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Abstract

In the customer segmentation problem, a large number

of features are manually designed and used to compre-

hensively describe the customer instances. However,

some of these features are irrelevant, redundant, and

noisy, which are not necessary and effective for custo-

mer segmentation. Feature selection is an important

data preprocessing method by selecting important fea-

tures from the original feature set. Particularly, feature

selection in customer segmentation is a multiobjective

problem that aims to minimize the feature number and

maximize the classification performance. This paper

proposes a multiobjective feature‐selection method

based on a meta‐heuristic algorithm—hydrological cy-

cling optimization (HCO)—to solve customer segmen-

tation. The proposed method is able to automatically

evolve a set of non‐dominated solutions that select small

numbers of features and achieve high classification ac-

curacy. To this end, three strategies based on the global

flow operator, possibility‐based acceptance criteria, and

density‐based evaporation and precipitation are pro-

posed to improve the global search ability and the so-

lution diversity of the proposed approach. The

performance of the proposed approach is examined on

three customer‐segmentation datasets and compared

with original multiobjective HCO and six well‐known
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evolutionary multiobjective algorithms. The results

confirm the superiority of the proposed approach in

solving multiobjective customer‐segmentation problems

by achieving higher calculation stability, search di-

versity, and solution quality compared with the other

competing methods.
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1 | INTRODUCTION

Feature selection (FS), as a data pre‐processing technique, has been widely employed for solving
classification problems. FS has been applied to tackle the abundance of noisy and irrelevant
features, thereby making reduced‐size data sets retain the maximum possible information from the
original data.1 This affords users the advantages of reduced dimensionality and computation costs
while enhancing data interpretation and prediction performance.2 Based on the feature subset
evaluation methods, FS methods can be mainly categorized as filter and wrapper methods. Filter
methods evaluate the feature subsets based on a specific mathematic criterion, such as distance,
consistency, dependency, and/or correlation. In contrast, wrapper methods employ a pre-
determined learning algorithm to evaluate the effectiveness of the selected feature subset (e.g.,
accuracy).3 Remarkably, wrapper methods are recognized based on their superior classification
capability in reducing data dimensionality. Thus, wrappers yield more effective results than filters.4

Although wrapper methods demonstrate superior classification performance, the major
challenge encountered when solving FS problems is the exponential growth of the search space
along with the increasing feature subset count. To overcome this challenge, several meta-
heuristic global‐search algorithms, such as the particle swarm optimization (PSO),5–7 genetic
algorithm (GA),8–10 differential evolution (DE),11 and ant colony optimization (ACO),12 have
been used solve different optimization problems while incurring low computation costs and
realizing optimum classification performance.2 Accordingly, these approaches are considered
desirable candidates to overcome the limitations of wrapper FS methods.

The hydrological cycle optimization (HCO) algorithm is an emerging metaheuristic algo-
rithm. It demonstrates outstanding performance in maintaining diversity and avoiding the
realization of local optimal when solving single‐objective optimization problems.13,14 Moreover,
it obtains good balance among multiple quality objectives when solving recommendation
system problems.15 Prior studies have laid a strong foundation for extending the applications of
the original HCO to solve complex real‐world problems. However, to the best of our knowledge,
no research has yet been undertaken to utilize the HCO for solving FS problems, in particular,
multiobjective FS problem for customer segmentation.

By definition, FS can be considered a multiobjective‐optimization problem aimed at simulta-
neously minimizing the classification error rate and feature‐subset size. Most existing studies consider
FS as a single‐objective‐optimization problem that reduces the classification error regardless of subset
size.16–19 For researchers attempting to develop multiobjective FS methods, the need to tradeoff
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convergence in favor of increased diversity in a high‐dimensional space has remained a long‐standing
difficulty. The most common and straightforward strategy is the use of the weighted‐sum approach,20

which transforms the optimization problem into a single‐objective one. However, such approaches
are criticized for their subjectivity in determining the weighting coefficients and insufficiency with
regard to solving problems involving non‐convex Pareto fronts.21,22

In view of the above discussions, customer segmentation can be considered a multiobjective‐
optimization problem. Further, it is imperative to overcome the limitations of most existing
metaheuristic‐based FS methods concerning convergence and population diversity. Because the HCO
has been successfully applied to solve difficult combinatorial optimization problems, including nurse
scheduling13 and recommendation systems,15 we strongly believe that the HCO‐inspired multi-
objective FS method to have great potential for solving customer‐segmentation problems.

