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Abstract—Superpixel algorithm aims to semantically group
neighboring pixels into a coherent region. It could significantly
boost the performance of the subsequent vision processing
task such as image segmentation. Recently, the work simple
linear iterative clustering (SLIC) [1] has drawn huge attention
for its state-of-the-art segmentation performance and high
computational efficiency. However, the performance of SLIC
is dramatically degraded for noisy images. In this work, we
propose three measures to improve the robustness of SLIC
against noise: 1) a new pixel intensity distance measurement
is designed by explicitly considering the within-cluster noise
variance; 2) the spatial distance measurement is refined by
exploiting the variation of pixel locations in a cluster; and 3) a
noise-robust estimator is proposed to update the cluster centers
by excluding the possible outliers caused by noise. Extensive
experimental results on synthetic noisy images validate the
effectiveness of those improvements. In addition, we apply
the proposed noise-robust SLIC to superpixel-based noise level
estimation task to demonstrate its practical usage.

1. Introduction

Superpixel is originally from image over-segmentation.
It is commonly defined as a local, semantically coherent
region in the image. As a preprocessing step, superpixels
capture the pixel redundancy and image structure. Due
to this adaptiveness to the images structure, superpixels
are often employed to replace the regular square patches,
and consequently speedup the subsequent vision processing
tasks. Therefore, superpixel scheme has already been a
crucial module of many computer vision algorithms, such
as image segmentation [2], [3], object recognition [4], depth
estimation [5] and stereo image reconstruction [6].

In general, the existing superpixel algorithms can be
classified into two categories: graph-based and gradient-
ascent-based methods. Graph-based methods model the im-
age as an undirected weighted graph, in which each pixel
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(a) SLIC+Clean (b) SLIC+Noisy (c) Proposed+Noisy

Figure 1: SLIC [1] is not robust to noise. (a) SLIC on clean
image (b) SLIC on Gaussian noise polluted image (o = 20)
(c) Our proposed noise-robust SLIC on the noisy image.

is regarded as a node, and edge weights are proportional
to the similarity between neighboring pixels. Superpixels
are generated by solving a global minimization optimization
problem defined over the graph. In [7], Shi et al. proposed
Normalized Cuts (N-Cut) algorithm. Utilizing the image
structure and texture priors, this scheme recursively parti-
tions the pixels by minimizing the cost function defined
on partitioned boundaries. N-Cut generates regular super-
pixels with compact shape, while the main weakness is
high computational complexity. Later on, Felzenszwalb et
al. [8] proposed an efficient graph-based superpixel method
by finding the minimum spanning tree on the graph model.

Instead of using graph model, gradient-ascent-based al-
gorithms attempt to formulate the superpixel segmentation
as an unsupervised clustering problem. Technically, this
clustering procedure is triggered by coarse cluster initializa-
tion, and then iteratively refine the pixel’s assignment and
cluster centers until some convergence criterion is reached.
In early works, Mean-shift [9] grouped the pixels belonging
the same mode into single superpixel. Other similar but
faster gradient-ascent methods include Quick-shift [10] and
Turbopixel [11]. More recently, Achanta et al. [1] proposed
an efficient superpixel scheme simple linear iterative clus-
tering (SLIC) [1]. It adapts k-means clustering algorithm on
local neighboring pixels. SLIC has drawn huge attention for
its state-of-the-art segmentation performance and extremely
low computational cost. However, as shown in Figure 1-
(a)(b), one implicit premise of SLIC is the input images
should be clean. Otherwise, the performance will be signifi-
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cantly degraded. Unfortunately, in practice, the input images
are typically polluted by noise to some extent. One intuitive
solution to tackle this problem is to perform denoising
before superpixel generation, but for some applications such
as superpixel-based noise level estimation [12], they require
to conduct superpixel algorithm directly on noisy images.
This motivates us to develop noise-robust superpixel algo-
rithm, which aims at preserving the boundary adherence of
superpixels. Figure 1-(c) illustrates the superpixels obtained
by our algorithm. In the enlarged region, one can observe
the most boundaries near mountain peaks are preserved.

