
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009 1825

Adaptive Chosen-Ciphertext Attack on Secure
Arithmetic Coding

Jiantao Zhou, Student Member, IEEE, Oscar C. Au, Senior Member, IEEE, and Peter Hon-Wah Wong, Member, IEEE

Abstract—The paper “Secure Arithmetic Coding” (in IEEE
TRANSACTIONS ON SIGNAL PROCESSING, vol. 55, no. 5, pp.
2263–2272, May 2007) presented a novel encryption scheme called
the secure arithmetic coding (SAC) based on the interval splitting
arithmetic coding (ISAC) and a series of permutations. In the
current work, we study the security of the SAC under an adaptive
chosen-ciphertext attack. It is shown that the key vectors used in
the codeword permutation step can be recovered with complexity

� �, where is the symbol sequence length. After getting
these key vectors, we can remove the codeword permutation step,
and the resulting system has already been shown to be insecure in
the original paper. This implies that the SAC is not suitable for the
applications where the attacker can have access to the decoder. In
addition, we discuss a method to jointly enhance the security and
the performance of the SAC.

Index Terms—Adaptive chosen-ciphertext attack, arithmetic
coding, digital rights management, multimedia encryption.

I. INTRODUCTION

T HE recent trend in multimedia encryption has placed more
attention on integrating compression and encryption by

introducing randomness into the entropy coder, e.g., Huffman
coder and arithmetic coder [1]–[5]. The major advantage by
using this kind of joint compression-encryption approach is that
compression and encryption can be achieved in one single step,
which simplifies the system design and makes it flexible for
some advanced multimedia processing [1]–[6].

Wu and Kuo proposed the multiple Huffman tree (MHT)
scheme that alternately uses different Huffman trees in a
secret order, without influencing the coding efficiency [2].
However, we showed that this scheme is vulnerable against
a chosen-plaintext attack [7]. Compared with the Huffman
coding, the arithmetic coding (AC) is capable of offering higher
coding efficiency, and thus becomes more and more popular in
the new generation of standards, e.g., JPEG 2000 and H. 264

Manuscript received February 28, 2008; accepted December 17, 2008. First
published January 23, 2009; current version published April 15, 2009. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Prof. Christine Guillemot. This work was supported by the In-
novation and Technology Commission of the Hong Kong Special Administra-
tive Region, China (project GHP/033/05 and GHP/048/08). J. Zhou was visiting
the University of Illinois at Urbana-Champaign, supported by the Fulbright pro-
gram. The material in this paper was presented in part at the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas,
NV, March 30–April 4, 2008 and the IEEE International Conference on Image
Processing (ICIP), San Diego, CA, October 12–15, 2008.

The authors are with the Department of Electronic and Computer Engi-
neering, Hong Kong University of Science and Technology, Clear Water Bay,
Hong Kong, China (e-mail: eejtzhou@ust.hk; eeau@ust.hk; eepeter@ust.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2013901

[8], [9]. Under this circumstance, it is natural to consider using
AC to achieve encryption purposes. Along this line, Witten
et al. suggested that an adaptive AC algorithm may provide
high level of security, due to the fact that the current state in
the model depends on the initial state and all of the messages
encoded so far [10]. However, it was shown that the traditional
implementation of AC, either using fixed model or adaptive
model, cannot offer satisfactory level of security [11], [12]. In
order to enhance the security, many variants of the traditional
AC were proposed [1], [3]–[5], [13]–[17]. Barbir designed
an encryption scheme by updating the coding probabilities in
random time intervals [15]. Moo and Wu exploited the poor
synchronization property of AC, and suggested a scheme by
encrypting only the first few bits of the generated bit stream
[13], [14]. Liu et al. constructed an encryption system by using
random bit substitution during the encoding process of AC
[16]. Ishibashi and Tanaka considered the decoding process of
AC as the repetition of Bernoulli shift map, based on which,
they proposed three methods to achieve security by controlling
the piecewise linear map using a secret key [17]. Grangetto
et al. described an efficient encryption scheme based on AC
by randomly alternating between two coding conventions [3].
Bose and Pathak integrated a variable model arithmetic coder
with a coupled chaotic system for designing an encryption
scheme [5] (see also the comments from Zhou and Au [18]).
Wen et al. modified the traditional AC by removing the con-
straint that a single continuous interval is used for each symbol,
while preserving the sum of the lengths of intervals allocated
to each symbol [4]. This is achieved by splitting the intervals
associated with one of the symbols using a key known both
to the encoder and the decoder [4]. The modified AC is called
the interval splitting AC (ISAC), and it was shown that it can
provide certain level of security while introducing vanishing
coding efficiency penalty [4]. Nevertheless, Kim et al. showed
the insecurity of the ISAC against chosen-plaintext attacks
[1]. Aiming to provide an AC system capable of offering high
level of security, they suggested an enhanced version called the
secure AC (SAC), by applying a series of permutations at the
input symbol sequence and the output codeword of the ISAC
encoder [1].

Although the SAC is originally designed for resisting chosen-
plaintext attacks, it is still important to investigate the security
of the SAC, as a generic cipher not targeting any specific stan-
dard, under a chosen-ciphertext attack because of two reasons:
1) a cryptographically secure cipher should be strong against
all kinds of attacks including a chosen-ciphertext attack [19],
and 2) in practice it is possible for the attacker to gain tem-
porary access to the decoder and hence it is feasible to mount

1053-587X/$25.00 © 2009 IEEE

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

1826 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

a chosen-ciphertext attack. In this paper, we address the secu-
rity problem of the SAC under an adaptive chosen-ciphertext
attack. In other words, the attacker can have temporary access
to the decoder, and the objective is to recover the keys used in
the SAC. By adaptively selecting the codewords fed into the de-
coder and comparing their output symbol sequences, we sug-
gest a method that can recover the key vectors used in the code-
word permutation step with complexity , where is the
symbol sequence length. After getting these key vectors, we can
remove the codeword permutation step, and the resulting system
has already been shown to be insecure in the original paper [1].
This indicates that the SAC is not suitable for those applica-
tions where the attacker can have access to the decoder. In ad-
dition, based on the lessons drawn from this attack, we propose
a method to jointly enhance the security and the performance of
the SAC.

The rest of this paper is organized as follows. Section II
briefly introduces the ISAC and the SAC. Section III presents
the adaptive chosen-ciphertext attack for recovering the key
vectors used in the codeword permutation step. Section IV gives
the method for joint security and performance enhancement of
the SAC, together with the corresponding security analysis. We
conclude this paper in Section V.