This paper presents an HCO‐based multiobjective FS approach that generates a Pareto‐optimal
front instead of a unique global optimum, thereby producing a set of non‐dominated solutions that
specify a small number of features while incurring minimum classification errors. To realize this
objective, a multiobjective evolutionary HCO (MOEHCO) has been proposed. It is built on the idea of
a wrapper FS method along with three strategies—global flow operator, possibility‐based acceptance
criteria, and density‐based evaporation and precipitation—that tackle optimization problems in their
prematurity as well as enhance the robustness of individual performance and solution diversity. Six
well‐known multiobjective metaheuristic algorithms—Multi‐Objective Particle Swarm Optimization
(MOPSO),17 Multi‐Objective Evolutionary Algorithm based on Decomposition (MOEA‐D),18 Non‐
Dominated Sorting Genetic Algorithm II (NSGA‐II),19 Inverse Modeling Multi‐Objective Evolu-
tionary Algorithm (IM‐MOEA),23 Strength Pareto Evolutionary Algorithm 2 (SPEA2),24 Pareto
Envelope‐Based Selection Algorithm 2 (PESA2)25—and the original MOHCO approach are also
considered in this study as competing candidates to quantify the relatively superior performance of
the MOEHCO approach when solving customer‐segmentation problems.

Major contributions of this study are as follows:

• The proposed MOEHCO‐based FS method that benefits from the original MOHCO and three
novel strategies is the first of its kind.

• This is the first study that applies an improved MOHCO‐based wrapper FS method for
customer segmentation.

• Experimental results obtained in this study reveal that the proposed MOEHCO‐based FS algo-
rithm outperforms other classical approaches when solving customer‐segmentation problems.

The remainder of this paper is organized as follows: Section 2 describes extant research con-
cerning FS methods. Section 3 describes the proposed method, including the fitness function, three
MOEHCO strategies, and general framework. Section 4 presents the comparison between experi-
mental results obtained using the proposed and other candidate approaches. Finally, Section 5 lists
major conclusions drawn from this study along with a discussion of future research prospects.

2 | RELATED WORK

2.1 | Conventional FS

As already stated, FS techniques can be classified as filters and wrappers. Filter methods evaluate
feature subsets while considering certain predefined metrics or information instead of a learning
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algorithm. The learning algorithm and selected features are independent of each other. Overall, the
filter FS algorithms afford high speed and scalability to the users. However, they might underperform
in cases involving highly correlated features, thereby resulting in the generation of a local optimum.21

In comparison, wrapper methods utilize the learning algorithm as a black box to score feature
subsets. Moreover, the search space in wrapper approaches is considerably larger compared with that
in filter methods. Further, the wrapper approach avoids deflections caused by the independence
between the evaluation criteria and learning algorithm.10 However, despite their popularity, wrapper
methods encounter several limitations, including (1) high computational complexity, (2) large dif-
ferences in the optimal feature subsets for different learners, (3) need for time‐consuming determi-
nation of user‐specified parameters for learning algorithms, and (4) only few learners being capable of
dealing with multiclass classifications.3

2.2 | Metaheuristic‐based FS

To address aforementioned limitations of wrapper approaches, several researchers have at-
tempted to evolve traditional FS methods using metaheuristic algorithms. Metaheuristic‐based
FS methods have reportedly demonstrated superior performance when solving several single‐
objective optimization problems. Zorarpacı and Özel26 combined the ACO and DE algorithms
to improve the performance of general classification tasks, thereby outperforming traditional
FS methods, such as the chi‐square (CHI), information gain (IG), and correlation feature
selection (CFS), in finding optimal feature subsets. Tabakhi and Moradi27 combined the ant‐
colony optimization with traditional filter‐based FS methods by evaluating the relevance and
redundancy of features. They reported realization of a lower classification‐error rate compared
to certain univariate and multivariate FS methods. Zhang et al.28 combined the binary PSO
approach with a mutation operator search strategy. Further, they used the decision‐tree clas-
sifier to improve the classification accuracy of a wrapper‐based FS method.

Considering the combinatorial nature of several practical problems, researchers should
pursue at least two objectives during feature‐subset selection. Subsequently, they could extend
the research focus to employing metaheuristic methods for solving multiobjective FS problems.
For instance, Xue et al.29 developed two multiobjective PSO‐based FS methods. One is based on
idea of nondominated sorting and the other is inspired from the concepts of crowding, mu-
tation, and dominance, respectively. Their results indicate the superiority of these approaches
in terms of both the classification accuracy and features size. Zhang et al.30 developed the DE
method as a binary approach in combination with a self‐learning strategy to obtain solutions to
multiobjective FS problems. Their proposed approach demonstrated a low error rate and so-
lution count. Baraldi et al.31 proposed a multiobjective GA‐based wrapper method for nuclear‐
transient classification. They employed a search strategy designed to release the convergence
pressures by different niches of the Pareto front.

