijW
l�1hl�1

j þWhl�1
i þ bl�1

 !
; ð3Þ
Based on hl
i, the i-th aspect representation can be obtained through its original sequence index:
Ai ¼ hl
j;h

l
jþ1; . . . ; h

l
k

h i
;0 6 j 6 k 6 n; ð4Þ
where j and k are the starting and ending indexes of the aspect.
3.4. Position encoding for context representations

Intuitively, a closer context word has bigger influence on aspect words [38]. For instance, given the sentence ‘‘The food is
decent though not worth the price”, the emotional word ‘‘decent” should be assigned larger weight for ‘‘food” while less weight
for ‘‘price”. We adopt the absolute distance as a metric and assign larger weights to those closer words. Specifically, we first
calculate the position weight pi of the i-th word:
pi ¼
1� j�i

n ; �s < i� j < 0
1; j 6 i 6 k

1� i�k
n ; 0 < i� k < s

0; otherwise

8>>><
>>>:

ð5Þ
where s is the pre-defined distance parameter, and n is the length of sentence. Then, the context representation can be cal-
culated as:
hc
i ¼ pi � hi; ð6Þ
At last, we can obtain the corresponding context representation: C ¼ hc
1;h

c
2; . . . ;h

c
n

� �
.

sed by Spacy: https://spacy.io/.
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Fig. 3. An illustration of the dependency graph. (a) The universal dependencies of sentence, where directed edges between words mean that they are
syntactically related. (b) The corresponding adjacent matrix, where ’1’ denotes two connected words.
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3.5. Bidirectional matching mechanism

In this paper, we adopt the bidirectional matching mechanism to capture multiple semantic information between the
aspect and the context. As can be seen in Fig. 4, we first calculate the matching matrix:
Dij ¼ Ci � AT
j ;Dij 2 Rn�m; ð7Þ
where m and n are the lengths of aspect and context representation. Each element in Dij denotes the importance of seman-
tically matching between the context and the aspect. Then, context to aspect attention and aspect to context attentionmodules
are applied to explore the interactive information.

Context to Aspect Attention. With aspect word representations, the attention mechanism aims to generate attention
vector using the column-wise weight. Specifically, the column-wise weight is calculated by:
f t ¼ tanh DT
ij �Wt

� 	
at ¼ softmax wt � f Tt

� 	
;

ð8Þ
where Wt 2 Rn�2d0 and wt 2 R2d0 are weight matrices. Then, the context to aspect attention vector Vt is obtained:
Vt ¼ at � Aj: ð9Þ

The aspect information with similar semantic to the context is addressed by assigning higher weights in at .
Aspect to Context Attention. Similar to the context to aspect attention. The row-wise weight is calculated by:
Fig. 4. An illustration of the Bi-attention mechanism.
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f c ¼ tanh Dij �Wc
� �

ac ¼ softmax wc � f Tc
� 	

;
ð10Þ
where Wc 2 Rm�2d0 and wc 2 R2d0 are weight matrices. Finally, the aspect to context attention vector Vc is obtained:
Vc ¼ ac � Ci: ð11Þ

After computing Vt and Vc , we concatenate two matching vectors as the final aspect-specific representation:
Vi ¼ VtjjVc½ �: ð12Þ
3.6. Model training

We simultaneously train two tasks: the aspect-level classification task and the relation-level classification task, which share
same parameters before the output layer.

3.6.1. Aspect-level classification
For the final aspect-level classification model, we feed V into a full connected network with softmax activation function:
Pc ¼ softmax Wv � V þ bvð Þ; ð13Þ

where Wv 2 R2d0�c and bv 2 Rc are the learned weight and bias. Here, c is the number of aspect sentiment polarities.

The cross-entropy loss function is defined as:
J hð Þ ¼ �
XT
t¼1

ytlogŷt þ b hk k22; ð14Þ
where T is the training size, yt is the true label of the t-th sample, ŷt is the predicted label, and b is the hyper-parameter to
restrict the L2 regularization.

3.6.2. Relation-level classification
After obtaining two aspect-specific representations Vi and Vj, the aspect relation can be modeled with a subtraction oper-

ator between them:
Rij ¼ jVi � Vjj: ð15Þ

Then, we feed R to a softmax classifier:
Pr ¼ softmax Wr � Rþ brð Þ; ð16Þ

where Wr 2 R2d0�r and br 2 Rr are the learned weight and bias, and r is the number of relation labels. The cross-entropy loss
function is defined as:
U ¼ �
XT
t¼1

1
nt

Xnt
k¼1

ykt logŷ
k
t ; ð17Þ
where nt is the relation number of t-th sample. Noting a sentence may contain multiple aspect relations, we average relation-
level loss to align with aspect-level loss in the same sentence.

