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Abstract—Signal processing on graphs is a new emerging field
that processing high-dimensional data by spreading samples on
networks or graphs. The new introduced definition of graph
Fourier transform shows its importance in establishing the theory
of frequency analysis or computational harmonic analysis on
graph signal processing. We introduce the definition of redundant
graph Fourier transform, which is defined via a Parseval frame
transform generated from an extended Laplacian of a given
graph. The flexibility and sparsity of the redundant graph
Fourier transform are important properties that will be useful
in signal processing. In certain applications and by selections of
the extended Laplacian, redundant Fourier transform performs
better than graph Fourier transform.

Index Terms—Graph Fourier transform, redundant graph
Fourier transform, graph Laplacian matrix, signal compression.

I. INTRODUCTION

In traditional discrete signal processing, time-frequency ap-
proaches play an important role in signal processing in time or
frequency domain, or even in time-frequency domain [1]. But
for high dimensional datasets, such as transportation networks,
social networks, traditional signal processing can not capture
the underlying complex structure of the datasets. In order to
solve this problem, an remarkable technique is to represent
high dimensional datasets on weighted undirected graphs, then
develop theories and processing methods in a similar manner
as traditional discrete signal processing. Representing high
dimensional data on a network or graph captures the underly-
ing complex structure of the dataset. In applications such as
social networks, electricity networks, transportation networks,
and sensor networks, data naturally reside on the vertices of
weighted graphs. Edges of these graphs are imposed weights
that measuring the similarities, dependencies, or correlations
between different pairs of vertices [2].

Recently, spectral graph signal processing become one of
the hottest topics. The foundation of the theory is to apply
graph Laplacian matrix and its eigenvectors to establish the
graph Fourier transform, which captures the spectral property
of the given datasets [2]. The motivation of graph Fourier
transform is that the complex exponentials eiωx defining the
classic Fourier transform are the eigenvectors of the 1 − D
Laplacian operator d2

dx2 . Analogously, the graph Fourier trans-
form is defined by the eigenvector matrix of the Laplacian
matrix associated with the given graph. Based on graph Fourier
transform, many new tools for signal processing on graphs
have been developed and successfully applied in discrete time

signals or high dimensional structured datasets [3], [4]. Appli-
cations of the graph Fourier transform leads to a computational
harmonic analysis on the spectral domain of graphs, which
involves the definitions and applications of operations on
graphs such as convolution, translation, modulation, dilation
[2]. Wavelet and windowed Fourier analysis on graphs are
also established based on Graph Fourier transform [5], [6].

In classic Fourier analysis, the Fourier basis forms an
orthonormal basis, correspondingly, Fourier frames are estab-
lished by perturbation of the Fourier basis to an irregular
Fourier frames, which is now widely studied and applied
in applications [7], [8]. Our goal in this paper is to give a
definition of Fourier frames on graphs. In fact, graph Fourier
frames will be derived by using the graph Fourier transform.
Then a redundant graph Fourier transform will be defined via
a Parseval graph Fourier frame calculated from an extended
Laplacian matrix of a given graph. Finally, we give an analysis
on potential applications of this redundant transform to signals
or high-dimensional signals processing.

II. GRAPH FOURIER TRANSFORM

In this section, we review the definition of graph Fourier
transform. Consider a weighted graph G = (V,E,W ), where
V denotes the set of vertices, E denotes the set of edges, of
the graph, respectively. W is the weighted adjacency matrix.
If there is an edge e(i, j) connecting nodes i and j, Wi,j

represents the weight assign to the edge e(i, j), otherwise,
Wi,j = 0. Define the degree matrix D associated to the graph
G as a diagonal matrix whose i-th diagonal element di is equal
to the sum of the weights of all the edges incident to vertex i,
i.e. Dii =

∑
j Wij . Then the graph Laplacian, also called the

combinatorial graph Laplacian of G is defined as L = D−W .
Obviously, L is a real symmetric matrix, and therefore has a
complete set of orthonormal basis. Denote these eigenvectors
by χl for l = 0, 1, · · · , N − 1, with associated eigenvalues λl,
i.e.

Lχl = λlχl.

Then for any vector f ∈ RN defined on the vertices of G,
its graph Fourier transform f̂ is defined by

f̂(l) = ⟨χl, f⟩ =
N∑

n=1

χ∗
l (n)f(n).