Notations: Throughout this paper, following the convention
in [1], we restrict our attention to the binary AC, consisting of
two symbols and . Without loss of generality, we assume
that . We denote as the output symbol se-
quence of the SAC decoder when the input codeword is . For
a binary codeword , we denote as its decimal represen-
tation. For example, . For a real
number , we denote as its corresponding bi-
nary codeword of length . For example, ,
where we have dropped the prefix “0.” without introducing am-
biguity. Let be a binary bit stream. We denote

as its complement.

II. REVIEW OF THE ISAC AND THE SAC

A. ISAC

The ISAC is a variant of a traditional AC in the sense that
the intervals allocated to each symbol in every step of encoding
may be disjoint, and the sum of their lengths is proportional to
the symbol occurrence probability. Let be the
symbol sequence to be encoded, and the splitting key vector be

. The encoding procedure is shown as
follows.
Step 1) Set the initial interval , and set .
Step 2) Fetch a symbol from .
Step 3) Partition the interval according to and .

In Fig. 1(a), we show the interval partitioning on ,
where and . In the case that consists
of two disjoint intervals and , the partitioning is similar, as
shown in Fig. 1(b), where and .

Step 4) Perform one step of interval splitting according to
.

In Fig. 1(c), we show the intervals arrangement after per-
forming interval splitting when , where the split lo-
cation is determined by . It should be pointed out that is

Fig. 1. Illustration of interval partitioning and interval splitting.

a normalized value over the range of potential split locations,
and thus, may not be the absolute split location. Therefore, a
key value of, e.g., would identify a split location at
the center of the first half of the range of valid key positions as-
sociated with the th symbol, but would not generally lie at the
absolute position 0.25. Due to the splitting operation, the por-
tion of the interval which is on the right of the split location
will be moved to the right of the interval. In the case that

consists of two disjoint intervals, the operation is similar, as
shown in Fig. 1(d). It should be noted that the interval splitting
is conducted with a constraint that each symbol sequence is rep-
resented by at most two distinct intervals. This requirement is to
ensure that the coding efficiency loss of the ISAC is bounded by
1 bit per -symbol sequence compared with a traditional AC.

Step 5) Update the interval according to , and increment
.

For example, in Fig. 1(c), if , then we update
.

Step 6) Repeat Steps 2)–5) until all the symbols are en-
coded.

Step 7) If is continuous, then generate the final bit stream
using interval in a traditional manner. Otherwise
if , then select the longer interval of
and , and output the final bit stream accordingly.

Assuming prefix-free coding, the codeword length of the
ISAC will lie in the range

(1)

For more details please refer to [4].

B. SAC

In order to increase the security of the ISAC, the SAC was
proposed, where the major difference from the ISAC is that two
permutation steps are applied to the input symbol sequence and
the output codeword, respectively [1]. Let be
the symbol sequence to be encoded. The encoding procedure of
the SAC is shown as follows.
Step 1) Map the sequence into a block having four

columns and rows.
Step 2) Perform two key-driven cyclical shift steps to the re-

sulting symbol block, and read out the data in raster-
order to obtain the permuted symbol sequence .

In Fig. 2, we show an example of the cyclical shift steps,
where is of length 16 and the key vectors controlling the

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: ADAPTIVE CHOSEN-CIPHERTEXT ATTACK ON SECURE ARITHMETIC CODING 1827

Fig. 2. Cyclical shifts applied to the input symbol sequence � � � � � � � � .

column and the row shift offsets are and
, respectively.

Step 3) Input to the ISAC encoder and obtain the interme-
diate codeword .

Step 4) Set by removing the last four
bits of . Map into a block having four columns
and rows.

Step 5) Perform the first round of shifts to the resulting bit
block, which consists of two key-driven cyclical
shift steps, one operating on columns and the other
on rows. Here, the key vectors controlling the shift
offsets depend on the last four bits of , namely,

.
Step 6) Reappend to the resulting bit

block.
Step 7) Perform the second round of shifts to the resulting

bit block, which consists of two key-driven cyclical
shift steps, one operating on columns and the other
on rows. Here, the key vectors controlling the shift
offsets are fixed for all .

Step 8) Read out the data in raster-order from the resulting
block to obtain the final bit stream.

It should be noted that the key streams used in the above steps
are generated from a key scheduler using repeated XOR opera-
tion. For more details, please refer to [1].

III. ADAPTIVE CHOSEN-CIPHERTEXT ATTACK ON THE SAC

Following Kerckhoff’s principle [20], the strength of a cryp-
tosystem depends only on the key and, in particular, the secu-
rity does not depend on keeping the encryption algorithm se-
cret. This principle implies that the attacker knows the proto-
cols and the overall system in which the cryptosystem is used,
while only does not know the secret key. According to the in-
formation that the attacker can have access to, the attacks can
be classified into several types [20]. A ciphertext-only attack is
one where the attacker tries to deduce the secret key or the plain-
text by only observing the ciphertext [20]. A known-plaintext
attack is one where the attacker has a quantity of plaintext and
the corresponding ciphertext [20]. A chosen-plaintext attack is
one where the attacker chooses plaintext and is then given the
corresponding ciphertext [20]. A chosen-ciphertext attack is one
where the attacker can have access to the decoder, and thus can
select ciphertext and obtain the corresponding plaintext [20]. An
adaptive chosen-ciphertext attack is a chosen-ciphertext attack
where the choice of ciphertext may depend on the plaintext re-
ceived from previous requests [20].

In this section, we evaluate the security of the SAC using an
adaptive chosen-ciphertext attack. More specifically, we adap-

tively choose codewords fed into the SAC decoder, and obtain
the corresponding symbol sequences. Based on the relationship
between the codewords and the symbol sequences, our objec-
tive is to recover the key vectors used in the codeword permu-
tation step, which consists of two rounds of shifts. This is suffi-
cient to break the SAC since after getting these key vectors, we
can remove the codeword permutation step, and the resulting
system has already been shown to be insecure in the original
paper [1]. It should be pointed out that in practical applications,
e.g., JPEG 2000, when a bit stream is decoded, only the recon-
structed image data is available, while the output of the entropy
decoder is not directly accessible. In this case, we need to per-
form some reverse operations to get the equivalent output of the
entropy decoder. Take the JPEG 2000 for example. Let the orig-
inal image data be , the compressed image data be , and
the reconstructed image data be , respectively, as shown in
Fig. 3. In the JPEG 2000, there are two types of compression:
lossless and lossy compression [8]. In the lossless mode, the
process of both the encoder and the decoder has no information
loss, namely, in both the transform and the quantization stages,
the information is perfectly preserved. Therefore, we can apply
the forward transform and the quantization to the reconstructed
image data , so as to get the output of the entropy decoder.
In the case of lossy compression, we can still apply the forward
transform and the quantization to the reconstructed image data

, and get an approximation of the output of the entropy de-
coder. Provided that is of high quality, this approximation is
still good. It should be noted that in [1], it was also assumed that
the attacker can have access to the input and the output of the
SAC encoder, when the chosen-plaintext attack was applied.

