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ABSTRACT

User-oriented Question-Answer (QA) text pair plays an increasingly important role in online e-commerce
platforms, and expresses sentiment information with complicated semantic relations, causing great chal-
lenges for accurate sentiment analysis. To address this problem, we propose a novel hierarchical graph
attention network (HGAT) to explore abundant relations. Firstly, we utilize the dependency parser to
model relations of sentiment words with consideration of syntactic structures within sub-sentences.
Then, to better extract hidden features of these sentiment words, we feed the dependency graph into
an improved word-level graph attention network (GAT) that incorporates the learned attention weight
with the prior graph edge weight. Besides, the sigmoid self-attention mechanism is applied to aggregate
salient word representations. Finally, we establish a graph of all sub-sentences with a strong connection
and capture inter-relations and intra-relations through the sentence-level GAT. Extensive experiments
show that HGAT can achieve significant improvements in QA-style sentiment classification compared

with several baselines.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, there are a large scale of reviews provided by users
on websites, which are valuable for e-commerce platforms (e.g.,
Taobao and Amazon) to analyze them for product recommendation.
An effective way is to conduct sentiment analysis on users’ review
texts directly, aiming to infer sentiment polarity of each sentence
[1]. It has been well studied from document-level, sentence-level
and aspect-level.

Recently, a new customer QA-style review form has been
increasingly popular on e-commerce platforms, and it is conducted
to exchange ideas towards diverse characteristics of products in an
interactive way. Different from traditional non-interactive reviews,
QA-style reviews are more convincing and informative [2]. Mean-
while, due to irregular expressions in QA-style reviews, multi-
grained relations among sub-sentences are more complicated. As
shown in Fig. 1, there are 8 potential relations between all sub-
questions and sub-answers, where dotted arrows ((D to @) and solid
lines (3 to (®) denote inter-relations and intra-relations respec-
tively. Besides, all correlated sub-sentences marked in the same
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color indicate the identical sentiment polarity to one aspect of the
product. It can be seen that relation (7) presents positive sentiment
while ® shows conflict. This example illustrates that a sub-sentence
in a QA pair containing abundant sentiment information may lead to
different prediction results. Hence, multiple relations should be
considered when determining the overall sentiment of the review.
To tackle the above problems, two major challenges should be
addressed: 1) capture inter-relations between the question and
the answer; and 2) capture intra-relations among sentences.

For the first challenge, if previous algorithms [3,4] that handled
one QA text pair as a successive sequence are applied directly,
inter-relations between question and answer may be lost. For
instance, in Fig. 1(a), sub-answers a4 and as correspond to sub-
questions q, and g, respectively. Nevertheless, if we treat them
as a continuous sequence, the polarity of the entire QA pair is more
likely to be positive rather than conflict. To capture inter-relations
between the QA, a hierarchical matching network model was pro-
posed in [2]. The authors segmented a QA text pair into several
sub-questions and sub-answers, then the Answer-to-Question
Attention and the Question-to-Answer Attention mechanism were
adopted to explore sentiment information. However, they only
considered inter-relations between QA pair while intra-relations
were neglected.
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Q: Are the shoes genuine (¢;)? Do the shoes rub feet
(4,)? How about the leather (¢;)? Will you be tired
after wearing a long time (¢,)?

A: Nice shoes (a;) , real leather (a;), but the soles are of

poor quality (a;). I feel well after wearing a whole day

(a,), but sometimes it will rob your feet (a;).

(@)

®  ®

e a2 . / = S g e

9: 9 94 d4
o, _ @

@ S
a s a; a, as
©)
(D)—(): Inter-relations (5)—(8): Intra-relations

Fig. 1. (a) The original QA text pair with several sub-sentences. (b) All relations among sub-sentences.

For the second challenge, intra-relations among sentences that
contain abundant information should be further considered. For
instance, in Fig. 1(a), sub-questions g, and g; both consult the
quality of shoes, and ¢, and g, query the comfortableness of shoes.
Accordingly, a; and a, are related for they both answer the first
question, and the correlated as and as both answer the comfort-
ableness of shoes. Therefore, considering these intra-relations is
crucial for accurate sentiment analysis. In addition, salient seman-
tic words are distributed in different positions, and the word-level
dependencies need to be captured for better prediction.