In this work, we propose three measures to improve the
robustness of SLIC against noise: 1) a new pixel intensity
distance measurement is designed by explicitly considering
the within-cluster noise variance; 2) the spatial distance
measurement is refined by exploiting the variation of pixel
locations in a cluster; and 3) a noise-robust estimator is
proposed to update the cluster centers by excluding the
possible outliers caused by noise. Extensive experimental
results on synthetic noisy images validate the effectiveness
of those improvements. In addition, we apply the proposed
noise-robust SLIC to superpixel-based noise level estimation
task to demonstrate its usage in real application.

The rest of paper is organized as follows. In Section 2,
we briefly review the conventional SLIC superpixel scheme.
We propose noise-robust SLIC in Section 3. Experimental
results on both clean and synthetic noisy images are given
in Section 4, and we conclude this work in Section 5.

2. SLIC Superpixel

Technically, SLIC is an iterative unsupervised clustering
procedure, which can be roughly regarded as a local version
of the conventional k-means scheme. More specifically, it
consists of four components: initialization, pixel assignment,
cluster center update and post-processing. Before introduc-
ing those modules, we shall first define the mathematical no-
tations of augmented pixel and cluster centers. A augmented
pixel p is formed by concatenating pixel’s intensities and
location: p = [t;s], where t = [I,a,b]” denotes the pixel’s
color intensities in 3D CIELAB color space, and s = [z, y]T
represents the pixel’s spatial location in 2D image plane.
Cluster center c¢ has the same format with augmented pixel.
We put a subscript ¢ to indicate the index of p and c. For
instance, c; and p; are the i-th cluster center and the j-th
augmented pixel, respectively. We use {(p;) = i to denote
that augmented pixel p; is assigned to i-th cluster.

Initialization: SLIC samples K cluster centers with
a regular grid sampling step S. Here the parameter S is
provided by users, and K = /W H/S?, where W, H are
width and height of image, respectively. To avoid seeding
on image edges, those cluster centers are further moved to
the locations corresponding to the lowest gradient position
in a 3 x 3 neighborhood.

Pixel assignment: the augmented pixel p; is assigned to
the nearest cluster, whose search region overlaps its location.
Obviously, this task can only be done with a distance
measurement, which is used to determine the cluster that
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augmented pixel should be assigned to. SLIC suggests to
compute the distance by combining color similarity and
spatial proximity. More concretely, the color distance and
spatial distance between cluster center c; and pixel p; are
defined as

ey
2

where ||-||, denotes the I norm. Then, SLIC introduces a
weighting factor w to fuse (1) and (2) into a one distance
measurement

dsric(ci, pj) = \/df(cmpj) +w-d?(ci,p;) (3

The weighting factor w also play two other roles. Firstly, it
implicitly scales (1) and (2) into the same scale. Secondly,
w balances the relative importance between (1) and (2). In
practice, this parameter is empirically set by users.
Cluster center update: once each augmented pixel has
been assigned to the nearest cluster, the cluster center up-
date procedure is triggered to recompute the cluster centers
by averaging all the augmented pixels associated with the

lust
cluster ]
>_P;

=
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Here Z; is the set containing all the indices of augmented
pixels that are assigned to i-th cluster, i.e., Z; = {j | I(p;) =
i}. || returns the cardinal number of the corresponding set.

The aforementioned pixel assignment and cluster center
update procedures are continuously repeated until some pre-
defined termination condition is met, e.g., fixing the number
of iterations as 10.

Post-processing: the above clustering procedure does
not enforce connectivity. Thus after completion of clus-
tering, some ‘“isolated” pixels that do not belong to the
same connected component may exist. To resolve problem,
SLIC reassigns those pixels to their nearest cluster using a
connected components algorithm.

SLIC efficiently produces satisfactory superpixel seg-
mentation for clean images. However, for noisy images, the
generated superpixels are not consistent with the clean ones.
By further examining each step of SLIC, we found two
key steps are pixel assignment and cluster center update,
in which the color and spatial distance measure (1) (2) and
update procedure (4) play critical roles. Obviously, those
distance measure and update procedure do not take the noise
into account. We believe this is the main reason responsible
for the bad superpixel segmentation performance. As will
be seen in next section, we propose a new distance measure
with a new cluster center update procedure to tackle this
problem, by explicitly considering the noise influence.