For fixed splitting key vector , fixed key vectors used in the
codeword permutation step, and fixed symbol sequence length

, the number of possible codewords generated by the SAC is
, corresponding to different symbol sequences. Denote

as the set consisting of all these codewords. On the other
hand, the lengths of the codewords generated by the SAC are
within the range shown in (1). It can be seen that the number of
all possible codewords whose lengths satisfying (1) is

(2)

which is certainly larger than . A natural question arising is,
What will the decoder do if we input a codeword which has
length satisfying (1) while does not belong to the set ? Re-
garding this point, we make the following assumption.

Assumption 1: Prior to the decoding of any codeword , we
assume that the decoder has been informed the number of sym-

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

1828 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

Fig. 3. General block diagram of the JPEG 2000: (a) encoder and (b) decoder.

Fig. 4. Decode a corrupted codeword based on the interval its decimal representation lies.

bols it should decode. In addition, for any codeword which
has length satisfying (1) while does not belong to the set , the
SAC decoder will treat it as a corrupted version of a codeword
in , and will decode it into a length- symbol sequence ac-
cording to the interval that lies.

Remark: The decoding of the corrupted codewords can also
be treated as an error-correction operation of the decoder. Due to
the interval splitting, the interval [0,1) is partitioned into

subintervals, each of which represents a symbol sequence of
length , as shown in Fig. 4. Let be a codeword to be de-
coded, and be the subinterval that the decimal representation

lies. Let also be the corresponding length- symbol
sequence associated with . Then the decoder returns as the
decoded symbol sequence of , irrespective whether or
not. It should be pointed out that there are some other error-cor-
recting AC schemes, e.g., AC with forbidden symbol [22], [23]
and AC with soft resynchronization markers [24]. In fact, the
SAC may conveniently be incorporated with a forbidden symbol
to enable error detection and error correction capability.

In order for better illustration, in the following Section III-A,
we first consider a simplified case using static key vectors,
where both the first round and the second round of codeword
cyclical shifts do not depend on the input codeword. In other
words, the same key vectors are applied for all results. We then
in Section III-B consider the case using adaptive key vectors,
where one round of codeword cyclical shifts are input-depen-
dent. We show that our method in Section III-A still works
subject to some appropriate modifications. In Section III-C, we

briefly discuss the feasibility of our attack under the situation
that the Assumption 1 becomes invalid.

A. Static Key Vectors Used in the Codeword Permutation Step

In order to recover the key vectors used in the codeword per-
mutation step, it suffices to find the correspondence of bit loca-
tions before and after the codeword permutation step.

Before going into the details, let us briefly outline the core
idea of our method. Suppose we have already known that the
second, the fourth, and the sixth bits in a codeword of length
become the last three bits after the codeword permutation step.
We now wish to find which bit becomes the th bit after
the permutation step. We set , where

for
otherwise.

(3)

Define a set . We then set
, for , where

for
otherwise.

(4)

For example, if , then and
. After the codeword permutation step, the permuted

versions of and become and

where is the location of the th bit after the per-
mutation step. If it happens that , then

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: ADAPTIVE CHOSEN-CIPHERTEXT ATTACK ON SECURE ARITHMETIC CODING 1829

, which is the
minimum distance between any two distinct binary num-
bers of length . On the contrary, if , then

, where
and denotes the cardinality of a set. This

leads to the fact that if , then and
are very similar, even identical provided that is sufficiently
large. While if , then it is very likely that and

differ in many symbols. It is worthwhile to point out
that in the case of , the minimum distance between

and increases exponentially with the increasing
. In this way, we can determine which bit becomes the

th bit after the permutation step.

Algorithm 1: Find the correspondence of the bit locations
before and after the codeword permutation step

Set and , both of which have
length . Set

and . Initialize and .

for to do

Decode into .

.

end for

repeat

.

Decode into .

for do

if then

.

end if

end for

Update where

for
otherwise.

(5)

, .

until

Output: , where denotes the
element of the corresponding set.

Aiming at finding the correspondence of the bit locations be-
fore and after the permutation step, we can use Algorithm 1
shown below. A brief explanation of Algorithm 1 is as follows.
For having length

, it is clear that its permuted version is , which
corresponds to the leftmost interval. For

having length , the bit “1” will move to a random
location after the codeword permutation step. Hence,

, where is
the permuted version of . If for a certain , we observe

, then we can determine that and are
both within the leftmost interval. Therefore, if we group all
these s such that into a set , we can see
that the elements in correspond to the indexes of the bits that
become the last bits after the codeword permutation step.
Then we update by fixing the bits whose indexes belong
to the set to “1” and setting all the other bits to zero. By
applying a very similar approach and repeating these steps, we
can obtain the correspondence of the remaining bit locations
before and after the codeword permutation step. Therefore,
the index sequence would be the bit
indexes after the codeword permutation step, where denotes
the elements of the corresponding set and is the number of
sets obtained using Algorithm 1.

It should be noted that for small , especially , the
cardinality of may be larger than one, since multiple s sat-
isfy . This results in the fact that the index
sequence we obtain by using Algorithm 1 may not be unique,
which may lead to multiple key vectors. Aiming at determining
the ordering of the elements in these sets, or equivalently de-
riving the key vectors used in the codeword permutation step,
a simple way is to utilize the property of the cyclical shift, and
the fact that the last four bits of the result after the first round
of shift are identical to those of the final result after the whole
codeword permutation step (see Fig. 5 below as an example).
More specifically, after getting , for , we choose

and perform Algorithm 1 by simply
replacing with . Denote the obtained sets as , for

. Since , we can easily
find that , which means that is uniquely determined
without ambiguity. Notice that the th bit also corresponds
to the last bit after the first round of shift, due to the bit removing
and reappending operations. Thus, we can derive a column shift
offset and a row shift offset for the first round of shift based
on the correspondence of the th bit. Following the same
idea, we can increase gradually to ,

, and , and per-
form Algorithm 1. We can get four column shift offsets and row
shift offsets for the first round of shift. Based on these four pairs
of shift offsets, together with the correspondence provided by
the other , it is straightforward to derive the whole key vectors.