The inverse transform can be derived by:

f(n) =

N−1∑
l=0

f̂(l)χl(n).
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Fig. 1. Circle graph

The Parseval relation holds for the graph Fourier transform,
that is, for any f, g ∈ RN ,

⟨f, g⟩ = ⟨f̂ , ĝ⟩.

Note that graph Fourier transform is consistent with the
traditional Fourier transform if a finite discrete periodic signal
is indexed by a circle graph in Figure 1, since the eigenvector
matrix of its Laplacian is the discrete Fourier transform matrix.

III. REDUNDANT GRAPH FOURIER TRANSFORM

In this section, we introduce the definition of redundant
graph Fourier transform. In order to establish the transform,
we have to construct an extended Laplacian matrix, which
will involve two graph structures on a given graph signal,
and a bipartite graph that presents the connections between
the two graphs. By using the first N rows of the eigenvector
matrix of the extended Laplacian matrix, we give a definition
of the redundant graph Fourier transform. The reason why it
called “redundant” is that it is defined by using a Parseval
frame rather than an orthonormal basis in the setting of graph
Fourier transform. A detailed introduction of frame theory and
its applications in signal processing can be found in [1].

Definition III.1. A sequence of vectors {vn}n∈Λ is a frame
of a Hilbert space H if there exist two constants B ≥ A > 0
such that

A∥u∥2 ≤
∑
n∈Λ

|⟨u, vn⟩|2 ≤ B∥u∥2, ∀u ∈ H. (1)

where Λ is a countable index set. When A = B = 1 the frame
is said to be Parseval.

A system of complex exponentials {eiλkx}λk∈Λ, where Λ =
{λk}k∈Z is a sequence of real numbers, is called a Fourier
frame if {eiλkx}λk∈Λ satisfy the frame inequalities (1) for all
u ∈ L2(−π, π) [8].

Finite Fourier frames, or harmonic frames for RN or CN

are obtained by keeping arbitrary N rows from an M × M
discrete Fourier transform matrix [10]. Harmonic frames have
been proved to be useful in applications [11]. In this paper,
we will extend this approach to establish the redundant Fourier
transform, but by choosing the first N rows of the eigenvector
matrix.

For that, we need the following well-known lemma in frame
theory.

Lemma III.2. Let Q be an m× n matrix in which the rows
form an orthonormal set of vectors in Rn, where n ≥ m.

Let F = {v1, v2, · · · , vn} be the columns of Q, then F is a
Parseval frame for Rm.

Besides, we also need the following result from matrix
theory.

Lemma III.3. ([12]) Let A,B,C,D be n × n matrix on R.
If matrix A is invertible and AC = CA, then

det

(
A B
C D

)
= det(AD − CB). (2)

Redundant graph Fourier transform Now we establish
the redundant graph Fourier transform by the steps as follows:

• The motivation of redundant graph Fourier transform is,
in some cases, one graph is not enough to capture the
spectral information in a dataset, then an extra graph
would be useful to improve the representation. Given
a graph G = {V,E1,W1}, let G

′
= {V ′

, E2,W2} be
another graph imposed on subset of the original data-
set with V

′ ⊆ V . Establish a bipartite graph G̃ =
{(V, V ′

), E3,W3}, then we obtain a connected extended
graph of G with respect to G

′
and G̃, denoted by G, with

vertex set V (G) = V ∪V ′
, edge set E(G) = E1∪E2∪E3.

Suppose that graph G has N vertices, their indices in G
remain the same as in G. Suppose that G

′
has M vertices,

and the i-th node of the graph G
′

will be indexed by
N + i. Select a weight α > 0 measuring the impact of
the bipartite graphs G̃ on G .

• Let the Laplacian of the graph G be L, Laplacian of the
graph G

′
be L

′
. Then the Laplacian of the extended graph

G will be written as

LII =

(
L 0

0 L
′

)
+ α

(
S −W3

−WT
3 S̃

)
(3)

where S is a diagonal matrix, with its diagonal en-
tries equal to the l1 norm of rows of W3, that is,
sii =

∑M
k=1 w3,ik. S̃ is also a diagonal matrix, whose

diagonal entries equal to the l1 norm of columns of
W3, i.e. s̃ii =

∑N
j=1 w3,ji. Then LII is still a positive

semidefinite matrix with rank less than 2N , we can sort
its eigenvalues as

0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µN+M−1.