To address this issue, we propose a hierarchical graph attention
network (HGAT) to capture abundant relations in QA-style reviews.
In our work, we first acquire the dependency graph of each sub-
sentence through a dependency parser, where all syntactically
related words are connected. To extract hidden features between
related words, a word-level GAT is designed to combine the
learned attention weight with the prior graph edge weight. Then,
to aggregate representations of salient words, the sigmoid self-
attention mechanism is applied to manage information flow
between the graph. Finally, we treat all sub-sentences in one QA
pair as a strongly connected graph and acquire inter-relations
and intra-relations via the sentence-level GAT. We conduct exper-
iments with two QA-style benchmarks. Experimental results show
that HGAT achieves significant improvements compared with sev-
eral baselines. Our contributions are summarized as follows:

e We propose a novel hierarchical graph attention architecture to
capture multi-level relationships in QA-style sentiment
analysis.

e We explore the former edge knowledge in GAT that combines
the learned weight with the prior graph edge weight, and incor-
porate the sigmoid self-attention mechanism to select salient
information.

e HGAT achieves significant improvements for QA-style senti-
ment classification compared with several baselines on Taobao
and SemEval2016 datasets.

The rest of this paper is organized as follows: Section 2 reviews
related works. Section 3 describes the proposed HGAT in detail.
Experimental results and further analyses are shown in Section 4.
Section 5 concludes the paper and discusses the future research.

2. Related works
2.1. Sentiment classification

Sentiment analysis [5-7] has served an essential role in many
NLP tasks, and can be divided into three levels: document-level
[8-10], sentence-level [11-13] and aspect-level [14-16]. In the
document-level sentiment classification, Dou et al. [8] proposed a
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deep memory network to predict the sentiment polarity of a whole
document. Thongtan et al. [9] utilized cosine similarity as the sim-
ilarity measure to train document embeddings for sentiment clas-
sification. Du et al. [17] combined the textual representation and
the corresponding commonsense knowledge representation for
stance classification. In the sentence-level sentiment classification,
recent context-aware sub-symbolic approaches were proposed to
obtain sentiment-specific word embeddings [ 18], such as attention
modeling [19-21] and capsule networks [12,22]. In [11], the
authors investigated domain representations of multitask learning
for multi-domain sentiment analysis towards each sentence. To
overcome the bias problem of sequential LSTM, Wang et al. [12]
proposed a capsule tree-LSTM model to assign different weights
according to their contributions.

Different from the document-level and the sentence-level sen-
timent classification that predict the whole polarity of the given
text, the aspect-level sentiment analysis aims to identify the polar-
ities of different aspects based on their contextual words and per-
forms finer-grained analysis [23,24]. In the aspect-level sentiment
analysis, Tang et al. [25] developed two LSTM models and took tar-
get information into account automatically by adding a target con-
nection component. In [26], the authors proposed to automatically
mine supervision information of the attention mechanism. Zhang
et al. [24] applied graph convolutional networks (GCNs) to obtain
long-away aspect-relevant information.

Since QA-style reviews are more complicated and irregular,
none of the above method is well suited for this kind of review.
Shen et al. [2] is the first work to propose QA-style level sentiment
classification with the use of a hierarchical matching network
model. More recently, Wang et al. [27] investigated aspect-level
sentiment classification with pre-defined aspects on QA-style data-
sets. However, they failed to capture intra-relations among sub-
sentences.

2.2. Graph Neural Networks

Graph neural networks have attracted growing attention with
the ability of handing real-world graph-structured data [28-30].
Kipf et al. [31] proposed GCNs to encode the syntactic structure
of sentences. Marcheggiani et al. [32] utilized GCNs for semantic
role labeling tasks, and presented that GCNs can be used to incor-
porate syntactic information into neural models. Yao et al. [33]
regarded documents and words as nodes, and applied GCNs for
text classification. Schlichtkrull et al. [34] proposed relational GCNs
to deal with the highly multi-relational data characteristic of real-
istic knowledge bases.

In [35], the authors proposed graph attention network (GAT)
and introduced an attention-based architecture to perform node
classification of graph-structured data. Compare to GCN, GAT only
requires the structure of neighbor nodes rather than the entire
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graph structure. Huang et al. [36] utilized GAT for aspect-level sen-
timent classification, which extracted syntax among words with
dependency relationships. Wang et al. [37]| proposed to extend
the original GAT with additional relational heads for sentiment
prediction. Inspired by the above works, we propose an improved
hierarchical GAT considering the prior edge weight to capture
inter-relations and intra-relations on QA-style datasets.

3. Methodology

The overall architecture of HGAT is presented in Fig. 2, which
mainly consists of the word encoding layer, the hierarchical GAT
layer, and the output layer.