2.3 | Multiobjective metaheuristic‐based FS for customer
segmentation

For marketers, an effective solution to the customer‐segmentation problem must integrate
multiple decision criteria that play important roles in determining the profitability and
marketability of products and/or services. Therefore, customer segmentation, which is an
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inherently multicriterion problem, must be considered a multiple‐objective optimization
problem. Huang et al.32 utilized the multiobjective NSGA‐II approach to select subset features
for predicting customer churn. Gorzałczany and Rudziński33 adopted a multiobjective
genetic‐optimization‐based FS method and proposed a fuzzy rule‐based classifier to divide
credit customer groups. However, these methods cannot significantly increase the classifi-
cation accuracy while maintaining a high solution diversity when solving customer‐
segmentation problems. As already stated, the HCO approach offers global search capability
and minimizes the risk of local‐optimum generation. It has been successfully employed to
solve both single‐ and other multiobjective problems. Therefore, we believe that the appli-
cation of the HCO method can be used to address the gap in existing research by overcoming
the limitations of existing metaheuristic‐based FS approaches that require tradeoffs between
the convergence and solution diversity as well as those between the computation time and
prematurity problems.

3 | MOEHCO ‐BASED FS METHOD

As already mentioned, customer segmentation is an FS problem, and it is useful for marketers
targeting a specific customer group with fewer customer attributes. Accordingly, customer
segmentation can be converted into an FS problem with two conflicting objectives—(1)
minimizing classification error rate and (2) minimizing data dimensionality by reducing the
number of attributes. To solve this problem, a MOEHCO is proposed in this study. Before
describing the MOEHCO algorithm, this section first introduces the original HCO approach.
Subsequently, we describe the encoding and decoding mechanisms of the proposed MOEHCO
method along with the three strategies incorporated therein. Lastly, the general framework of
MOEHCO approach is described in Section 3.4.

3.1 | HCO

The HCO approach34 can be described using three important operators—flow, infiltration, and
evaporation and precipitation—which simulate the natural water cycle. The detailed descrip-
tions of these operators are as follows.

3.1.1 | Flow

Flow represents the core operator of the original HCO approach. Here, each individual Pi tends
to move toward a better position Pj. If the fitness of Pnew is better compared to that of the
original position Pi, the ith individual will continue flowing along the direction of this new
position until its new fitness becomes worse or the maximum number of flows FlowMax is
attained. However, if the fitness of Pi is better compared with that of Pnew, Pi retains its original
position.

∗P P P P rand n= + ( − ). (1, ).new i j i (1)
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3.1.2 | Infiltration

In this process, individuals perform a random neighborhood search for execution of neigh-
borhood learning. During this operation, the dimensions SD are randomly decided, and the
position of the ith individual Pi SD, is given by

∗ ∗P P P P rand SD= + ( − ) 2. ( (1, ) − 0.5).i SD i SD i SD j SD, , , , (2)

3.1.3 | Evaporation and precipitation

In this process, each individual is evaporated by a probability Peva. The evaporation
condition is satisfied if an individual precipitates to (1) a random position satisfying the
condition rand(0, 1)< 0.5 or (2) the best historical position of its neighbor via Gaussian
distribution.

3.2 | MOEHCO representation and fitness function

Before describing the technical details concerning the MOEHCO approach, it is important to
identify its representation scheme. In the MOEHCO, the position of each individual is re-
presented by a vector comprising n real numbers in a feasible search space. Here, n denotes
the total number of features in the original feature set. The position of each individual could
be defined as ⋯X x x x= [ , , , ]n1 2 , where xI represents the position of the ith feature and its
value varies between [0, 1]. In this study, we adopted a simple threshold‐decoding approach
with the value of the threshold θ set to 0.5. That is, if xI > 0.5, the ith feature is selected and
vice versa.

As already stated, FS problems have two objectives. Thus, in this study, the classification
error rate was considered the first objective function. Its value was calculated by the classifier
using the following equation:

error
FP FN

FP FN TP TN
=

+

+ + +
. (3)

In the above equation, FP, FN, TP, and TN refer to false positives, false negatives, true
positives, and true negatives, respectively.