In the following, we give a concrete example of applying Al-
gorithm 1 with the following configurations.

• and .
• The symbol sequence length .
• The splitting key vector is

(6)

• The key vectors used in the symbol permutation step are

(7)

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

1830 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

Fig. 5. Codeword permutation step using the key vectors shown in (8), where the numbers in the blocks denote the bit indexes with left-to-right order. In other
words, the codeword � � � � � � becomes � � � � � � after the codeword permutation step.

• The key vectors used in the codeword permutation step are

(8)

where , , , and are used for the first
round of row and column cyclical shifts, and the second
round of row and column cyclical shifts, respectively. From
the perspective of the decoder, in the first round, the code-
word is subject to two cyclical shifts, one operating on the
rows and the other on the columns, according to and

, respectively. After that, the last four bits of the result
are removed, and the remaining bits are subject to another

round of cyclical shifts using , and , respectively.
Finally, the previously removed four bits are reappended
and the data are read out in raster-order to form the code-
word fed into the ISAC decoder. The permutation proce-
dure can also be illustrated in Fig. 5. It should be noted
that, in this subsection, the key vectors used in the code-
word permutation step are assumed to be fixed, and hence,
they are input-independent.

After applying Algorithm 1, we get
, , , ,

, , , , ,
, , , , ,
, , and . Equivalently, we

can get the result shown in Fig. 6, where and .
Since the cardinality of and is larger than one, we still

need to determine the ordering of their elements, or equivalently
derive the key vectors used in the codeword permutation step.
As stated previously, we can choose

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: ADAPTIVE CHOSEN-CIPHERTEXT ATTACK ON SECURE ARITHMETIC CODING 1831

Fig. 6. Correspondence of bit locations before and after the codeword permutation step.

and perform Algorithm 1 by simply replacing with .
Using the configurations shown in this example, we can find
that , which implies that the 7th bit becomes the

th bit after the first round of shifts. Notice
that the 7th bit originally locates at the second row and the third
column. We can then determine that and .
By increasing gradually to ,

, and , and performing
Algorithm 1, we can get and ;
and ; and . Based on these shift offsets,
together with the bit correspondence shown in Fig. 6, deriving
the whole key vectors becomes a trivial issue.

Now we roughly calculate the complexity involved in our
proposed method, where the complexity is measured by the
number of decoding operations. Using Algorithm 1, we need
approximately decoding operations. Since Algorithm
1 is used for five times, corresponding to and

, for , the overall complexity is
about decoding operations, which is of order .

B. Adaptive Key Vectors Used in the Codeword Permutation
Step

In this subsection, we consider the case using adaptive
key vectors in the codeword permutation step. Recall in
Section III-A, the key vectors used in the two rounds of shifts
are fixed for all input codewords. However, in the current case,
the key vectors used in the second round of shifts depend on
the last four bits after performing the first round of shifts.
For example, suppose Fig. 5 shows the codeword permutation
procedure for the case of adaptive key vectors, then and

would depend on the fourth, the sixteenth, the eighth, and
the twentieth bits of the input codeword .

To deal with this case, we first face the problem of deter-
mining the locations of the bits that become the last four bits
after the first round of shifts. Let the input codeword length be

. The complexity of exhaustively searching these four bits
is , which is of order . A more efficient way to
achieve this goal is to decode and

for , and obtain in a similar way as done in
Algorithm 1. It can be easily seen that these four bits belong
to , provided that . This reduces the complexity
of exhaustive searching to . An even better way to this
end is to utilize the fact that the last four bits after the first
round of shifts are the same as those of the final result after

the whole codeword permutation step. Hence, by first reducing
the input codeword length, and then gradually increasing it, as
stated in Section III-A, we can find these four bits with com-
plexity . For the sake of conciseness, we omit the details
here.

Since the second round of shifts depend on the last four bits of
the result after the first round of shifts, there are groups
of key vectors that should be recovered. Suppose now we wish
to recover the key vectors for the case that the last four bits after
the first round of shifts are , , , and , respectively. As
we have already known the locations of the bits that eventually
become the last four bits after the first round of shifts, we can fix
the bits in these locations to be , , , and , respectively.
Therefore, all the key vectors used in the codeword permutation
step become fixed.

Notice that, after fixing four bits, the minimum decimal dis-
tance between any two distinct binary numbers of length
becomes , instead of . Recall in Algorithm
1, after determining , our method is based on the fact that if
the th bit happens to be what we wish to find, then the con-
structed and satisfy , where

and are the permuted versions of and , respec-
tively. This results in the fact that and are very
likely identical. Therefore, in the current case where we fix four
bits, if is still within the same interval as
that of , then our method in Section III-A can be directly
applied.

Let and be the intervals associated with and
, respectively. The probability

can be roughly approximated by
. Without splitting, the width of is

, where is the symbol sequence length and
is the number of s in the symbol sequence corre-

sponding to . Due to the interval splitting, each interval except
one is split into two, using a uniformly distributed splitting key
vector [1]. We can estimate the width of each interval after
splitting as , noticing the uniform
distribution of the splitting key vector. Therefore

The width of

(9)

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

1832 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

Fig. 7. Comparison between the actual value and the approximated value of
���� � � �, where � � ��.

(10)

Letting , we have the following
proposition concerning .

Proposition 1: The following lower bound holds

if

otherwise.
(11)

Proof: See the Appendix.
Remarks:
• We can use the lower bound shown in (11) as a conservative

approximation of . In Fig. 7, we show the
comparison of this approximated probability and the actual
probability calculated from (9), in the case that . It
can be seen that the lower bound shown in (11) is a good
approximation of the actual probability.

• Let
, and be the solution to the equa-

tion . Clearly, as ,
. In addition, as ,

for large . Notice

(12)

It can be observed that the third term of (12) becomes van-
ishingly small as increases from , especially
for large . Then, (12) is dominated by the first two terms.
As increases, then decreases, which leads to the
fact that increases exponentially with respect

Fig. 8. Lower bound of ���� � � � shown in (11) versus ���	, for dif-
ferent � .

to the increasing . This implies that the transition pe-
riod from to is very
short, which can be illustrated in Fig. 8. It should be also
noted that the transition period is even shorter for larger .
In the SAC, the symbol sequence length should be suf-
ficiently large to ensure large enough key space, which
precludes the brute-force attack. For example
could be used. In this case, from Fig. 8, we can see that

is close to 1 for a wide range of .
This implies that the method described in Section III-A is
still very likely applicable here.