3.6.3. Aspect disagreement regularization
To acquire a larger aspect-specific vector space distance from overlapped representations, we adopt the disagreement

regularization on aspects. Given a set of aspect representations V ¼ V1;V2; . . . ;Vn½ � in one sentence, the average regulariza-
tion term is calculated as:
D ¼ 1
n2

Xn
i¼1

Xn
j¼1

Vi � Vj

kVik � kVjk ; ð18Þ
where D is the average cosine distance between each aspect-specific representation and the smaller D denotes that aspect
representations are better distinguished.

3.6.4. Training objective
The overall training objective of the proposed model mainly consists of three parts and the overall loss function is defined

as follow:
L ¼ J hð Þ þ kU þ D; ð19Þ
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where J hð Þ is the aspect-level classification loss, U is the relation-level classification loss, D is the aspect disagreement reg-
ularization loss, and k is a hyper-parameter that decides the relative importance weight of U.

4. Experiments

We conduct extensive experiments with several settings of the proposed method in this section, showing the significant
results and effectiveness of the relation-level classification task.

4.1. Datasets and experimental settings

Datasets: Several benchmark aspect-level datasets are chosen for experiment, including SemEval 2014 [39], SemEval
2015 [40], SemEval 2016 [41] and MAMS [42]. SemEval is an ongoing series of evaluations of computational semantic anal-
ysis systems. Following Zhang et al. [13], samples with conflict labels or without explicit aspects in sentences are removed.
MAMS is a well-annotated dataset that each sentence contains at least two aspects. The detailed distributions of five datasets
are presented in Table 3.

Word Embeddings: The pre-trained GloVe [36] and Bert [43] are used for word embedding initialization, in which out-of-

vocabulary words in Golve embeddings are initialized by sampling from the uniform distribution U � 1ffiffiffiffiffiffi
300
p ; 1ffiffiffiffiffiffi

300
p

� 	
.

Parameters: Following standard methods, we tune our model using fivefold validation and grid-searching on the training
set. The learning rate lr is selected from 0:1;0:001;0:0005;0:0001f g, the batch size b 2 32;64;128f g, and the hidden size
d 2 64;128;256;768f g. Adam [44] is adopted to minimize the total loss L given in Eq. (19). The regularization weight of
parameters is 10�5, the dropout rate is 0.3, the epoch number is 20, and the final parameters are presented in Table 4.

Evaluation Metric: Accuracy and Macro� F1 are used to measure the performance of the models, which are defined as
follows:
Table 3
Dataset

Lap1

Rest

Rest

Rest

MAM
Accuracy ¼ Ttrue
N ;

F1 ¼ 2PR
PþR ;

ð20Þ
where Ttrue is the number of correctly predicted samples, N is the total number of samples, P is the positive predictive value,
and R is the recall value.

4.2. Baselines

We set three schemes for our method: 1) RMN-A: the model that considers all relations; 2) RMN-P: the model that only
considers similar and opposite relations; and 3 RMN-Bert: our model with Bert embeddings. Besides, we choose the following
methods for comparisons:

1. Attention based methods
TD-LSTM [24] utilized contexts in both directions as feature representations for sentiment classification, which adopted
two LSTM networks to model both the left context with target and the right context with target.
ATT-BILSTM [26] learned aspect embeddings to compute attention weights, and conducted the attention mechanism
between aspect and the context sentence.
AOA [45] jointly modeled aspects and sentences and conducted an attention over attention module to generate the final
representation.
ABCDM [16] utilized two independent bidirectional LSTM and GRU layers to capture temporal information flow. In our
implementation, we adopt the dependency graph to generate aspect embeddings.
TNet-LF [46] adopted context preserving modules to handle aspect-level sentiment classification, and designed the target
distributions on five datasets.

Dataset Positive Neutral Negative Single Multiple Total

4 Train 994 464 870 911 1417 2328
Test 341 169 128 259 379 638

14 Train 2164 637 807 1007 2601 3608
Test 728 196 196 285 835 1120

15 Train 912 36 256 585 618 1204
Test 326 34 182 301 241 542

16 Train 1240 69 439 879 869 1748
Test 469 30 117 296 320 616

S Train 3380 5042 2764 0 11186 11186
Test 400 263 393 0 1336 1336
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Table 4
Detailed parameter settings in the experiment.