3.3 | Three strategies of proposed MOEHCO

To improve the adaptation and robustness of the original MOHCO approach in solving dif-
ferent customer‐segmentation cases, this study considers the implementation of three strate-
gies, as described below.

(1) Global flow operator: In accordance with this strategy, individuals do not learn from a
better position in the population space. Instead, the learning is performed from random
non‐dominated elites in the external repository (REP). This strategy effectively guides the
evolutionary direction of individuals and takes advantage of the REP quality.
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(2) Possibility‐based acceptance criteria: The proposed algorithm not only accepts better non‐
dominated individuals but also individuals of the same quality with a certain probability.
This strategy is conducive to accelerate population renewal and increase the diversity of the
solutions obtained.

(3) Density‐based evaporation and precipitation: This strategy calculates the distance be-
tween individuals in the population space and measures the density of each individual
position. Subsequently, the probability of evaporation and precipitation is increased in
the dense areas to enhance the algorithmʼs global search capability and avoid premature
problems.

3.3.1 | Global flow

As already stated, flow is a critical operator in the HCO search process, wherein individuals
can move toward better positions in the population space. In the original HCO, individuals
could learn from anyone better than themselves, and this approach facilitates easy
solving single‐objective‐optimization problems. However, multiobjective optimization
problems are faced with insufficient quality of individuals in the population space and
the resulting low convergence rate. In accordance with this strategy, the algorithm
stores a series of non‐dominated solutions with the best current performance in REP. Thus,
it is desirable to utilize the optimum solutions stored in the REP, instead of creating a
repository that only records and outputs optimum solutions, as reported by most prior
studies.17,19 Therefore, the proposed MOEHCO algorithm considers individuals to flow
randomly toward a nondominant solution in the REP in accordance with the following
equation:

∗P P r PND P= + ( − ),i i i i (4)

where Pi denotes the position of ith individual, PNDi denotes the position of the selected
nondominant solution, and r denotes a random vector with values in the 0–1 range. Next, the
acceptance criteria introduced in the next sub‐section determine the acceptability of the new
position. The accepted individuals continue flowing, and this cycle continues until the max-
imum number of flows is attained or a new position of an individual is not accepted. Sub-
sequent operations are then performed in sequence.

3.3.2 | Possibility‐based acceptance criteria

This strategy is used when the position of an individual changes after performing flow and/or
evaporation and precipitation to determine whether their position is updated or remains un-
changed. In the original HCO, individual could only update their position when the new
position was compared to the previous one, i.e. both objectives demonstrated improved fitness
values.

Nonetheless, it has been observed that in most cases, flow and evaporation are less effective,
and thus, new individual positions are hardly accepted. This makes it difficult for the entire
population to adapt to the environment, thereby reducing the convergence rate. Thus, new
acceptance criteria are considered in this study to increase the population diversity.
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Accordingly, fitness values (for objectives) corresponding to the new positions of individuals
could become better compared to those corresponding to the original positions. The governing
equations can be expressed as

≺

∩

≺

P

P P P

P P P rand Poss

P P P

=

, if

if and do not dominate each other <

if

new new old

new, old new acc

old, old new

⎧
⎨⎪
⎩⎪

(5)

where P denotes the current position of an individual, Pnew denotes the new position obtained
after execution of the flow or evaporation operators, Pold denotes the position before operator
execution, rand denotes a random number between zero and unity, and Possacc denotes a
threshold. The larger the value of Possacc the more likely is the renewal of the population and
the greater is its diversity. When Possacc = 0, the proposed algorithm performs similar to the
original HCO.

3.3.3 | Density‐based evaporation and precipitation

Performing evaporation or precipitation based on a fixed probability has several disadvantages,
as described below.

(1) Good and bad individuals have the same probability to change their positions. This might
cause the loss of an optimum solution.

(2) The said probability cannot be easily determined. If it is too high, large disturbances are
observed, and this reduces the solution convergence rate once the population search be-
gins. In contrast, if the probability is too low, the population fails to obtain diversity,
thereby resulting in the generation of a local optimum.

(3) A fixed probability implies that the degree of perturbation remains constant throughout the
search process. However, in reality, the degree of disturbance should gradually increase as
the search progresses to boost randomness.