• It should be pointed out that the range of satisfying
is very narrow for large . When

, we have

(13)

Then, we find that the satisfying be-
longs to a subset of the following range:

(14)

In the case of , (14) becomes
. This again implies that in a significantly wide

range of , the probability is close
to 1.

In the following, we also give a simple example to calcu-
late the probability using (9) in the case that

, , and . We have

(15)

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: ADAPTIVE CHOSEN-CIPHERTEXT ATTACK ON SECURE ARITHMETIC CODING 1833

In other words, the probability that and
belong to different intervals is approximately .

Hence, after fixing four bits, the method in Section III-A is still
very likely applicable here. We also test the example shown in
Section III-A by fixing the fourth, the sixteenth, the eighth, and
the twentieth bits of the input codeword, and find that the result
in Section III-A still holds.

C. What if Assumption 1 Becomes Invalid?

In this subsection, we consider the problem of recovering the
key vectors used in the codeword permutation step when As-
sumption 1 stated above becomes invalid. More specifically, the
decoder will check the validity of the input codewords. Let
be the set consisting of the codewords corresponding to the

symbol sequences. If the input codeword , then the
decoder will output the corresponding symbol sequence. Other-
wise, the decoder will only claim an error while not outputting
any symbol sequence. The error-correcting AC with forbidden
symbol can be interpreted as a special case of this, where the de-
coder skips the current coding pass when any error is detected
[22], [23].

In this context, the problem of our method described in the
previous subsections is that the input codewords may not be
valid codewords, and thus, the corresponding symbol sequences
could not be obtained. Since the set depends on the splitting
key vector and the codeword permutation step, we do not
know it in advance. A method to find valid codewords is to ran-
domly search codewords with the most likely codeword length,
noticing the fact that the codeword lengths in the range of (1) are
not equiprobable. For a symbol sequence consisting of s
and s, the codeword length is within the range

(16)

We can roughly estimate the codeword length of as
. Since

the number of symbol sequences consisting of s and
s is , we can estimate the percentage of valid

codewords with length among all the codewords having the
same lengths as

(17)

Therefore, a good strategy is to search valid codewords with
codeword length corresponding to that maximizes (17). In
the case of and , we find that
maximizes (17), which leads to and the percentage of
valid codewords is around 0.07. Notice the fact that two valid
codewords which differ in the last several bits after the codeword
permutation step have similar output symbol sequences. Based
on this, we can find the correspondence of some bit locations
before and after the codeword permutation step. Hence, we can
reduce the key space of the key vectors used in the codeword
permutation step, or even recover the whole key vectors given
enough trials.

Fig. 9. Improved system of the SAC.

Another more efficient method to deal with this case is to
change and , provided that it is possible. Since
the SAC is a non-adaptive AC, the encoder has to inform the
decoder the source statistics, prior to the actual encoding/de-
coding. For example, the source statistics information can be
embedded into the header. In this case, the attacker can change
this header information in order to set any desired statistics.
Alternatively, the encoder can embed some training data in the
bit stream, and the decoder can obtain the source statistics from
the training data. The latter strategy sometimes is also called
the semi-adaptive coding [25]. In this case, the attacker can
forge the training data so as to set any desired source statistics.
According to (1), in order to make the codeword length range
most compact, the attacker can set . Then
there are only three possible codeword lengths: , and

. Therefore, it is easy to find valid codewords, and apply
a very similar method as stated in the previous subsections, to
recover the key vectors used in the codeword permutation step.

IV. JOINT SECURITY AND PERFORMANCE

ENHANCEMENT FOR THE SAC

In Section III, we show that the SAC is vulnerable against
an adaptive chosen-ciphertext attack. A natural question now
arising is how to improve the SAC in order to resist this adaptive
chosen-ciphertext attack. In addition, as also mentioned in the
original paper [1], it is interesting to extend the SAC such that it
can be conveniently incorporated with the context-based coding.
In this section, we attempt to address these two problems simul-
taneously. In other words, our target is to suggest an improved
version of the SAC such that 1) the system is immune against
all the known attacks including the adaptive chosen-ciphertext
attack described in Section III and 2) the system can utilize
the full-context information so as to enable the context-based
coding.

The schematic diagram of the improved system (encoder) is
shown in Fig. 9, which mainly consists of two parts: 1) an ISAC
encoder and 2) a key scheduler. Let the symbol sequence be

that is to be encoded. The basic steps of performing
the encoding are as follows.
Step 1) Encode using an ISAC encoder with splitting key

vector . Denote the generated bit stream as
, where satisfies (1).

Step 2) Perform bit-wise XOR operation between and a key
stream , where has the same length as . In
other words, the final bit stream .

Compared with the original SAC, we remove the input
symbol permutation step. In addition, we replace the output
codeword permutation step with a simple bit-wise XOR step.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

1834 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

TABLE I
INPUT SYMBOL SEQUENCES AND THEIR CORRESPONDING CODEWORDS

The design of the key scheduler is very flexible; we can ei-
ther use the keyed XOR operation as in [1] or other highly
efficient pseudorandom number generators. The only private
information of the improved system is the seed used in the key
scheduler, which is assumed to be of length 128 bits, so as to
ensure high enough level of security.

In the following subsections, we evaluate the security and
the performance of the improved system. As mentioned in [1],
the security analysis is a challenging job for any cryptosystem,
since showing robust against known attacks does not preclude
the other unknown attacks. Therefore, we evaluate the security
under some known attacks, and show that it is secure against
these attacks. More specifically, we use the ciphertext-only
attack, the chosen-plaintext attack and the chosen-ciphertext
attack.

A. Ciphertext-Only Attack

In this attack scenario, the attacker can only have access to
the encrypted bit stream. Since the information available to the
attacker is very limited, a very commonly used approach is the
brute-force attack, whose complexity is related to the key space.

Since the only private information of the improved system is
the seed used in the key scheduler and it is of length 128 bits,
then the key space is , which can ensure satisfactory level
of security for the digital rights management applications.

Alternatively, the attacker may wish to recover the key stream
used in the ISAC encoder and used in

the bit-wise XOR step. Suppose each is of length bits and
the input symbol sequence length is . The length of the key
stream used in the ISAC encoder is then . Let the length
of the generated bit stream be , which satisfies (1). Thus,
the total complexity of breaking the key stream is . In
order to make this complexity sufficiently large, we impose a
constraint on the input sequence length, i.e.,

(18)

which ensures that . In the case of ,
, and , we get . This requirement

can be easily fulfilled in practice. Provided that (18) holds, the
attacker would rather use the brute-force attack to break the seed
used in the key scheduler. Therefore, we ensure that the key size
is sufficiently large to preclude the brute-force attack.