3.1. Problem definition and notation

Given an input QA text pair: question Q = [q;,q,---, G- - - qu]
and answer A = [a;,0,,...,4j,...,ay]|, where g; and g; denote sub-
question and sub-answer respectively. In detail, each question con-
tains M sub-questions and each answer contains N sub-answers,
where ¢; contains m words: q; = [q¥,q%,...,q%] and g; contains

n words: g; = [a ag,..., Jn} The task is to classify sentiment

1 G20
polarity (positive, negative, neutral or conflict) of a QA text pair.
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3.2. Word encoding

The inputs of the sentiment extractor are word tokens, and
these tokens are transformed to the distributed representations
for the convenience of calculation by neural networks.

3.2.1. Word embedding

We employ the pre-trained models (Skip-Gram [38] or Bert
[39]) to obtain the word embedding of each word w; € R?*!, where
d represents the embedding dimension. The dimensions of each
sub-question and sub-answer are gq; € R™¢ and a; € R™ respec-
tively. Furthermore, the input question Q € R™*™*¢ and the input
answer A € RV™? in a QA pair are obtained by the word embed-
ding layer.

3.2.2. Bi-LSTM encoding

To capture the future context as well as the past, we feed each
sub-sentence into the Bidirectional Long-Short Term Memory net-
work (Bi-LSTM) to extract contextual information from words, in

which the forward hidden state 7 € RY*! and the backward hid-

den state h ¢ RY"', and d' is the dimension of hidden state. Then,
the encoded representation of each word is formed by concatenat-
ing two hidden states:

hi = {EHh,}, hy € R (1)

where || denotes the vertical concatenating operation.

Sentence-Level GAT & Sigmoid Self-Attention

Word-Level GAT & Sigmoid Self—Attention

L}
LSTM | +—

LSTM

= [LSTM |+

ﬁ@ LSTM |

Embedding Eq

T

Embedding Ea

Fig. 2. The architecture of HGAT. In the word-level GAT, the dependency parser is utilized to generate dependency graph. In the sentence-level GAT, a strongly connected

graph is formed with all sub-sentences.
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3.3. Word-level graph attention network

In this subsection, we will specifically introduce the word-level
graph attention network. Firstly, we utilize the dependency parser
to acquire syntactic relations between words and transform each
sub-sentence into the corresponding dependency graph. Then,
we conduct an improved GAT and the sigmoid self-attention mech-
anism to obtain the representation of each sub-sentence.

3.3.1. Intra-QA Relation Parser

The Stanford Parser [40] toolkit is adopted to acquire the syn-
tactic structure of sub-sentences in each QA. With the universal
dependencies generated by the Stanford Parser Tree, intra-QA
word-level relations can be obtained. For instance, as shown in
Fig. 3(a), the sentence “The food is decent though not worth the price”
has 8 dependency relations, where the syntactically related words
are linked with the directed edges in a dependency graph. Mean-
while, Fig. 3(b) shows the corresponding adjacent matrix of the
parsed sentence, where ‘1’ denotes that two words are syntacti-
cally connected.

3.3.2. Graph attention network

GAT performs well on graph-structured data, and can aggregate
the representations of neighborhood nodes [35]. In this work, we
conduct an improved GAT to extract intra-QA information. Given
n encoded nodes h = [hy,hy,... h;,... hy)], if the node h; is the
neighbor of the node h; in the dependency graph, we concatenate
h; and h; with a shared weight matrix W:

W,'J' = tanh [Wsh,'HWshj], (2)
where W, € R"*2@ and w;; € B!, Then, the normalized atten-
tion weight a;; can be calculated as:

exp(w;;)
ZpeNeieXp (Wi,p) /

where Nei denotes the collection of neighbor nodes for the i-th
node.

Fig. 4 shows the motivation of combining the prior edge infor-
mation. For the sentence “The food is decent though not worth the
price”, the word “decent” has a relative larger weight since it deter-
mines the polarity of “food” in the original GAT. If we take the prior
edge information into consideration, the weight of “decent” is more
significant, showing that the combination of the learned attention

3)

ajj =
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weighted sum of the learned attention weight and the prior edge
weight of the dependency graph:

Eu = ),*graphu +(1-2) * Ujj,

(4)

where /1 is a pre-defined parameter that decides the importance of
learned weight and original adjacency weights. If 4 is set to O,
weights of edges are completely learned by the model. If 4 is set
to 1, the attention mechanism is not required.