3. Proposed Noise-Robust SLIC Superpixel

Our proposed scheme has similar algorithmic framework
with SLIC. For clarity, we focus on designing the new pixel
assignment and cluster center update procedures. The initial-
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Algorithm 1 Noise-Robust SLIC Superpixel

Input: Noisy image, sampling step S, weighting factor w.

Initialize: Initialize the cluster centers for each cluster 4
c; = [ti;si] = [li, @i, bi, x4, y;] T by uniformly sampling
in regular grid with step S. Set label I(p;) = —oco and
distance d(p;) = +oo for each augmented pixel p;.

1: repeat
2:  for each cluster i do
3: for each pixel p; in a 25 x 25 region around the

cluster center c; do
Compute the color distance using (5):
Dy(ci,py) = ||@; " - (b — t5)]|,
5: Compute the spatial distance using (7):
Dy(ci,p;) = || ®; " (si —s)]],
Compute the total distance:
Dours(ci,pj) = \/DE(ci, pj) + wD2(c;, p;)
if Doyrs(ci, pj) < d(j) then
d(pJ) A Dours(civ p]) and l(pj) —1
end if
end for
end for
Update the cluster center using (15):
1
€i = a7 2p,em; Pi
13: until max iteration number is reached

ization and post-processing modules remains the same as the
conventional SLIC. The entire algorithm is summarized in
Algorithm 1.

3.1. Color Distance

Recall that, in (1), SLIC computes the color distance
between augmented pixel with cluster center by directly
measuring their Euclidean distance. This method suits for
clean images because all pixels are genuine. However, for
noisy images, the existence of noise would bias this dis-
tance measurement. To account for the impact of noise, we
redesign the color distance measurement (1) as

Dy(ci,pj) = H‘I’i_l (b — tj)Hz ®)

where ®; is a 3 x 3 diagonal matrix, which captures the
color variance in each color channel for the ¢-th cluster. It
is defined as

gy 0 0
& =10 o, 0 (6)
0 O Jp

where o;,0, and o} are the standard deviation of each
dimension in [I,a,b]" color intensity vector which belongs
to ¢-th cluster. Note that incorporating the inter-channel
covariances is expected to slightly improve the final perfor-
mance, but computational complexity will be a huge burden.
Thus in this work, we assume the intensities in three color
channels are mutually independent.
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(b)

Figure 2: Spatial distance measurement (2) on regular and
irregular shaped clusters, ds(c;, p1) = ds(c;, p2) is assumed
in both cases. (a) for regular-shaped cluster, (2) truthfully
reflects that p; and p2 has same possibility to be assigned to
i-th cluster; (b) for irregular-shaped cluster, po has higher
possibility to be assigned to ¢-th cluster than that of pj,
while (2) still yields the same distance for p; and ps.

3.2. Spatial Distance

Similarly, in (2), SLIC computes the spatial distance
using spatial Euclidian distance. The smaller distance is,
the higher possibility the pixel ought to be assigned to
the cluster. Generally, (2) works well for regular-shaped
clusters (e.g., smooth regions). As an example, in Figure 2-
(a), ds(ci,p1) = ds(c;, p2) could truthfully reflect that pq
and ps has same possibility to be assigned to ¢-th cluster.
However, for irregular-shape clusters (e.g., prominent edges)
shown Figure 2-(b), (2) still treats p; and p2 equally, which
cannot reflects that ps has higher possibility than p;’s to
be assigned to i-th cluster. This is because it neglects the
location distribution of pixels, i.e., the spatial shape of the
cluster. To utilize this information, we exploit the variances
of spatial locations within a cluster. Specifically, we suggest
to compute the spatial distance between cluster center c; and
augmented pixel p; as

Da(cipy) = [ ®7 (s: = 5)) ™

where W, is a 2 x 2 matrix, which is used to describle the
pixel position variance of the irregular shape exhibited by
i-th cluster in image plane. It is defined as

v, = {" "ﬂ = sqrt{S;} ®)