Another large class of ciphertext-only attack is based on the
analysis of statistical properties of the final bit stream . It is
thus important to investigate the statistics of in order to eval-
uate the practical security of the improved system. Since the key

stream used in the XOR step is generated from the key scheduler,
it is reasonable to assume that the bits of are nearly i.i.d. Since

, we know from [20] that is also nearly i.i.d., since
and are independently generated. Due to the fact that is

nearly i.i.d., the attacker can hardly find information about the
secret key in the improved system only from the statistics of .
Thus, the improved system is secure against the ciphertext-only
attack.

B. Chosen-Plaintext Attack

In this attack scenario, the attacker is allowed to input several
symbol sequences to the encoder, and obtain the corresponding
codewords. In [1], several chosen-plaintext attack methods were
proposed to break the standalone ISAC and the hybrid system
combining the ISAC with the codeword permutation step. It is
thus important to investigate the security of the improved system
under these attacks.

The first attack method described in [1] to break the stand-
alone ISAC is to encode two-symbol input sequences , ,

, and , and construct a relationship between the split
location with the probabilities and . For instance, if

, then either was split with
or was split with , where

is the encoded codeword of the symbol sequence using
the standalone ISAC encoder, and can be either or .
Using this relationship, the attacker can significantly reduce
the possible split locations. However, in the improved system,
the attacker can only have access to , instead
of . Therefore, even if , the inequality

may not be true, where
for a certain symbol sequence . For example, we suppose

and for a certain . Assume that
the key stream . Then . While in the
case of , . It can be seen that these
inequities depend on the key stream as well. Hence, using
this method, there is no clue to find the split locations, even in
this two-symbol input sequences case.

Another method proposed in [1] to evaluate the security of
the standalone ISAC is based on the following fact. Suppose
the attacker finds three input symbol sequences , , and
satisfying two conditions: 1) the first symbol of and is ,
and the first symbol of is ; 2) .
Then, it can be determined that symbol is split by , and the
split location must be between and . Nevertheless,
this attack method cannot be successful for the improved system
since the XOR operation changes the values of , ,
and , and hence, it is impossible to compare them without
knowing the key stream . Table I gives an example of the input

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: ADAPTIVE CHOSEN-CIPHERTEXT ATTACK ON SECURE ARITHMETIC CODING 1835

TABLE II
RELATIONSHIP BETWEEN THE KEY STREAM � AND � . IN THE LAST ROW,� CAN BE EITHER � OR �

symbol sequence and the output codeword pairs, where the input
symbol sequence length , , ,
and the splitting key vector is

(19)

Since , symbol is split in the first step
of encoding. However, after performing XOR operation to the
codewords, holds, which leads to
the conclusion that is split using the attack method in [1].
Therefore, this attack method cannot be successful against the
improved system.

In [1], another advanced attack method was proposed to break
the hybrid system combining the ISAC with the codeword per-
mutation step. The basic idea is to search for the split symbol se-
quence according to the zeros and ones in the codeword relative
to the whole codeword length. The success of this attack is due
to the fact that the leftmost interval associated with the all-zeros
codeword or the rightmost interval associated with the all-ones
codeword correspond to the split symbol sequence [1]. In the
improved system, since the final bit stream , the
number of zeros and ones in depends on both and , which
individually is unknown for the attacker. On the other hand,
the all-zeros codeword and the all-ones codeword are moved to
random intervals associated with and , respectively. There-
fore, from the percentage of the zeros and ones, it is difficult for
the attacker to search for the split symbol sequence, which con-
tains the information of the split location.

C. Chosen-Ciphertext Attack

In this attack scenario, the attacker is assumed to be able to
input several codewords with lengths satisfying (1), and obtain
the corresponding symbol sequences. In other words, we as-
sume that Assumption 1 stated in Section III is satisfied, which
is a benefit to the attacker.

Although the adaptive chosen-ciphertext attack described in
Section III is not directly applicable here, since the bit-wise per-
mutation step is removed, we can still borrow some ideas from
Section III to evaluate the security of the improved system. Let

the input codeword be . Then, the bit stream actually input
to the ISAC decoder is . Suppose now the attacker
wishes to find which symbol is split in the first encoding step. A
possible approach is to decode some equally spaced codewords,
namely, , where , for ,
and is the number of the sampled codewords. Let the decoded
symbol sequences of be , and denote the first symbol of

be . Without the XOR operation, it is easy to find out which
symbol is split in the first encoding step by observing the .
The attacker can group all into a sequence .
If exhibits the pattern , the
attacker can immediately determine that the symbol split in
the first encoding step is . On the contrary, if exhibits
the pattern , then the symbol
split in the first encoding step is . Due to the XOR oper-
ation, however, this relationship becomes invalid. Even in
the case that is split in the first encoding step, the pattern

can still be possible. Take
the example that , , , and

. To the benefit of the attacker, we assume that the
attacker can input short codewords, e.g., length-3 codewords.
In Table II, we show the relationship between the key stream

and , in the case that the input codeword length .
It can be seen that when or , the attacker
will decide that the symbol split in the first encoding step is ,
while when or , the attacker will decide that
the symbol split in the first encoding step is . In the remaining
four cases, the attacker cannot decide which symbol is split
using the aforementioned method. Therefore, without knowing
the key stream , the probability that is split is equal to that
of is split. In other words, by using this method, the attacker
still cannot reduce the uncertainty of which symbol is split in
the first encoding step.

Another class of widely used chosen-ciphertext attack is to
construct pairs of codewords with small differences, and try to
find out some information about the secret key by comparing
their outputs. This attack is usually powerful against those
cryptosystems with poor diffusion property. When evaluating
the security of the improved system, a natural way is to decode

and , where
satisfies (1). Denote the decoded symbol sequences of

and as and , respectively. The attacker can first

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

1836 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

Fig. 10. Classical separate compression-encryption schemes. (a) AC concate-
nated with a block cipher; (b) AC concatenated with a stream cipher.

choose . Since , it
is very likely that . Then, the attacker can gradually
decrease such that and differ in the th symbol.
Therefore, one of the split locations is within the interval

, where
and . However, as is unknown for the attacker,
it is still difficult to find the split location.

D. Performance Analysis

Due to the elimination of the input symbol permutation step,
the improved system can utilize the full-context information,
which enables the context-based coding. This leads to the fact
that the improved system may provide higher compression
ratio, and could be more conveniently incorporated with the
new generation of standards in which the context-based coding
is employed.