The output representation is calculated by:

h: = Zﬁu * Wshj,

Jj€Nei

()

where h; € rR"*1, In our work, we also apply multi-head attention
into graph attention to learn information from different semantic
spaces:

K I
| a * Wih;
k=1"\ jeNei

where K is the number of heads. After the calculation of the

(6)

improved word-level GAT, the dimension of each word is RY"1,
Meanwhile, we can obtain the sub-question gq; € r™"" and sub-

hid
answer a; € R™4",

3.3.3. Sigmoid self-attention
For each sub-question g; and sub-answer a;, to simplify the
mathematical expression, we denote them as sub-sentence

Si € R"de, where n is the number of words. We propose a sigmoid
self-attention mechanism to select salient information, and the
importance weight o can be learned as follows:

w = sigmoid(Wys! @ Wips), 7

)

hid hid hid . .
e R W, e R™1 are weight matri-

o = softmax(w'W, ),

hid hid
where W, € R %" W,

ces, we Rdhmx”, o e R™! and © is the element-wise multiplication
operation. The sigmoid function has the domain of all real numbers,
with return value monotonically increasing from 0 to 1. It helps
assign large weights near 1 to salient sentiment words while assign-
ing small weights to irrelevant words near 0. Then, a softmax func-
tion is used to normalize the attention weight «, and the sub-
sentence representation s; is calculated by:

weight a;; with the former graph adjacency matrix graph;; can bet- s; =i, 9)
ter utilize the prior knowledge. Thus we upgrade a;; with a
>y & 5> 2
> o $ XS
(g\\e' Koo N4 5006 ‘&0000\ L N QO
The {1 |1 |0 ]|0|0 |0 ]O|O |0
food {1 |1 |0 |1 |0 |0 ]O|O|O
det nsubj det nsubj im (01011 1L10 0]10f0 |0
advmod decent| 0 |1 |1 |1 |1 |0 [0 |0 |0
The food decnt though not worth the price though|0 00 |1 |10 1101
S not |0 (0|0 |00 |1 |1 [0]0O
cop xcomp det worth{0 [0 [0 [0 ]1[1 [1]o [0
the {0 [0 [0 |]O|O |O |0 |1 |1
price|0 |0 |0 (O |1 (O (O |1 |1
(a) (b)

Fig. 3. Anillustration of the dependency graph. (a) The universal dependencies are generated by the Stanford Parser Tree. (b) The adjacency matrix of the given dependencies.
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1[1]o]ofofofofo]o
1 [1]o]1fofofofo]o
olof1f1]o]ofofo]o
o|1f1f1]1]ofofo]o

(1-2) = 4+ 2o |oJofofrfr]ofr]ofr| =

oofofo]o]1[1fo]o
oofofo]1]1|1]fo]o
l-l olofofofofo]o]1]1

The food is decent though not worth the price clofojofrjojofryt The food is decent though not worth the price

Attention Score Graph Matrix Final Score

Fig. 4. An illustration of combining the prior edge weight.

where s; € Re"x1 represents the output of the sigmoid self-
attention layer.

With the calculation of the word-level GAT and the sigmoid
self-attention (Eqgs. (2)-(9)), we can obtain the representations of

. hid hid .
question Q € RM*¥" and answer A € R"*" in a QA pair.

3.4. Sentence-level graph attention network

As mentioned before, the outputs of the word-level GAT can be
denoted as: question Q= [q,,q},...,q}....q)] and answer
A=[d),a,,...,a,... ay], where q; and q; are the renewed sub-
sentence representations. In the sentence-level GAT, each sub-
sentence s; is considered as a node, and we treat all nodes as a
strongly connected graph to capture inter-relations and intra-
relations among sub-sentences. Since any two nodes are linked
in a strongly connected graph, each value in the corresponding
adjacent matrix is set to 1. The entire QA representation can be cal-
culated as follows:

S= Y GAT(s)). (10
ieM+N
where S € RMN)*"" s the collection of all new sub-sentence repre-

sentations, and GAT is the same operation in the word-level GAT
(Algorithm 1 lines 5-14). Then, we adopt sigmoid self-attention
mechanism to obtain the QA-pair representation R for final senti-
ment classification:

W= sigmoid(WuS’T ® wms”), (11)
o = softmax(wW;), (12)
R=S"o, (13)

hid |, hid hid , shid hid . .
where W1 ¢ R WT ¢ g4 W, ¢ RY1 are weight matri-

ces, W € RV o e RMENXT apd R ¢ RA"XT,
3.5. QA-Pair classification
For the final classification model, we feed R into a fully con-

nected network with softmax activation function:

P = softmax(WgR + bg), (14)
where Wy € RY" < s weight matrix, by € R is the bias and c is the
number of sentiment polarities. The detailed steps of the proposed
HGAT algorithm are shown in Algorithm 1.
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Algorithm 1. HGAT Algorithm

Input: QA text pair question Q, answer A, edge weight 4, head
number K.

