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a b s t r a c t

Compressive sensing (CS) has been widely studied and applied in many fields. Recently, the way to
perform secure compressive sensing (SCS) has become a topic of growing interest. The existing works on
SCS usually take the sensing matrix as a key and can only be considered as preliminary explorations on
SCS. In this paper, we firstly propose some possible encryption models for CS. It is believed that these

Then, we demonstrate that random permutation is an acceptable permutation with overwhelming
probability, which can effectively relax the Restricted Isometry Constant for parallel compressive sensing.
Moreover, random permutation is utilized to design a secure parallel compressive sensing scheme.
Security analysis indicates that the proposed scheme can achieve the asymptotic spherical secrecy.
Meanwhile, the realization of chaos is used to validate the feasibility of one of the proposed encryption
models for CS. Lastly, results verify that the embedding random permutation based encryption enhances
the compression performance and the scheme possesses high transmission robustness against additive
white Gaussian noise and cropping attack.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Making use of the sparseness of natural signals, compressive sen-
sing (CS) [6,15,9,8] unifies sampling and compression to reduce the
data acquisition and computational load of the encoder, at the cost of a
higher computational complexity at the decoder. If the CS framework
can integrate with certain cryptographic features for simultaneous
sampling, compression and encryption, its application areas can be
extended to, for example, limited-resource sensor and video surveil-
lance. It has been suggested in [8] that CS framework leads to an
encryption scheme, where the sensing matrix can be considered as an
encryption key. In recent years, there exist some pioneer works on
secure compressive sensing (SCS) [25,24,20,12,31,1–5]. Rachlin and
Baron [25] found that CS cannot achieve perfect secrecy but can
guarantee computational secrecy. The definition of perfect secrecy [29]
requires that the occurrence probability of a message conditioned on
the cryptogram is equal to the a priori probability of the message,
ory of Nonlinear Circuits and
onic and Information Engi-
ina.
PðX ¼ xjY ¼ yÞ ¼ PðX ¼ xÞ. Alternatively, the mutual information
satisfies IðX;YÞ ¼ 0. In contrast to perfect secrecy, computational
secrecy relies on the difficulty in solving a hard computational pro-
blem (e.g. NP-hard) at the computation resources available to the
adversary. Orsdemir et al. [24] investigated the security and robustness
of employing a secret sensing matrix. They evaluated the security
against brute force and structured attacks. The analyses indicate that
the computational complexity of these attacks renders them infeasible
in practice. In addition, this SCS method was found to have fair
robustness against additive noise, making it a promising encryption
technique for multimedia applications. Hossein et al. [20] also
addressed the perfect secrecy problem for the scenario that the
measurement matrix as a key is known to both the sender and the
receiver. Similar results have been obtained, as reported in [25]. It is
shown that the Shannon perfect secrecy is, in general, not achievable
by such a SCS method while a weaker sense of perfect secrecy may be
achieved under certain conditions. Agrawal and Vishwanath[1]
employed the CS framework to establish secure physical layer com-
munication over a Wyner wiretap channel. They showed that CS can
exploit channel asymmetry so that a message that is encoded as a
sparse vector is decodable with high probability at the receiver while it
is impossible to decode with high probability by the eavesdropper.
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Fig. 1. The relationship between CS and symmetric-key cipher.
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Dautov and Tsouri [12] proposed an encryption scheme where the
sensing matrix is established using wireless physical layer security and
linear feedback shift register with the correspondingm-sequences. It is
shown that by using a Rician fading channel, the proposed scheme
generates valid CS matrices while preventing access from an eaves-
dropper in close proximity to one of the legitimate participants.
Cambareri et al. [4] designed a two-class information concealing sys-
tem based on perturbing the measurement matrix, in which the first-
class users can reconstruct the signal to its full resolution while the
second-class ones are able to retrieve only a degraded version of the
same signal. This two-class case is further extended to multiclass case
in [5]. Yang et al. [31] extended the perfect secrecy criteria to measure
the security in the information theory frame, which involve the
plaintext sparsity feature and the mutual information of the cipher-
text, key, and plaintext. Bianchi et al. [2,3] demonstrated that the
attacker leverages random linear measurements which are generated
by using Gaussian i.i.d. matrix and can only reveal the energy of the
measurements for the signal. If the measurements are normalized,
then the perfect secrecy is achievable.

This work contributes four aspects. First, associating CS with
symmetric-key cryptography, we introduce possible encryption
models for CS. Second, we demonstrate that random permutation
is an acceptable permutation with overwhelming probability,
which can effectively relax the Restricted Isometry Constant for
parallel compressive sensing. Third, we design a secure parallel
compressive sensing scheme based on random permutation.
Results show that the embedding random permutation based
encryption enhances the compression performance and the
scheme possesses high transmission robustness against noise. The
corresponding security analysis indicates that the proposed
scheme can achieve the asymptotic spherical secrecy. In the end,
this proposed scheme is implemented by chaos map to validate
the feasibility of one of the proposed encryption models for CS.