In addition, in the original SAC, the output codeword permu-
tation step cannot be performed until the whole bit stream from
the ISAC encoder is generated. This introduces some amount
of delay to the encoding/decoding. However, in the improved
system, since we simply use the bit-wise XOR operation, the bit
stream from the ISAC encoder can be immediately processed
without the need of waiting for the whole bit stream.

E. Comparison With the Classical Separate
Compression-Encryption Schemes

A classical approach to provide simultaneous compression
and encryption is to concatenate a traditional arithmetic coder
with a block cipher, e.g., AES, which is denoted by AC/AES
system [1], as shown in Fig. 10(a). It was demonstrated in [1]
that the number of transform steps is significantly larger in AES
than that in the permutations of the SAC. This results in the fact
that the throughput of the SAC could be higher than that of the
AC/AES system. Since the permutations have been removed in
the improved system, the throughput could be even higher. In
addition, in the AC/AES system, the zero padding will cause
some amount of coding efficiency loss, due to the block nature
of AES. For both the SAC and the improved system, however,
we can deal with arbitrary codeword length without any zero
padding operations.

Another classical approach to provide simultaneous compres-
sion and encryption is to concatenate a traditional arithmetic
coder with a stream cipher, e.g., RC4, which is denoted by
AC/SC, as shown in Fig. 10(b). Since there is no private in-
formation in the arithmetic coder, the intermediate bit stream

in Fig. 10(b) could be easily obtained from the symbol
sequence . Then, the currently used key stream could
be easily recovered by . Therefore, in order to
achieve high level of security, the same key stream can only
be used just once. In practice, the initialization vector based
technique could be applied to generate a unique key stream
independent from other streams produced by the same seed,
without having to go through a rekeying process. It should be
pointed out that inappropriate integration with an initialization
vector leads to severe security vulnerability, as reported in [26].
In the improved system, however, the intermediate bit stream

is unknown to the attacker who does not know the splitting
key vector . The key stream used in the XOR operation of
the improved system then cannot be easily derived in a similar
way as done in the AC/SC system. This allows us to use the
key stream multiple times while not influencing the security
of the system. Hence, in the improved system, we could avoid
using the initialization vector based technique, which itself
may result in security vulnerability [26]. In addition, in the
AC/SC system, a secure pseudorandom number generator has
to be used, making it computationally infeasible to infer the
seed from its generated key stream. This requirement poses
great challenges to the design of the pseudorandom number
generator. Nevertheless, in the improved system, since the
key stream is unknown to the attacker, the requirement on
the key scheduler could be much lower than that of a secure
pseudorandom number generator. In fact, the simple keyed XOR

operation proposed in [1] could be used to satisfy this purpose.

V. CONCLUSION

In this paper, we have addressed the security problem of the
recently proposed encryption scheme secure arithmetic coding
(SAC). We have suggested an adaptive chosen-ciphertext attack
that can recover the key vectors used in the codeword permu-
tation step with complexity , where is the symbol se-
quence length. This indicates that the SAC is not suitable for
those applications where the attacker can have access to the
decoder. Furthermore, we have discussed an improved version
of the SAC such that it can resist the adaptive chosen-cipher-
text attack and can be conveniently incorporated with the con-
text-based coding.

APPENDIX

PROOF OF THE PROPOSITION 1

It can be easily found that it suffices to prove the lower bound
in the case of , since any probability is no less
than 0.

We have

(20)

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: ADAPTIVE CHOSEN-CIPHERTEXT ATTACK ON SECURE ARITHMETIC CODING 1837

where the last inequality holds from the fact that
and the well-known Chernoff’s bound [21]. It should be noted
that the Chernoff’s bound only holds when . This
completes the proof.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and
the Associate Editor Prof. C. Guillemot for their very construc-
tive and helpful comments. The authors would also like to thank
Prof. P. Moulin of the University of Illinois at Urbana-Cham-
paign for helpful discussions.

REFERENCES

[1] H. Kim, J. T. Wen, and J. D. Villasenor, “Secure arithmetic coding,”
IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2263–2272, May 2007.

[2] C. Wu and C.-C. J. Kuo, “Design of integrated multimedia compression
and encryption systems,” IEEE Trans. Multimedia, vol. 7, pp. 828–839,
Oct. 2005.

[3] M. Grangetto, E. Magli, and G. Olmo, “Multimedia selective encryp-
tion by means of randomized arithmetic coding,” IEEE Trans. Multi-
media, vol. 8, pp. 905–917, Oct. 2006.

[4] J. T. Wen, H. Kim, and J. D. Villasenor, “Binary arithmetic coding
with key-based interval splitting,” IEEE Signal Process. Lett., vol. 13,
pp. 69–72, Feb. 2006.

[5] R. Bose and S. Pathak, “A novel compression and encryption scheme
using variable model arithmetic coding and couple chaotic system,”
IEEE Trans. Circuits Syst. I, vol. 53, pp. 848–857, Apr. 2006.

[6] Y. Mao and M. Wu, “A joint signal processing and cryptographic ap-
proach to multimedia encryption,” IEEE Trans. Image Process., vol.
15, pp. 2061–2075, Jul. 2006.

[7] J. T. Zhou, Z. Q. Liang, Y. Chen, and O. C. Au, “Security analysis
of multimedia encryption schemes based on multiple Huffman table,”
IEEE Signal Process. Lett., vol. 14, pp. 201–204, Mar. 2007.

[8] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still
image compression standard,” IEEE Signal Process. Mag., vol. 18, pp.
36–58, Sep. 2001.

[9] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, pp. 560–576, Jul. 2003.

[10] I. H. Witten and J. G. Clearly, “On the privacy offered by adaptive text
compression,” Comput. Secur., vol. 7, pp. 397–408, 1988.

[11] H. A. Bergen and J. M. Hogan, “Data security in a fixed-model arith-
metic coding compression algorithm,” Comput. Secur., vol. 11, pp.
445–461, Sep. 1992.

[12] H. A. Bergen and J. M. Hogan, “A chosen plaintext attack on an adap-
tive arithmetic coding compression algorithm,” Comput. Secur., vol.
12, pp. 157–167, Mar. 1993.

[13] P. W. Moo and X. Wu, “Resynchronization properties of arithmetic
coding,” in Proc. IEEE Int. Conf. Image Process., Oct. 1999, pp.
545–549.

[14] X. Wu and P. W. Moo, “Joint image/video compression and encryp-
tion via high-order conditional entropy coding of wavelet coefficients,”
in Proc. IEEE Int. Conf. Multimedia Computer Syst., Jul. 1999, pp.
908–912.