Output: Predicted sentiment polarity j.

: Split each Q and A into sub-sentence g; and a;;

: Obtain the word encoding h; by Bi-LSTM module;

: Obtain the dependency graph by the Stanford Parser
toolkit;

: Calculate the new word encoding by GAT function;

: function GAT(h;)

for k in range(K) do

w¥; = tanh [Wé(hiHW?hj]'

—

k k
af; = softmax(wi J>,

© 0 NSk

af; = i+ graph;;+ (1 — 1)+ a;;//combine the prior

edge weight

10: h;k = ZjENeia{ij * W’; hj,

11: end for

12:  h, — Concatenate (h),

13: return h;

14: end function

15: Obtain the sub-sentence representation s; by the sigmoid
self-attention(Eqgs. (7)-(9));

16: Calculate the new sub-sentence representation by the GAT
function with input s;;

17: Obtain the final feature representation R by the sigmoid
self-attention(Eqs. (11)-(13));

18: y = argmax(softmax(WgR + bg)),

19: return j.

The cross-entropy loss function is defined as:

T

J(0) = ="y, « logy: + 0],

t=1

(15)
where T is the training size, y, is the true label of the t-th sample, y,
is the predicted label, and f is the hyper-parameter to restrict the L2

regularization.

4. Datasets and experimental settings

All experiments are conducted on a Linux server (Ubuntu
18.04.1) with a Interl(R) Xeon(R) Gold 5120 CPU, 8 Nvidia 2080TI



J. Zeng, T. Liu, W. Jia et al.

GPUs and 128G RAM. The detailed datasets and experimental set-
tings are described as follows:

Datasets: We conduct experiments on Taobao and SemE-
val2016 datasets. The Taobao datasets are released by [2], which
are collected from domains of Beauty, Shoe, and Electronic. In each
domain, there are 10000 QA text pairs with individual labels (pos-
itive, negative, neutral or conflict). The SemEval2016 dataset is
retrieved from community question answer that aims to classify
answers as good, bad and potentially useful. We extract 8407 sam-
ples from the original dataset to follow a fair distribution. The
detailed distributions of two datasets are shown in Tables 1 and
2. We use both word2vec [38] and Bert [39] to initialize word
embeddings. FudanNLP' is used to segment Chinese sentences and
words.

Hyper-parameters: Adam [41] is adopted to minimize J(0)
given in Eq. (15). Specifically, learning rate is 0.001, the lengths
of sub-question and sub-answer are set to 15 and 20 respectively,
and the detailed parameters are given in Table 3.

Evaluation Metric: Accuracy and Macro-F1 are used to measure
the performance of models, which are defined as follows:

Accuracy =1L,
F1 = 2PR

PR’

(16)

where T is the number of correctly predict samples, N is the total
number of samples, P is the positive predictive value, and R is the
recall value.

4.1. Baselines

To evaluate the performance of the proposed HGAT, the follow-
ing baselines are chosen for comparison:

Bi-LSTM [42]: a bidirectional LSTM model that treated a QA text
pair as a successive sequence.

ATT-LSTM [43]: the approach conducted the attention mecha-
nism for the aspect-level sentiment analysis. In our implementa-
tion, we directly adopted the hidden states of LSTM to yield the
attention.

TextCNN [44]: a CNN model that distinguished between impor-
tant and comparatively inconsequential design decisions for sen-
tence classification. In our implementation, we set the kernel
sizes to 3, 4 and 5.

TextGCN [33]: a GCN model that treated each word as a node
for text classification. In our implementation, we treated a QA text
pair as a successive sequence.

CDT [45]: a state-of-the-art approach that averaged aspect rep-
resentations for the aspect-level sentiment analysis. In our imple-
mentation, we adopted a two-layer graph convolutional network
on QA text pairs and averaged question representations for final
outputs.

DPCNN [46]: a deep pyramid CNN model that represented long-
range associations in texts and obtained more global information.

BiMPM [47]: a state-of-the-art approach that matched sen-
tences from multiple perspectives. In our implementation, we trea-
ted the question and the answer as two successive sequences, and
conducted the matching mechanism between two sequences.

HMN [2]: the approach first segmented QA pair into sub-
sentences, and then employed both QA bidirectional matching
mechanism to capture inter-relations.

Fine-grained Bert [48]: the approach classified sentiments by
the fine-grained Bert model with a softmax classifier.