To overcome these disadvantages, this study proposes use of a density‐based strategy to
exaggerate the individual probability in dense areas under evaporation while eliminating
the probability of those in sparse areas. This helps the proposed algorithm realize the
attainment of global equilibrium exploration by taking full advantage of the search cap-
abilities of each individual. Considering that individuals tend to search dense areas re-
peatedly while sparse areas are less explored, optimal solutions are likely to be missed out.
Equation (8) describes the expression for probability calculation proposed in this study. The
sequence of operations is as follows. The sum of the distance between the ith and all other
individuals in the population space is denoted by Disi. It is first calculated using Equation
(6). Moreover, the search range of the algorithm varies from one problem or function to
another, thereby resulting in a large difference in the value of the probability PE. Therefore,
to design a feasible density‐based evaporation and precipitation mechanism, we propose the
degree of digestion Degi expressed as the ratio of Disi to the average distance between
individuals in the population space. Thus, if the value of Disi is lower compared with the
average distance, Degi is less than unity and vice versa. Therefore, in accordance with
Equation (8), the smaller the value of Degi, the higher is the individual probability PEi. In
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other words, the more crowded the population space, the higher is the probability of eva-
poration and/or precipitation:

∑Dis P P= | − | ,i

j

N

i j

=1

pop

(6)

∑( )
Deg

Dis

Dis N
= ,i

i

j

N
j pop=1

pop

(7)

PE e= .i
Deg−( )i

a (8)

In the above equations, Npop denotes the population count and a denotes the fluctuation
coefficient. The larger the value of a, the higher is the sensitivity of PE to Deg. That is,
individuals with Deg below unity would demonstrate higher PE and vice versa.

3.4 | REP‐update strategy

In addition to the traditional sorting methods for eliminating inferior solutions, the proposed
algorithm employs the adaptive grid approach to update and maintain the individual count in
the REP. That is, if the newly identified individuals are dominated by those existing within the
REP, the same is not updated. However, if the new individuals dominate some of the current
individuals in the REP, the REP is updated to include these new individuals and eliminate the
dominated ones. Of course, the best solution is directly added to the REP. Finally, the adaptive‐
grid crowding procedure is activated once the REP individual count exceeds the storage ca-
pacity of nREP. This strategy helps dividing target space into grid regions, which in turn, causes
the resulting Pareto frontier to be uniformly distributed. This results in high computational
efficiency and the solution diversity.35

3.5 | Handling constraints

Boundary processing must be performed once an operator is executed to ensure the feasibility
of the obtained solutions when an individual changes its position. A simple means to handle
constraints involves resetting the values that cross the boundary by appropriate values of the
upper or lower bounds. However, using such an approach implies the dimensions are set to the
same value irrespective of the extent to which they cross the boundary. This inevitably reduces
the randomness of the algorithm. To address such shortcoming, we include additional per-
turbations into boundary‐processing workflow, as described in the following equation:

∗ ∗

∗ ∗

P j

rand
L P j L

L P j L

rand
L c rand L L P j L

L c rand L L P j L

( ) =

if > 0.5,
, if ( ) >

, if ( ) <

if < 0.5,
− 2 ( − ), if ( ) >

+ 2 ( − ), if ( ) <

i

up i up

dow i dow

up up dow i up

dow up dow i dow⎪
⎪

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎧⎨⎩
⎧
⎨
⎩

(9)
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Here, P j( )i denotes jth dimension of ith individualʼs position, rand denotes a random
number between zero and unity, Lup and Ldow denote the upper and lower bounds of the search
boundary, and c denotes disturbance factor. When c equals unity, the approach becomes
similar to randomly resetting P j( )i .

3.6 | General framework of MOEHCO‐based FS method

Figure 1 presents the general implementation framework of the proposed MOEHCO algorithm
that the three above‐described strategies. The pseudo code of MOEHCO‐based FS method is
also presented below.

The main idea of this framework can be concluded as (1) In view of FS problem, the
encoding and decoding strategy of individualʼs position is analyzed. Moreover, specific
constraint handling methods are included. (2) To effectively solve two objectives of FS, three
important strategies have been introduced to the original MOHCO.