[15] A. Barbir, “A methodology for performing secure data compression,”
in Proc. 29th Southeast. Symp. System Theory, Mar. 1997, pp. 266–270.

[16] X. Liu, P. Farrel, and C. Boyd, “A unified code,” in Proc. Int. Conf.
Cryptography Coding, Dec. 1999, vol. 1746, pp. 84–93.

[17] H. Ishibashi and K. Tanaka, “Data encryption scheme with extended
arithmetic coding,” in Proc. SPIE, Dec. 2001, vol. 4475, pp. 222–233.

[18] J. T. Zhou and O. C. Au, “Comments on “A novel compression and
encryption scheme using variable model arithmetic coding and couple
chaotic system”,” IEEE Trans. Circuits Syst. I, vol. 55, pp. 3368–3369,
Nov. 2008.

[19] B. Furht and D. Kirovski, Multimedia Security Handbook. Boca
Raton, FL: CRC Press, Dec. 2004.

[20] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL: CRC Press, 1997.

[21] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

[22] J. Chou and K. Ramchandran, “Arithmetic coding-based continuous
error detection for efficient ARQ-based image transmission,” IEEE J.
Sel. Areas Commun., vol. 18, pp. 861–867, Jun. 2000.

[23] M. Grangetto, E. Magli, and G. Olmo, “A syntax-preserving error
resilience tool for JPEG 2000 based on error correcting arithmetic
coding,” IEEE Trans. Image Process., vol. 15, pp. 807–818, Apr. 2006.

[24] T. Guionnet and C. Guillemot, “Soft decoding and synchronization of
arithmetic codes: Application to image transmission over noisy chan-
nels,” IEEE Trans. Image Process., vol. 12, pp. 1599–1609, Dec. 2003.

[25] P. G. Howard and J. S. Vitter, “Arithmetic coding for data compres-
sion,” Proc. IEEE, vol. 82, pp. 857–865, Jun. 1994.

[26] S. R. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key sched-
uling algorithm of RC4,” Sel. Areas Cryptogr., pp. 1–24, 2001.

Jiantao Zhou (S’09) received the B.E degree from
the Department of Electronic Engineering, Dalian
University of Technology, Dalian, China, in 2002
and the Master’s degree from the Department of
Radio Engineering, Southeast University, Nanjing,
China, in 2005. Currently, he is working towards the
Ph.D. degree in the Department of Electronic and
Computer Engineering, Hong Kong University of
Science and Technology.

From September 2007 to August 2008, he vis-
ited the Department of Electrical and Computer

Engineering, University of Illinois at Urbana-Champaign under the support
of Fulbright Hong Kong Dissertation Program. His research interests include
multimedia encryption, information theory, chaotic cryptography, and neural
cryptography.

Mr. Zhou was a coauthor of a paper that received the Best Paper award in
IEEE Pacific-Rim Conference on Multimedia (PCM) in 2007.

Oscar C. Au (S’87–M’90–SM’01) received the
B.A.Sc. degree from the University of Toronto,
Toronto, ON, Canada, in 1986, and the M.A. and
Ph.D. degrees from Princeton University, Princeton,
NJ, in 1988 and 1991, respectively.

After being a Postdoctoral Researcher at Princeton
University for one year, he joined the Department of
Electrical and Electronic Engineering, Hong Kong
University of Science and Technology (HKUST), in
1992. He is now an Associate Professor, Director of
Multimedia Technology Research Center (MTrec),

and Advisor of the Computer Engineering (CPEG) Program in HKUST. His
main research contributions are on video and image coding and processing,
watermarking and light weight encryption, speech and audio processing.
Research topics include fast-motion estimation for MPEG-1/2/4, H.261/3/4
and AVS, optimal and fast suboptimal rate control, mode decision, transcoding,
denoising, deinterlacing, post-processing, multiview coding, scalable video
coding, distributed video coding, subpixel rendering, JPEG/JPEG2000 and
halftone image data hiding. He has published about 200 technical journal
and conference papers. His fast-motion estimation algorithms were accepted
into the ISO/IEC 14496-7 MPEG-4 international video coding standard and
the China AVS-M standard. He has three U.S. patents and is applying for
over 40 more on his signal processing techniques. He has performed forensic
investigation and stood as an expert witness in the Hong Kong courts many
times.

Dr. Au has been an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS PART I and the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY. He is the Chairman of the Technical Committee (TC)
on Multimedia Systems and Applications (MSATC) and a member of the TC
on Video Signal Processing and Communications (VSPC) and the TC on DSP
of the IEEE Circuits and Systems (CAS) Society. He served on the Steering
Committee of IEEE TRANSACTIONS ON MULTIMEDIA and the IEEE Interna-
tional Conference on Multimedia and Expo (ICME). He also served on the or-
ganizing committee of the IEEE International Symposium on Circuits and Sys-
tems (ISCAS) in 1997, the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) in 2003, the ISO/IEC MPEG Seventy-First
Meeting in 2004, International Conference on Image Processing (ICIP) in 2010,
and other conferences.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

1838 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009

Peter Hon-Wah Wong (M’01) received the B.Eng.
degree (first-class hons.) in computer engineering
from the City University of Hong Kong in 1996
and the M.Phil. and Ph.D. degrees in electrical
and electronic engineering from the Hong Kong
University of Science and Technology (HKUST) in
1998 and 2003, respectively.

He was a Postdoctoral Fellow at the Department
of Information Engineering, Chinese University of
Hong Kong (CUHK), from 2003 to 2005. He worked
as at the Applied Science and Technology Research

Institute Company Limited (ASTRI) as a Member of Professional Staff from

2005 to 2007. He was the Visiting Assistant Professor at the Department of
Electronic and Computer Engineering, HKUST, from 2007 to 2008. He is cur-
rently the R&D Director of VP Dynamics Ltd., Hong Kong. His research in-
terests include digital data hiding and watermarking, time scale modification,
fast-motion estimation, video/image denoising, audio coding, audio enhance-
ment, auto white balancing, high dynamic range image processing, and subpixel
rendering.

Dr. Wong served on the organizing committee of the ISO/IEC MPEG
Seventy-First Meeting in 2004, the International Symposium on Intelligent
Signal Processing and Communications Systems (ISPACS) in 2005, and the
Pacific-Rim Conference on Multimedia (PCM) in 2007. He received the
Schmidt award of excellence in 1998. He is a member of Sigma Xi.

Authorized licensed use limited to: Universidade de Macau. Downloaded on July 06,2022 at 07:31:41 UTC from IEEE Xplore. Restrictions apply.