TD-GAT [36]: the approach utilized GAT with the consideration
of word dependencies for the aspect-level sentiment classification.
In our implementation, we ignored aspect relations and treated a

! https://github.com/FudanNLP/fnlp/
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QA text pair as a whole sequence.
HGAT-word2vec: our model with word2vec embedding.
HGAT-Bert: our model with pre-trained Bert embedding.

4.2. Results

Table 4 presents the overall comparison results in all domains,
showing that:

1. Compared to the previous models (Bi-LSTM, ATT-LSTM,
TextCNN and et al.) that treat a QA text pair as a successive
sequence, HMN and HGAT achieve better performance on Tao-
bao datasets. The reason is that HMN and HGAT segment sen-
tences and can capture inter-relations among sub-sentences.

. Though Fine-grained Bert treats the QA text pair as a sequence,
it outperforms BiMPM and HMN due to its ability for modeling
the long-term dependency of salient information with the Bert
structure.

. HGAT achieves about 2.4% to 5.5% improvement over than TD-
GAT in terms of the overall performance, showing that HGAT
can better capture the relations among sub-sentences by apply-
ing the sentence-level GAT.

. HGAT outperforms all baselines on three domains and shows
the effectiveness of the proposed method.

Table 5 reports the detailed results of each class on SemE-
val2016 dataset, where the pre-trained Skip-Gram is adopted to
initialize word embeddings. We compare HGAT with TextCNN,
TextGCN, DPCNN and HMN. It can be seen that HGAT and HMN
achieve top 2 results since two methods attempt to match relations
between sub-sentences. However, TextGCN performs worse than
TextCNN due to the reason that the output of GCN using general
averaging may cause semantic ambiguity. Meanwhile, in TextCNN,
we concatenate three different kernels (3, 4, 5) to capture different
information with maxpool operation, alleviating the dilution of
important features.

4.3. Ablation study

Furthermore, in order to validate the effects of different parts
in HGAT, we experiment HGAT with five settings: 1) replacing
Bi-LSTM with one layer fully connected network; 2) removing
the word-level GAT; 3) removing the sentence-level GAT; 4)
replacing the sigmoid self-attention with the original self-
attention mechanism; and 5) replacing the improved GAT with
the original GAT. According to Table 6, several results are
highlighted:

1. Bi-LSTM module has the most significant influence with about
8.4% to 12.9% accuracy reduction since it can extract bidirec-
tional contextual information.

. Compared with the word-level GAT, the sentence-level GAT has
more impact on the overall results, demonstrating that the rela-
tions among sub-sentences are more important than the ones
among words.

. Sigmoid self-attention mechanism improves about 0.6% to 1.8%
on M-F1 and 0.1% to 1.8% on ACC with its ability of capturing
salient sentiment information.

. The improved GAT that considers both the learned weight and
the prior graph edge weight performs better than the original
GAT.

. Each module in HGAT helps improve the accuracy of sentiment
analysis, especially for sentence-level GAT module that cap-
tures inter-relations and intra-relations among sub-sentences.
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Table 1
The detailed data distributions of Taobao.
Positive Negative Neutral Conflict Total
Beauty train 2950 792 4017 241 8000
test 726 189 1008 77 2000
Shoe train 3234 648 3787 331 8000
test 791 171 957 81 2000
Electronic train 3073 805 3701 421 8000
test 734 212 947 107 2000
Table 2
The detailed data distributions of SemEval2016.
Good Bad Potential Useful Total
SemEval2016 train 2486 2499 2015 7000
test 514 501 392 1407
Table 3
Parameter Settings.
Description Symbol Value
Class number C 4
Batch size b 32
Epoch number e 20
Sub-question length Qien 15
Sub-answer length Qlen 20
LSTM hidden size d 128
Word-level GAT hidden size Jhid 256
Sentence-level GAT hidden size Jhid 256
Head num hp 4
Sigmoid self-attention size qat 256
Train size tr 8000
Test size te 2000
Edge weight A 0.2
Learning rate Ir 0.001
Dropout probability p 0.7
I, penalty B 0.0001

4.4. Training loss curves

We discuss the training loss curves with different 4 in this sub-
section. As can be seen from Fig. 5, the training loss fluctuates a lot
when 4 = 0, and the training loss converges very slowly with the
minimum loss value 20. When 2 is set to 0.2, the loss becomes
smooth and can be well trained considering the prior edge weight.
However, when 1 is set to 0.5, the curve becomes a bit unstable,
which is caused by the penalty of the larger scale of the prior edge
weight.