Description Symbol Value

Class number c 4
Batch size b 32
Epoch number e 20
Dropout rate p 0.3
Hidden size d0 300
Learning rate lr 0.001
L2 penalty b 0.0001
Pre-defined distance s 15
Maximum sentence length n 80
Relation-level task weight k (0, 1)
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specific transformation component to better integrate target information into the word representation.
IARM [14] incorporated the neighboring aspects related information with memory networks, where the attention mech-
anism was applied to all neighboring aspects to obtain aspect-specific embeddings.

2. Multi-task learning based methods:
PRET + MULT [32] incorporated knowledge from document-level corpus for training aspect-level sentiment classifiers,
and validated that the aspect-level sentiment classification can be improved with the knowledge gained from
document-level sentiment classification.
TransCap [33] developed a transfer learning framework to transfer knowledge from the document-level task to the
aspect-level task, where an aspect routing approach was designed to generate sentence-level semantic features from both
document and aspect.

3. Graph based methods:
SDGCN-G [15] modeled sentiment dependencies among aspects with multi-GCNs, and the final aspect-specific represen-
tation was acquired by the message passing mechanism between aspects in GCNs.
ASGCN-DG [13] exploited syntactical dependency structures within a sentence through multi-GCNs to generate aspect-
oriented features, and imposed a masking layer on its top to extract the aspect-specific representation.
R-GAT [29] combined relation heads and attention heads in the graph attention network, where a aspect-oriented depen-
dency tree structure was constructed by reshaping and pruning an ordinary dependency parse tree.

4.3. Results

Table 5 provides the overall comparison results on all datasets, several results are highlighted: RMN-P outperforms other
baselines with the best ACC and M-F1 performance on Rest14, Rest15 and MAMS datasets, and achieves about 0.09% to 0.8%
on accuracy and about 0.04% to 1.19% on F1 score. Besides, graph based methods generally perform better than attention
based methods, a possible explanation for this is that semantic dependencies are considered to generate aspect-specific rep-
resentations. Compared to RGAT and ASGCN-DG, RMN-P performs worse on Lap14 dataset. The reason may be that samples
on Lap14 dataset are not so sensitive to syntactic information since Lap14 contains more digits. Additionally, RMN-P per-
forms about 0.46% to 2.49% better than RMN-A on all datasets since a neutral aspect may generate noise because of its uncer-
tain polarity. At last, RMN-P, RMN-A and PRET + MULT performwell on Rest15 dataset though training samples are relatively
small, which may benefit from other related tasks with multi-task learning in some cases. We further conduct several exper-
iments to validate the phenomenon in Section 4.7.

Based on the superior performance of RMN, we can conclude the advantages of our model: 1) RMN captures semantic
relations among sentence with GCNs encoder, and can generate more accurate aspect embeddings; 2) RMN constructs aspect
relations in the same sentence and utilizes the extracted relations to facilitate sentiment analysis; and 3) Despite the lack of
training samples, RMN can handle relatively small datasets with the assistance of the relation extraction task.

4.4. Ablation study

To explore effects of different modules in the proposed model, we experiment RMN with five settings: 1) replacing Bi-
LSTM with one layer full connected network; 2) removing GCN layers; 3) removing position encoding; 4) removing aspect
disagreement regularization; and 5) removing relation-level classification. The results are presented in Table 6, showing
that:

1. Bi-LSTM module has the most significant influence with about 7% reduction on the overall performance since it can
extract bidirectional contextual information.

2. Without GCN layers, the performance decreases about 2.30% to 4.20% on all datasets, which validates the importance of
considering syntactic structure.
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Table 5
Performance of all baselines. The best results of each dataset are in bold. The results with ] are retrieved from [13]. The results with y are retrieved from [32], in
which results on Rest15 and Rest16 are re-generated because of different sample distributions. Meanwhile, the results with z are reproduced from the given
code and parameters from [15,29].

Category Model Lap14 Rest14 Rest15 Rest16 MAMS

ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1

Att TD-LSTM 64.08 62.67 73.66 60.23 72.27 53.75 84.54 61.72 68.02 64.83
ATT-BiLSTM 70.39 64.83 78.21 68.34 77.15 57.66 86.35 64.01 73.25 71.69
AOA] 72.62 67.52 79.97 70.42 78.17 57.02 87.50 66.21 – –
ABCDM 72.84 68.33 79.47 70.32 78.29 57.88 87.98 68.54 74.33 72.15
IARM 73.80 – 80.00 – – – – – – –
TNet-LF] 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43 – –

Multi PRET + MULTy 71.15 67.46 79.11 69.73 79.04 63.43 87.95 69.78 71.61 68.23
TransCap 73.87 70.10 79.55 71.41 – – – – – –

Graph SDGCN-Gz 74.20 69.69 80.98 71.99 77.68 60.25 88.47 67.91 77.10 75.99

ASGCN-DG] 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48 76.50 75.10

RGATz 75.68 71.19 81.07 72.12 78.59 60.95 87.17 66.36 78.97 78.01

Ours RMN-A 72.95 68.25 80.43 71.98 80.15 63.14 88.20 69.05 78.24 77.95
RMN-P 74.50 69.79 81.16 73.17 80.69 64.41 88.75 71.54 79.26 78.41
RMN-Bert 77.95 70.83 84.56 79.05 82.94 66.95 89.38 71.88 79.97 78.79

Table 6
Comparisons of all modules in RMN.