• Denote the corresponding orthonormal eigenvectors by
ϕ0, ϕ1, · · · , ϕN+M−1. Putting together these eigenvectors
together to have an orthonormal matrix Φ, which is an
(N +M)× (N +M) matrix. Taking the first N rows of
Φ, and denote them with respect to the column indices
by W = (w0, w1, · · · , wN+M−1), where wk ∈ RN , k =
0, 1, · · · , N +M − 1. By Lemma III.2, W is a Parseval
frame and thus is redundant.

• Given a structured signal f , and impose it with an
extended graph G as defined above. Suppose that the
Parseval frame derived from the Laplacian LII of G
is W = (w0, w1, · · · , wN+M−1). The redundant graph
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Fourier transform of f is defined as

ˆ̃
f(k) = ⟨f, wk⟩ =

N∑
l=1

w∗
k(l)f(l)

for k = 0, 1, · · · , N +M − 1.
And the inverse redundant graph Fourier transform is then
given by

f(n) =
N+M−1∑

k=0

ˆ̃
f(k)wk(n).

The structure of redundant graph Fourier transform considers
the extra impact of the graphs G

′
and G̃ , which leads to the

redundancy of the transform. A redundant transform generate
a freedom on stable representations of the given signals [1].
In cases where redundancy is important, our redundant graph
Fourier transform would be useful.

In the following theorem, we will discuss a special choice
of α and L

′
= L, W3 = IN for the redundant graph Fourier

transform. And the reason why select the first N rows of Φ
will be explained based on this result.

Theorem III.4. Given a graph G and its extended graph
with respect to G

′
and G̃ as defined above, G, denote their

Laplacian matrix by L and LII defined in (3), respectively.
Let L

′
= L, W3 = IN . α be the weight assigned to the

bipartite graph. Suppose that the eigenvalues of L are ordered
as 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1, and the eigenvalues
of LII are ordered as 0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µ2N−1.
Then the spectrum of LII contains that of L. If α satisfies the
condition 2α < minN−1

k=1 {λk−λk−1}. Then we have µ2l = λl,
l = 0, 1, · · · , N − 1, and µ2l+1 = λl + 2α. That is, we insert
new eigenvalues between the eigenvalues of the Laplacian L.

Proof. Let P = αW3. First we have λI − (L + P ) is
invertible since det(λI − (L + P )) is a polynomial. By the
assumptions, L

′
= L and W3 = IN , L+P is symmetric, then

by Lemma III.3, the characteristic function of LII is

det

(
λI − (L+ P ) P

P λI − (L+ P )

)
= det((λI − (L+ P ))2 − P 2)

= det((λI − (L+ 2P ))(λI − L))

= det(λI − (L+ 2P ))det(λI − L)

(4)

Equation (4) shows that the eigenvalues of L is also the
eigenvalues of LII .

The remaining eigenvalues of LII is the eigenvalues of L+
2P . It is easy to see that λi(L + 2P ) = λi(L) + 2α. Then
if 2α < minN−1

k=1 {λk − λk−1}, we have µ2l = λl, µ2l+1 =
λl + 2α for l = 0, 1, · · · , N − 1. �

Discussion By Theorem III.4, selection of L
′
= L, W3 =

IN in LII lead to new eigenvalues inserted between that of
L. Note that, the eigenvectors of Laplacian LII has a special
structure. In fact, suppose that the k-th eigenvector of LII is
(vTk , u

T
k )

T , vk, uk ∈ RN . Then we have,(
L+ P −P
−P L+ P

)(
vk
uk

)
= µk

(
vk
uk

)
(5)

then we have,

{ (L+ P )vk − Puk = µkvk
−Pvl + (L+ P )uk = µkuk

(6)

for l = 0, 1, · · · , N − 1, and thus

{ L(vk + uk) = µk(vk + uk)
(L+ 2P )(vk − uk) = µk(vk − uk)

(7)

Then vk + uk eigenvectors of L with eigenvalue µk, l =
0, 1, · · · , 2N − 1. Since L only has eigenvalues µ2l = λl,
l = 0, 1, · · · , 2N − 1, we have vk + uk = 0 if k = 2l + 1,
l = 0, 1, · · · , 2N − 1. Then vk = −uk, and substitute it into
the second equation in (7), and by Theorem III.4, we have
Lvk = Lv2l+1 = λlvk, if the eigenvalues λk are distinct,
that is, the eigen-subspace are one dimensional, then we have
vk = cχl for some constant c.