FIGURE 1 Proposed multiobjective evolutionary hydrological cycling optimization workflow
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Algorithm: Pseudo code of proposed MOEHCO‐based FS method

Initialization:

1 Divide the dataset into training and test datasets;

2 Define maximum number of iterations (maxIter) and initialize parameters, including maximum size
of population POP and REP (i.e., nPOP and nREP), FlowMax, Possacc, and a. Let Iter= 0

3 Randomly initialize the individual positions in POP

4 Evaluate values of two objectives for POP; update REP using the REP update strategy

Search procedure:

5 While (the maxIter is not attained) do

6 Individuals in POP flow to new positions using the Global flow strategy

7 Evaluate values of two objectives for POP and update REP using the REP update strategy

8 If new position is acceptable per acceptance criteria&n < FlowMaxdo

9 Reimplement Global flow

10 Repeat step 7

11 n = n+ 1

12 End If

13 Individuals move towards or away from the neighbor using Infiltration operator

14 Evaluate POP

15 Move individuals to new positions according to acceptance criteria

16 Individuals are regenerated or disturbed using Density‐based evaporation and precipitation
strategy

17 Handle the bounds of POP using Handling constraints

18 Evaluate values of two objectives for POP and update REP using the REP update strategy

19 Iter = Iter + 1

20 End While

21 Calculate the testing classification error rate of the feature subset in REP for the test dataset

22 Return the feature subset and feature count in REP

23 Calculate the total classification error rate according to equation (4) and return the same

4 | EXPERIMENTS AND RESULT DISCUSSION

This section describes the performance of the proposed MOEHCO approach when compared to
that of the original MOHCO approach and other multiobjective optimization algorithms
(MOPSO,17 MOEA‐D,18 NSGA‐II,19 IM‐MOEA,23 SPEA2,24 and PESA225). Section 4.1 illustrates
the parameter settings while Section 4.2 describes the three data sets used in this study. The
experimental results and their subsequent analyses are described in Section 4.3.

4.1 | Parameter settings

In this study, all numerical experiments were performed in the MATLAB R2019a (MathWorks
Inc.) environment. Table 1 lists test parameters considered for the application of the eight
candidate algorithms. The parameters for original HCO algorithms are as per.34,36 The FlowMax

for MOEHCO is the same. The fluctuation coefficient a and disturbance factor c are specific to
MOEHCO. The general experiment settings are described in the right half of Table 1. The

SONG ET AL. | 2357



parameter settings specific to the other six algorithms are consistent with their corresponding
references citations.

All candidate algorithms considered in this study are wrapper methods based on an arti-
ficial neural network (ANN)37 as the classifier. During classification, the training and test sets
comprised 70% and 30%, respectively, of the customer information available within the original
data set. The ANN comprised 10 hidden layers. For calculating the classification error rate, the
features selected after the training process will be evaluated on the test set.

4.2 | Data set setting

Three standard customer‐segmentation datasets—Australian Credit Approval Data, German
Credit Data and Default of Credit Card Clients Data—were used in this study. Table 2 lists the
general data set information.

The Australian data set includes credit‐approval information of customers in Australia. To
ensure customer privacy, all attribute names and values were modified to meaningless symbols.
The customer attributes in the German data set include 7 numerical and 13 categorical vari-
ables. The Default data set comprises approval data pertaining to defaulting credit‐card clients
in Taiwan in 2016. It divides customer data into two categories based on an indicator that
predicts the occurrence of credit‐card defaults in the following month.

4.3 | Experimental results and analyses

4.3.1 | Case 1—Australian Credit Approval Data

Owing to the small feature dimensions and customer‐information volume of Australian data
set, its corresponding optimization problem was the least complex to solve using the different

TABLE 1 Parameter setting considered in this study

Parameter Value Parameter Value

FlowMax 3 Population size 50

a 3 REP size 50

c 0.2 Maximum iterations 100

Runs 30

TABLE 2 Data set description

Data set Abbreviation Data size Number of attributes Number of classification items

Australian 690 14 2

German 1000 20 2

Default 30,000 23 2
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candidate approaches. As illustrated in Figure 2, the quality of best Pareto solution obtained for
all algorithms does not vary significantly.

Reference to Figure 2 and Table 3 reveals that the proposed MOEHCO approach outper-
forms all other candidate algorithms in terms of the solution diversity and optimality of both
objectives. The optimum solution set obtained by the MOEHCO comprises 12 solutions,
thereby providing more options for decision makers. In particular, for solutions with low
dimensions (1–3 features), some candidate algorithms failed to obtain nondominant solutions.
In comparison, the MOEHCO could always find solutions with optimum quality in most
dimensions.

It is noteworthy that although the MOHCO, PESA2, and IM‐MOEA lack solutions with high
dimensionality, they perform reasonably well in cases involving low and intermediate feature
dimensions. Further, the SPEA could obtain solutions in both low‐ and high‐dimensionality.