Oyz  Oyy
Here function sqrt{-} performs element-wise square root on
the input matrix; S; is the sample covariance matrix, which
is calculated by

1

S; = =1 Z(sj —8)(s; —8)" )
JETL;
where s is the mean vector defined as
_ 1
S= D s (10)

JETL;
3.3. Cluster Center Update
The conventional SLIC updates i-th cluster center by

averaging all the augmented pixels associated with this
cluster. However, some prominent image edges/structures
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are easily mixed into a cluster as outliers. This phenomenon
is more pronounced for noisy images. Those outliers make
the original simple mean estimator for cluster center exhibit
large bias and variance. To make a robust estimation, we
propose to exclude the outliers by restricting the range of
augmented pixels. Since the assumed noise model is spatial-
independent, the added noise does not influence the update
of [z,4]T location component s. In the sequel, we focus on
updating the [I,a,b] color intensities component t.
Specifically, for i-th cluster, we collect and pack all its
associated [l,a,b]T vectors into a single matrix T

T; = [t1,ta,...,t7,] (11)

Then the median and standard deviation (std) of the [/, a, b] "
vector for T'; are computed as follows
median{T;}
Std{Tl}

m; =

12)
13)

O

Note that the function median{-} and std{-} compute the
median and std of [I,a,b]” vector along each row inde-
pendently. Instead of using all [I,a,b]T vectors within i-th
cluster, we deliberately select the augmented pixels whose
[l,a,b]T component resides in a restricted range. The indices
of those selected augmented pixels form a new set M,
which can be expressed as

M; ={j|t; € [m; — ao;,m; + ao;]} (14)

where « is a predefined constant controlling the tolerance
of deviation. It is set as 2 in this work. Finally, the cluster
center is updated by averaging the augmented pixels which
belong to set M;, i.e.,

> P

JEM;

_ 1
| M)

5)

C;

4. Experimental Results

In this section, we conduct experiments to evaluate
the performance of our method on Berkeley Segmentation
Dataset (BSD500) [13]. BSD500 image set is composed
of 500 natural images including landscapes, architectures,
animal and human portrait in size 481 x 321. For each image,
BSD500 also provides its corresponding human annotated
edge maps. Two test images are shown in Figure 3. In
our experiments, the synthetic noisy images are created by
enforcing additive white Gaussian noise (AWGN) with a
variety of noise levels o. The default grid sampling step S
is 16, and the weighting factor w is empirically fixed as 4
in all experiments.

We first compare the noise-robust ability between SLIC
and our proposed method. For a superpixel algorithm, one of
the most important property is its ability to adhere to image
boundaries. This ability can be quantitatively measured by
boundary recall [1], which indicates the percentage of the
ground-truth edges that are resided within at least two
pixels of a superpixel boundary. Higher boundary recall is
preferred because it implies most of the image edges are
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Figure 3: Test images from BSD500 image set.

4
©

I
o,

—%— Noisy-SLIC

- —A—Noisy-Ours

o7 Clean-SLIC

’ - ¢ - Clean-Ours
- © - Squares

B —v—Noisy-SLIC
3 e —2—Noisy-Ours

Clean-SLIC
- ¢ -Clean-Ours
- ©-Squares

Boundary Recall

o
IS

0.2
200

0.2
500 1000 1500 200

Number of Superpixels

(a) o =10

2000 500 1000 1500

Number of Superpixels

(b) o0 =20

2000

I
©

b
>

—v—Noisy-SLIC
—A—Noisy-Ours

Clean-SLIC
- -Clean-Ours
- © - Squares

—v—Noisy-SLIC
—A—Noisy-Ours

Clean-SLIC
- & - Clean-Ours
- © - Squares ¥

Boundary Recall
Boundary Recall

N
>

0.4

0.2

0.2
200 500 1000 1500 2000

Number of Superpixels

(c)c =30

500 1000 1500

Number of Superpixels

(d) o = 40

2000

Figure 4: Comparison of boundary recall performance on
BSD500 image set. For clean images, our method achieves
comparable boundary recall with that of SLIC; for noisy
case, our method outperforms SLIC.