If k = 2l, then µk = λl, and by the second equation in (7),
we have vk = uk, and therefore, vk is also a eigenvector of L
by the first equation. Therefore, the first N rows and the last N
rows of the matrix Φ of LII are almost the same with respect
to a switch of negative symbol in the odd columns. This is
the reason why we choose the first N rows of Φ. And recall
that a harmonic frame in frame theory is also generated by
taking the first N rows of a K×K discrete Fourier transform
matrix, with N ≤ K.

Note that other selection of L
′
, W3 and α can not generate

a structured spectral similar to the previous selection.

IV. PROPERTIES OF RGFT

Flexibility. The properties of redundant graph Fourier trans-
form depends on the selections L

′
and W3 and the weight

parameter α, with a good selection of them, RGFT improves
the performance of GFT in signal compression or denoising.
And the selection of L

′
, W3 and α can be adaptive to different

considerations.
Sparsity. The coefficients of the RGFT can be more sparser

than GFT, or we can select proper L
′
, W3 and α to generate

a sparser RGFT. More researches have to be done on the
problem of improving the sparsity. Note that a bad selection
of E and α will produce noise-like impact on RGFT and
therefore lead to poor application performance.

V. EXPERIMENTS ON SIGNAL COMPRESSION

Traditional signal compression algorithms are based on
expanding signals into suitable bases with the expectation that
the representation is sparse, that is, most information of the
signal is captured by a few basis functions. By selecting the
basis components with largest magnitudes, one can always
reconstruct the signal with small approximation error in the
least-squares sense. Frames are generally considered as gen-
eralized bases, simply because frames give more sparse and
more stable representations than bases or orthogonal bases [1].

The redundant graph Fourier transform is based on the
construction of a Parseval frame that captures the spectrum
information of a given dataset. In the following, we would
apply this transform on signal compression.
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Signal compression algorithm Given a signal s, suppose
that the extended Laplacian associated with s is LII , and
the Parseval transform matrix we obtained is W , then we
denote the redundant graph Fourier transform frame coeffi-
cients by (WT s)(n) = ˆ̃sn. We compress s by keeping only
K coefficients with largest magnitudes in ˆ̃sn. Without loss
of generality, assume that |ˆ̃s0| ≥ |ˆ̃sn| ≥ · · · ≥ |ˆ̃sN+M−1|.
Then the signal reconstruction after compression is sII =
W(ˆ̃s0, ˆ̃s1, · · · , ˆ̃sK−1, 0, · · · , 0)T . The approximation error is
calculated by

err(sII , s) =
∥sII − s∥2

∥s∥2
.

In the following, we give the performance of data compression
of RGFT by letting L

′
= L,W3 = W1, and α = 0.1,

on a simple signal f(t) = t, t = 1, 2, · · · , 200, t ̸= 50,
f(50) = 100, and compare that with GFT. Since every element
in the signal f is strongly related with its neighbor elements,
the graph structure imposed to signal f(t) is a path, and the
weights all equal to 1. When keeping 15 to 90 percents of
the largest coefficients, Figure 2 shows that RGFT have better
approximation errors than GFT.

Fig. 2. Approximation errors of GFT and RGFT with different percentages
of the largest coefficients preserved for signal f , with L

′
= L,W3 = W1

and the weight alpha=0.1.

When selecting the L
′
= L,W3 = I200 and α = 0.1, RGFT

performs almost the same as GFT in approximation error for
signal f(t), but still slightly better than GFT at some points,
see Figure 3.

Figure 3 shows that the redundant graph Fourier transform
almost reduce to graph Fourier transform by a proper selection
on the parameters.

VI. CONCLUSION

In this paper, a redundant graph Fourier transform is pro-
posed based on the framework of graph Fourier transform. The
redundant graph Fourier transform captures the impact of two
graphs and their connections on a structured signal. Flexibility
of this transform ensures that it can performs better than the
graph Fourier transform by selecting suitable graphs, weights
and the connection parameter.

Fig. 3. Approximation errors of GFT and RGFT with different percentages
of the largest coefficients preserved for signal f , with L

′
= L,W3 = I200

and the weight alpha=0.1.
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