Neurocomputing 457 (2021) 214-224
4.5. Effects of the model depth

To acquire the impact of the depth of GAT layers, we conduct
several experiments on the Shoe domain with different GAT layers.
In Fig. 6, the model achieves the best M-F1 and ACC when the num-
ber of depth is 2. Besides, the results show that the model is train-
able when the depth of GCNs is less than 3 layers, which implies
that the semantic relations among sentences can be captured
within 3-hops away. However, the model presents a sharp down-
trend when the number of GAT layers is bigger than 3. One possible
reason is that the model becomes more complex and needs more
data for training.

4.6. Effects of the prior edge weight

We further explore the impact of different prior edge weight on
the Shoe domain, where / increases from 0 to 1. It can be seen from
Fig. 7 that the model performs worst when / = 1 because the edge
weights are completely learned by the dependency relations and
no attention weight is needed. Meanwhile, as discussed in Sec-
tion 4.3, the improved GAT is replaced by the original GAT since
no prior edge knowledge is considered when /. = 0. Additionally,
the model performs best when considering about 20% of the prior
edge knowledge, showing the effectiveness of the improved GAT.

4.7. Error analysis

To analyze the limitation of HAGT, the percentage of misclassi-
fication of four polarities is presented in Fig. 8. Since the semantic
of neutral sample is uncertain, it has the largest percentage of error
classification. However, the conflict class ranks the lowest among
all domains due to its small test samples.

Specifically, Fig. 9 describes the detailed error cases on the shoe
domain. For the positive case “Q: Are the shoes good? Are they worth
buying? A: Warmth is ok, but worse than the brand.”, HGAT pays
more attention to the relations between two sub-answers, thus
misclassifies the sample as conflict. Meanwhile, for the second case
“Q:; Will it deform in several months? Will it be delaminated or
pleated? A: Just ok.”, HGAT conducts the wrong prediction due to
the difficulty in comprehension of the answer “Just ok”. For the
neutral case, though the answer just declares the fact, HGAT mis-
classifies it with larger weights of sub-answers. For the last case,
since the answer is not very clear to the question, HGAT classifies
the sample as negative with the sub-answer “poor air permeability”.

Table 4

Comparison of several baselines on Taobao QA datasets. The best results of each domain are in bold and the results with { are retrieved from [2].
Model Beauty Shoe Electronic Average

M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC

Bi-LSTM 0.535 0.722 0.527 0.752 0.574 0.723 0.545 0.732
ATT-LSTM 0.517 0.731 0.565 0.749 0.561 0.718 0.548 0.733
BiMPM 0.561 0.751 0.591 0.765 0.578 0.740 0.577 0.752
TextCNN 0.625 0.758 0.648 0.793 0.638 0.768 0.637 0.773
TextGCN 0.587 0.744 0.607 0.751 0.635 0.753 0.610 0.749
CDT 0.616 0.743 0.631 0.765 0.654 0.768 0.634 0.759
DPCNN 0.625 0.749 0.681 0.790 0.683 0.785 0.663 0.775
HMN 0.598+ 0.776% 0.683t 0.827+1 0.640% 0.779% 0.640 0.794
HGAT-word2vec 0.657 0.791 0.703 0.820 0.719 0.803 0.693 0.805
Fine-grained Bert 0.651 0.780 0.673 0.802 0.612 0.775 0.645 0.785
TD-GAT Bert 0.661 0.796 0.711 0.821 0.710 0.806 0.694 0.808
HGAT-Bert 0.728 0.829 0.774 0.846 0.745 0.822 0.749 0.832
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Table 5

Results of each class on SemEval2016 dataset.
Model Good Bad Potential Useful Overall

ACC ACC ACC M-F1 ACC

TextCNN 0.650 0.682 0.545 0.634 0.638
TextGCN 0.650 0.695 0.541 0.621 0.629
DPCNN 0.709 0.700 0.583 0.666 0.673
HMN 0.713 0.717 0.599 0.673 0.682
HGAT 0.727 0.726 0.653 0.685 0.703

Table 6

Comparison of all modules in HGAT.