successfully detected. Usually, the ground-truth edges are
obtained by human annotation. In our experiments, we adopt
the edge maps provided by BSD500 image set as ground-
truth edges. The boundary recalls of SLIC and our method
on both clean and noisy images are illustrated in Figure
4, in which the noise level o ranges from 10 to 30. As a
baseline, we present the boundary recall curves produced
by uniform squares superpixels (denoted as “Squares”).
From the experimental results shown in 4, we can draw
the following conclusions: 1) for clean images, our method
achieves comparable boundary recall score compared with
SLIC; 2) for noisy images, the boundary recall is moderately
declined with the increase of noise levels; but 3) our method
still outperforms SLIC, especially for ¢ > 10; 4) with
increment of the number of superpixels, the performance
of our method on noisy images generally approaches to the
clean ones; and finally 5) for large noise levels, e.g., 0 = 40,
the performance of SLIC on noisy image is even inferior to
uniform square benchmark superpixel. This again verifies
that the SLIC is totally failed when handling heavy noise
polluted images.

Furthermore, we visually compare the superpixel seg-
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mentation results yielded by our method with that of SLIC,
both on clean and noisy images. As can be seen from Figure
5, the superpixel segmentation performance of proposed
method is comparable with conventional SLIC for the clean
cases. However, for noisy images, SLIC cannot correctly
group perceptually meaningful regions into superpixels, i.e.,
losing the ability to adhere to image edges. In the contrast,
our proposed method could generate regular superpixels that
are consistent with the clean ones.

Finally, we apply our method to superpixel-based noise
level estimation application to demonstrate its piratical us-
age. Noise level estimation is a crucial preprocessing step in
many image processing tasks such as blind image denoising
[14]. Recently, Wu et al. [12] proposed a superpixel-based
noise level estimation scheme, in which the noise level
was estimated from the selected superpixels whose clean
versions are assumed to be homogeneous. In this algorithm,
the most crucial step is to generate superpixels. Wu sug-
gested to use N-Cut [7] to complete this task. However,
N-Cut does not explicitly taking the noise into account. The
segmentation performance become worse with the increment
of noise levels. Consequently, the estimation accuracy of
noise level is dramatically dropped, especially for large
noise levels.

We improve Wu’s method by replacing the N-Cut su-
perpixel module with our proposed scheme. The synthetic
ground-truth noise level o ranges from 10 to 40, and the
estimated noise level ¢ that is close to the ground-truth o
is regarded as the best. The estimation accuracy comparison
results are tabulated in Table 1, from which one can observe
our method consistently achieves the highest estimation
accuracy for all noise levels.

TABLE 1: Comparison of noise level estimation results. The
best results are emphasized with boldface.

Image True o | [12]+N-Cut | |o — &| | [12]+Ours | |o — G|

10 10.57 0.57 10.33 0.33
20 20.15 0.15 20.05 0.05

118035
30 29.05 0.95 29.87 0.13
40 39.09 0.91 39.75 0.25
10 9.61 0.39 9.94 0.06

100007 20 19.09 0.91 19.61 0.39
30 28.34 1.66 29.13 0.87
40 37.90 2.10 38.54 1.46

5. Conclusion

In this work, we suggested three measures to improve
the robustness of SLIC against noise. The pixel intensity and
spatial distance measurements were redesigned by explicitly
taking the noise into account. Furthermore, a robust clus-
ter center estimator is proposed by excluding the possible
outliers. Extensive experimental results on synthetic noisy
images validate the effectiveness of those improvements. We
also applied the proposed noise-robust SLIC to superpixel-
based noise level estimation task to demonstrate its usage
in real application. However, this work only considers the
AWGN noise model. In the future, we would like to inves-
tigate more noise types such as speckle noise.
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Figure 5: Visual comparison for superpixel segmentation between SLIC [1] and our proposed method on both clean and
noisy images. From top to bottom, the added noise levels are 10,20, 30 and 40, respectively. From left to right: original
images, SLIC applied on clean images, our method applied on clean images, SLIC applied on noisy images, our method
applied on noisy images. For better visual comparison, part of image is enlarged and shown at the top-right corner.
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