FIGURE 2 Best Pareto solution sets obtained by all algorithms for Australian data set [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 3 Comparison between best Pareto solutions (Australian data set)

Algorithms
Solution
count Objective f1 f2 (%) Objective f1 f2 (%)

MOEHCO 12 The solution with
minimum
features ( f1)

1 11.59 The solution with
minimum error
rate ( f2)

14 7.42

MOHCO 10 1 11.62 11 7.68

MOEA‐D 8 1 11.62 14 8.07

SPEA 11 1 19.32 14 7.43

MOPSO 7 2 11.78 14 7.72

PESA2 10 1 11.75 10 7.61

NSGA‐II 10 1 20.52 10 7.62

IM‐MOEA 10 1 11.63 9 7.96

Note: Bold values indicate the best values obtained by all algorithms for solution count, objective 1 or objective 2.
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However, it demonstrates poor accuracy, particularly in cases involving a single feature di-
mension. The MOPSO and MOEA‐D demonstrate low‐diversity solutions in cases with 7 and 8
features, respectively, albeit their search capability is moderate. Finally, NSGA‐II demonstrates
intermediate diversity and solution quality. However, it fails to obtain feasible solutions in cases
involving a large number of features and underperforms in low dimension scenarios
(1–2 features).

Figure 3 reveals all algorithms perform stably in cases involving intermediate and high
feature dimensionality. However, the MOEA‐D demonstrates large fluctuations and higher
error rates in cases involving 8–14 feature dimensions. In low‐dimensionality cases (1–4 features),
six algorithms other than the MOEHCO and MOHCO demonstrate sharp fluctuations for
obtaining solutions for each dimension. However, it is noteworthy that the PESA2 obtains slightly
better solution for the two‐feature‐dimension case. Overall, the MOEHCO and MOHCO
demonstrate the best computational stability with minor fluctuations.

4.3.2 | Case 2—German Credit Data

Given the larger size and dimensionality of the German credit data set compared to its
Australian counterpart, its optimization problem is significantly more complex to solve. As can
be realized from Figure 4, the IM‐MOEA, MOPSO, and MOEA‐D demonstrate poor perfor-
mance in most instances. The solutions obtained using these approaches are inferior to those
obtained using other algorithms. None of these approaches could obtain good solutions in cases
involving low and high feature dimensions.

As illustrated in Table 4 and Figure 4, The SPEA fails to obtain low‐dimensional solutions
(1–2 features). However, half solutions obtained using SPEA dominated those obtained using
all other approaches for the same feature dimensions—5, 6, 9, 11, and 12. Likewise, the NSGA‐
II fails to obtain low‐dimensional solutions (1–2 features). It underperforms in cases involving
low feature dimensions (3–9 features). However, it yields the most diverse high‐dimensional
solutions and obtains the best solution in cases involving 13, 15, and 18 features.

FIGURE 3 Average values of Pareto solution sets by all algorithms for Australian data set [Color figure can
be viewed at wileyonlinelibrary.com]
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Both the MOEHCO and MOHCO algorithms perform well with regard to minimizing the
number of features. However, results obtained using the MOHCO demonstrate less satisfactory
classification accuracy in cases involving low‐to‐medium (7–9) feature dimensions. Moreover, it
fails to obtain a solution in cases with high (16–20) feature dimensions. Owing to the use of
improved strategies, the MOEHCO demonstrated a slightly increased solution diversity compared
to MOHCO while its classification accuracy in high‐dimensional feature cases is significantly
improved. Though the proposed approach does not obtain the optimum classification‐error rate,
it demonstrates the second‐best performance by a very small (0.02%) margin.

Figure 5 reveals that the increased computation stability of the proposed algorithm and its
performance superiority over other algorithms becomes apparent with increased customer‐
classification complexity. As can be seen, except the two HCO‐based approaches, all other
algorithms demonstrate unstable performance in cases involving low feature dimensions.

FIGURE 4 Best Pareto solution sets by all algorithms for German data set [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 4 Comparison between best Pareto solutions (German data set)

Algorithms
Solution
count Objective f1 f2 (%) Objective f1 f2 (%)

MOEHCO 11 The solution with
minimum
features ( f1)

1 18.23 The solution with
minimum error
rate ( f2)

18 12.92

MOHCO 10 1 18.23 15 13.54

MOEA‐D 10 1 20.18 20 14.34

SPEA 10 3 18.36 20 13.18

MOPSO 10 4 17.57 19 13.47

PESA2 10 3 20.31 18 13.21

NSGA‐II 12 3 19.91 18 12.90

IM‐MOEA 10 2 18.28 17 13.69

Note: Bold values indicate the best values obtained by all algorithms for solution count, objective 1 or objective 2.
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Although the SPEA yields the best solution in some cases, its classification accuracy varies
dramatically, thereby resulting in an overall unsatisfactory performance. In contrast, the two
HCO‐based multiobjective algorithms perform stably irrespective of the feature dimensionality,
thereby affording users an overwhelming advantage when solving problems with low feature
dimensionality.