Model Lap14 Rest14 Rest15 Rest16 MAMS

ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1

RMN-P 74.50 69.79 81.16 73.17 80.69 64.41 88.75 71.54 79.26 78.41
-w/o Bi-LSTM 67.45 61.96 75.90 65.33 74.65 52.17 84.46 61.55 72.26 70.15
-w/o GCN 71.66 66.17 79.41 70.02 77.19 60.72 86.45 65.57 75.53 74.21
-w/o Position 71.71 66.32 79.55 71.06 79.10 63.50 87.66 67.54 77.26 75.13
-w/o Regularization 73.10 68.32 81.07 72.90 80.27 63.64 88.15 69.88 78.55 77.62
-w/o Relation 73.02 68.50 80.22 71.89 79.68 62.61 87.32 64.62 76.95 76.47
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3. Position encoding works when generating context representation since context words near the aspect are more important
than contexts away from the aspect.

4. Aspect regularization disagreement proves to be useful for its ability to distinguish their representations. Meanwhile, as
an auxiliary task, relation-level classification really works since it can extract more aspect information from the original
datasets.

4.5. Effects of relation-level task

To validate the effectiveness of relation-level task, we incorporate relation-level task with several basic models with ATT-
LSTM and GCNs. For the implementation of GCNs model, the hidden sentence representations of Bi-LSTM are fed into two
layer GCNs with average pooling operation. As can be seen from Table 7, models with relation-level tasks increase about
0.69%-1.71% on ACC and 1.05%-3.05% on M-F1. Besides, there are significant increments of both ACC and M-F1 on MAMS
compared to other four datasets. The reason is that MAMS contains at least two different aspects in each sentence, thus
is more suitable for our model.
4.6. Effects of model depth and aspect relation weight

We conduct several experiments on Rest14 datasets with different GCN layers to acquire the impact of the depth of GCN
layers (ranging from 1 to 6). Fig. 5 (a) reveals that our model achieves the best ACC and M-F1 when the number of GCN layers
is 2. Besides, one layer GCN model achieves the secondary performance, which implies that aspect-related sentiment words
are generally 2-hops away from target words. Additionally, the results present that the model is trainable when the depth of
GCNs within 3 layers. However, when the depth of GCNs is bigger than 4, our model presents a downward trend with the
increment of GCN layers. One possible reason is that the model becomes more complex and needs more samples for training.
see Table 8.

We also explore the impact of different relation weights (k) on Rest14 dataset in this section, where k increases from 0 to
1. The results are presented in Fig. 5 (b), which shows that the model performs best when k ¼ 0:4. However, there is a fluc-
tuation when k is in (0.1, 0.3). Two possible reasons may cause the phenomenon: 1) the relation-level loss (U) is averaged
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Table 7
Results of combing relation-level task, and ‘+’ denotes the model with relation-level task.

Model Dataset Origin ) Origin+

ACC M-F1

ATT-BiLSTM Lap14 70.39 ) 71.12 (1.03%") 64.83 ) 65.72(1.37%")
Res14 78.21 ) 79.46(1.60%") 68.34 ) 70.30(2.87%")
Res15 77.15 ) 77.73(0.75%") 57.66 ) 59.57(3.31%")
Res16 86.35 ) 87.83(1.71%") 64.01 ) 65.40(2.17%")
MAMS 73.25 ) 74.73(2.02%") 71.69 ) 73.47 (2.48%")

GCNs Lap14 70.56 ) 71.05(0.69%") 65.04 ) 65.96(1.41%")
Res14 78.92 ) 80.26(1.70%") 70.53 ) 71.61(1.53%")
Res15 77.19 ) 77.81(0.80%") 57.95 ) 60.01(3.55%")
Res16 85.69 ) 86.51(0.96%") 64.43 ) 65.99(2.42%")
MAMS 74.47 ) 75.61(1.53%") 72.72 ) 74.45(2.38%")