Beauty Shoe Electronic Average
M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC

HGAT-Bert 0.728 0.829 0.774 0.846 0.745 0.822 0.749 0.832
-w/o Bi-LSTM 0.508 0.700 0.565 0.762 0.597 0.723 0.557 0.728
-w/o word-GAT 0.720 0.817 0.746 0.841 0.745 0.817 0.737 0.825
-w/o sen-GAT 0.707 0.811 0.733 0.838 0.727 0.811 0.722 0.820
-wj/o sigmoid 0.714 0.811 0.756 0.840 0.739 0.821 0.736 0.824
-wj/o prior weight 0.707 0.813 0.770 0.844 0.743 0.814 0.740 0.824

80 :
70 ! -
60 j
A (SRS | | PUNY | SRS | P | S -
50 é
172} (] i
8 ¥ s
3 40} = i
\\ § ot e S
30 Wpn . . 2 ;
/WAVATE VY VY P I i B0 -
RV AYAAVER NIYUAWA VAVAV RSV I AY TN s
20 : R NNk e e
Nl | —A—MF
104~ J) MMW\) - 50| _e_ ACC
o ¥ : :
0 | | T T T T T T T |
0 500 1000 1500 2000 250 00 01 02 03 04 05 06 07 08 09 1.0 1.1
Step Different Piror Edge Weight
Fig. 5. Training loss with different 4 on the shoe domain. Fig. 7. Effects of Different prior edge weights.
90 r r r r - 55
: ‘ ‘ ‘ sod positve
80 ] I negative
: 454 neutral
70 4 40 S — conflict |-
S | £ 35-
2 60 j Y
%D en 30 -
=} : =
§ T T T e § 251
& | | ‘ & 20
40 At I SRR R Rt N E 154
) 10
s s s s 1 i 51
20 i f T T T T 0 ;
0 1 2 3 4 5 6 7 Beauty Shoe Electronic
Number of GAT Layers Domain
Fig. 6. Effects of Different Number of GAT layers. Fig. 8. Error classification percentages on three domains.

221



J. Zeng, T. Liu, W. Jia et al.

Neurocomputing 457 (2021) 214-224

Domain Label Percentage Example

Prediction

QETHR?EFIA?

positive 25.14

Are the shoes good? Are they worth buying?
A: REEMEARE, tRfENEE

conflict

‘Warmth is ok, but worse than the brand.

Q JIMAEEEED AR, E%?
Will it deform in several months? Will it be

negative 17.63

A —f%

Just ok.
Shoe usto

delaminated or pleated?

neutral

Q: AV E R R IVEF?

Is cloth or leather better?

neutral 4798

A: RESSFTEE, MBS

positive

Leather is better at caring, cloth is
better at air permeability.

Q XEMNREBTA, LHEERIMUA?

conflict 9.25 ALK, RES.

Is the quality of this shoe okay? especially for the sole?

negative

OK, poor air permeability.

Fig. 9. Error analysis on the Shoe domain.

4.8. Visualization of attention

To gain a more comprehensive understanding of the proposed
HGAT, we present the visualization of attention weights. In
Fig. 10, we visualize attention weights column by column with
blue color, and intra-relations are marked with red rectangles. It
can be seen that the salient words can be well marked when con-
sidering syntactic information. Meanwhile, both GAT and the
improved GAT can assign similar weight distributions. For intra-
relations, the second column g, assigns larger weight (0.401) to
sub-sentence g, and the third column a; assigns larger weight
(0.227) to sub-sentence a, in Fig. 10(b). For inter-relations, the

Q: BNREINE ? AERZIENG ?

third column a; and the forth column a, both assign larger weights
to sub-sentences q; and g, in two sub-figures.

5. Conclusion

In this paper, we explore the former edge knowledge in GAT and
propose a novel hierarchical graph attention architecture to cap-
ture inter-relations and intra-relations for QA-style sentiment clas-
sification. HGAT embeds the dependency graph into word-level
GAT and uses the sigmoid self-attention mechanism to manage
information flow between the multi-level GAT, making it capable

How is the (ilI0NOF 1he COMPUIEH ” () Does the EOMPIMER freeze. ? (q2)
A IRAITERET. BRIEE R,
Good GUETERf no! PIAYING GaMEs. (=) The ERAPRICS is Very Ordinary. (a,)

L: Conflict

qi Q2 a a

qQ1

Q@

a)

a

q1 Q2 Qg a

M : [ 0.2
0.139 | 0177 | 0.179
-0.1

(b)

Fig. 10. The visualization of attention weights. (a) attention weights of the original GAT. (b) attention weights of the improved GAT.
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to explore abundant syntactic relations among salient sentiment
words and multi-grained relations between question and answer.
Extensive experiments show that HGAT achieves significant
improvements for QA-style sentiment classification compared
with several baselines.

Future work will take more structure information about sub-
sentences into consideration. Since this work treats all sub-
sentences as a strongly connected graph, the universal dependency
relations could be further studied. We hope to further explore how
prior edge information can be better integrated in GAT, and extend
HGAT to analyze intentions and emotions in multi-round dialogue
systems.
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