4.3.3 | Case 3—Default of Credit Card Clients Data

Figure 6 and Table 5 reveal that the larger customer‐information data set in Case 3 (30,000
records) facilitates the MOEHCO classifier to be well trained, thereby achieving lower
classification‐error rates in the 13.24%–14.10% range. Moreover, the aforementioned super-
iorities of the MOEHCO and MOHCO approaches are prominent in this case as well. Both

FIGURE 5 Average values of Pareto solution sets by all algorithms for German data set [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 6 Best Pareto solution sets by all algorithms for Default data set [Color figure can be viewed at
wileyonlinelibrary.com]
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approaches perform better compared to all other approaches with regard to obtaining solutions
in cases involving low feature dimensions (1–8 features). Although the MOEA‐D could obtain
few solutions with low feature dimensions, their observed quality was much lower compared to
those obtained using the two HCO methods. With increase in feature dimensions, the proposed
MOEHCO continues to demonstrate competitive performance in terms of high solution di-
versity. It achieves a good solution for f2, its performance falling short of only those of the
NSGA‐II and SPEA.

As displayed in Figure 7, while all other algorithms demonstrate major fluctuations in the
3–8 feature‐dimension range, both MOEHCO and MOEHCO demonstrate comparatively stable
performance at all feature dimensions, thereby indicating high‐performance reliability.

Overall, the proposed MOEHCO algorithm demonstrates stable operation and good search
capability when solving the three customer‐segmentation problems considered in this study.

TABLE 5 Comparison between best Pareto solutions (Default data set)

Algorithms
Solution
count Objective f1 f2 (%) Objective f1 f2 (%)

MOEHCO 19 The solution with
minimum
features (f1)

1 14.10 The solution with
minimum error
rate (f2)

22 13.24

MOHCO 16 1 14.11 20 13.31

MOEA‐D 9 3 15.01 24 13.35

SPEA 11 6 14.68 24 13.25

MOPSO 13 5 13.71 19 13.29

PESA2 13 5 15.93 21 13.26

NSGA‐II 14 5 15.69 20 13.25

IM‐MOEA 7 4 13.68 16 13.29

Note: Bold values indicate the best values obtained by all algorithms for solution count, objective 1 or objective 2.

FIGURE 7 Average values of Pareto solution sets by all algorithms for Default data set [Color figure can be
viewed at wileyonlinelibrary.com]
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Compared with the original MOHCO, the proposed approach demonstrates significant im-
provements in the solution quality and diversity. These results confirm the contribution of the
proposed strategies toward the realization of improved segmentation performance of
the MOEHCO. The global flow operator facilitates the search for better solutions while the
possibility‐based acceptance criteria and density‐based evaporation and precipitation strategies
enhance the population diversity and balance the exploration and exploitation ability of the
proposed algorithm.

5 | CONCLUSIONS AND FUTURE RESEARCH

This paper presents a novel metaheuristic‐based wrapper FS algorithm—MOEHCO—to solve
customer‐segmentation problems. The increased effectiveness and optimum performance of
the proposed algorithm can be attributed to the implementation of three strategies—global flow
operator, possibility‐based acceptance criteria, and density‐based evaporation and precipitation.

The results obtained in this study reveal the proposed approach to demonstrate optimum
search capability and high solution quality across the range of feature dimensions, thereby
ensuring high solution diversity. Moreover, MOEHCO demonstrates the best computation
stability among competing algorithms, especially in cases involving low feature dimensions,
when applied to the three datasets considered in this study.

This being the maiden application of a multiobjective HCO‐based approach to customer
segmentation, we reckon further application potentials of the same could be explored by
considering more sophisticated classification tasks, complex datasets, and performance com-
parisons against state‐of‐the‐art algorithms. Moreover, we believe the proposed approach can
be further modified by combining traditional FS with hybrid and multistaged metaheuristic
algorithms. This would facilitate the development of new encoding methods and search me-
chanisms. Moreover, there exist possibilities to improve and develop different classifiers for the
proposed FS algorithm.
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