Fig. 5. Effects of different settings in RMN-P (a) Results of different depth of GCN layers. (b) Results of different k.
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when a sample contains multi-relations. 2) the total loss (L) is influenced by U: aspect-level loss and relation-level loss can
not maintain consistency when k is too small. Meanwhile, the performance decreases when k is bigger than 0.6 because the
total loss is penalized with bigger weight of relation-level loss.
4.7. Effects of data size and multi-aspects

As mentioned in Section 4.3, we further conduct additional experiments to verify whether RMN can well handle relatively
small dataset. We combine Rest14, Rest15 and Rest16 together and generate about 10% to 30% scales of the integrated data-
set as subsets. We compare RMN with PRET + MULT because they both apply multi-task learning framework for aspect-level
sentiment classification. As Fig. 6 presents, RMN is obviously superior to PRET + MULT on each dataset. The gap between two
model becomes smaller with the increment of data size. Though PRET + MULT trains extra document-level corpus for addi-
tional knowledge from a similar domain, the lack of training samples makes the prediction difficult in practice. On the con-
trast, RMN performs better with the ability to extract more information from the original dataset, which expands training
samples in some cases.

Meanwhile, we further present the performance on different scales of MAMS dataset. We choose SDGCN-G, ASGCN-DG
and RGAT for comparisons because they all adopt GCN based methods. As can be seen in Fig. 7, four methods all show an
increasing tendency with more training samples, and the gap between RMN and RGAT becomes smaller. Since SDGCN-G
and RGAT both consider the dependency relations between aspects, they perform better than ASGCN-DG which only consid-
ers word dependencies among sentences.
4.8. Visualization

To better explore the condition under which relational-level tasks work, we analyze the results that are correctly classi-
fied by RMN-P while are misclassified without relation-level task. We adopt the visualization approach presented by [47],
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Table 8
Distribution of Rest dataset.

Dataset Positive Neutral Negative

Rest-10% Train 362 61 117
Test 159 25 56

Rest-15% Train 537 96 177
Test 234 38 88

Rest-20% Train 698 135 247
Test 316 52 112

Rest-25% Train 884 170 296
Test 383 59 158

Rest-30% Train 1060 200 360
Test 463 74 183
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where the attention weights of ‘‘The falafel was rather over cooked and dried but the chicken was fine.” are visualized in
Fig. 8.

For the aspect ‘‘falafel”, two models can classify their polarities correctly. Taking aspect relations into consideration, RMN-
P assigns higher weights to the words ‘‘over cooked” and ‘‘dried” in sentence 3. Meanwhile, the attention weight of ‘‘chicken”
decreases from 0.093 to 0.037. One possible reason is that the true relation of ‘‘falafel” and ‘‘chicken” is opposite. For the aspect
‘‘chicken”, as shown in sentence 2 and 4, the model without relation-level classification wrongly classifies its sentiment.
RMN-P gains more attention on the context of ‘‘chicken” but less on ‘‘falafel”, which shows that the semantically related word
can be better captured with the help of aspect relations.

We also adopt T-SNE [48] toolkit to visualize about 1000 aspect-specific representations on MAMS dataset. In Fig. 9, the
representations are generally divided into three categories. With the help of ‘‘similar” relations, vectors with same semantic
are closer and clusters are more dense. Besides, the boundary between two categories is more obvious with ‘‘opposite” rela-
tions in Fig. 9 (b) than the model without relation-level task, as illustrated in Fig. 9 (a).
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Fig. 7. Performance on multi-aspects. (a) Results of ACC on MAMS dataset. (b) Results of M-F1 on MAMS dataset.

Fig. 8. Visualization of attention weight.

Fig. 9. T-SNE visualization on MAMS. (a) RMN-P without relation-level task. (b) RMN-P.
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5. Conclusion

In this paper, we mainly explore aspect relations for aspect-level sentiment analysis. Our work is the first attempt to con-
struct explicit aspect relations as an auxiliary task. We generate aspect representations with the dependency graph based
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GCNs, and utilize the bidirectional attention mechanism to capture semantic relevance between the aspect and the context.
No extra corpus is needed in our framework, and RMN performs better on relatively small datasets with the assistance of
information extraction by the relational-level task. We also validate the effectiveness of the proposed approach and analyze
the advantages brought by the relation-level classification task with extensive experiments.

This study may be further improved in the following ways: 1) since the relation-level task weight k is pre-define in this
paper, we could apply the dynamic weight to balance the aspect-level loss and the relation-level loss. It is believe that the
dynamic weight could lead to better performance. 2) For the position encoding module, this paper adopts the absolute dis-
tance as the basic metric to design position weights. Intuitively, the semantic distance of the corresponding dependency
graph will be more accurate for context representations, and we will consider it as our new distance metric.
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