The rest of this paper is organized as follows. The next section
introduces some possible encryption models for CS. Section 3
demonstrates that random permutation is an acceptable permu-
tation with overwhelming probability. By making use of random
permutation, a secure parallel compressive sensing scheme fol-
lowed by security analysis is designed in Section 4 and the reali-
zation of chaos in Section 5 to validate the feasibility of the pro-
posed encryption models. Section 6 gives simulation results for the
proposed encryption scheme. The last section concludes our work.
2. Some possible encryption models

Suppose an M-dimensional signal fARM is expressed as

f ¼
XM
i ¼ 1

xiψ i ¼Ψx; ð1Þ

which means that f could be sparsely represented in a certain
domain by the transform matrix Ψ : ¼ ψ1;ψ2;…;ψM

� �
with each
column vector ψ iARM , i¼ 1;2;…;M. We can say that x is exactly
k-sparse if there are at most k non-zero coefficients in the Ψ
domain. Instead of sampling x directly, we take a small number of
CS measurements. Let Φ : ¼ ½φ1;φ2;…;φM� denote a K�M
matrix with K⪡M. Then K non-adaptive linear samples y can be
obtained by

y¼Φf: ð2Þ
The resultant CS measurements y are used for the recovery of the
original signal by solving the following convex optimization pro-
blem

minJxJ1 s:t: y¼ΦΨx

ðor in noisy situation : JΦΨx�yJ2rεÞ ð3Þ

to obtain ~f ¼Ψx.
One of the central problems in CS framework is the selection of

a proper measurement matrixΦ satisfying the Restricted Isometry
Property (RIP).

Definition 1 (Candès and Tao [7]). Matrix Φ satisfies the Restric-
ted Isometry Property of order s if there exists a constant δsA 0;1½ �
such that

1�δs
� �

JxJ22r JΦxJ22r 1þδs
� �

JxJ22 ð4Þ

for all s-sparse signals x.

Candès and Tao [8] proposed that a matrix following the
Gaussian or Bernoulli distribution satisfies RIP with overwhelming
probability at sparsity srO K=logM

� �
. The randomly selected

Fourier basis also retains RIP with overwhelming probability,
provided that the sparsity srO K= logMð Þ6

� �
.

The basic model of CS is shown in the upper half of Fig. 1, which
includes two major aspects: measurements taking and signal
recovery. From the perspective of symmetric-key cipher, mea-
surements taking involves an encryption algorithm and signal
recovery is associated with a decryption algorithm. The relation-
ship between CS and symmetric-key cryptography indicates that
some possible cryptographic features can be embedded in CS. To
this end, we give some possible protection models for CS.

2.1. Embedding chaos in compressive sensing

For a random sensing matrix, its storage and transmission
require a lot of space and energy. Thus, it is preferable to generate
and handle the sensing matrix by one or more seed keys only. Yu
et al. [32] proposed to construct the sensing matrix using chaotic
sequence in a trivial manner and proved that the RIP of this kind of
matrix is guaranteed with overwhelming probability, providing
that the sparsity srO K=log M=s

� �� �
. They generated a sampled

Logistic sequence X d; l; z0ð Þ, which has been regularized, with
sampling distance d, length l¼ K �M and initial condition z0. Then
a matrix Φ is created from this sequence column by column,
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denoted as

Φ¼
ffiffiffiffi
2
K

r z0 zK ⋯ zKðM�1Þ
z1 zKþ1 ⋯ zKðM�1Þþ1

⋮ ⋮ ⋱ ⋮
zK�1 z2K�1 ⋯ zKM�1

0
BBB@

1
CCCA ð5Þ

where the scalar
ffiffiffiffiffiffiffiffiffiffi
2 K :=

p
is for normalization purpose. One can take

the initial condition z0 as a key, since different sensing matrices
are obtained from different initial conditions. The adoption of
chaos can further enhance the security due to its pseudo-random
behavior and high sensitivity to the initial condition.

Frunzete et al. [18] further constructed the chaotic measure-
ment matrix by introducing the one-dimensional skew tent map
given by

z kþ1ð Þ ¼ T z kð Þ;μ� �¼
z kð Þ
μ

; if 0oz kð Þoμ

1�z kð Þ
1�μ

; if μrz kð Þo1

8>>><
>>>:

ð6Þ

where the control parameter μA 0;1ð Þ and the initial state
z 0ð ÞA 0;1ð Þ. Unlike the Logistic map, the probability density func-
tion of skew tent map follows the uniform distribution, which has
a higher strength in resisting statistical attacks in cryptographic
applications.

2.2. Integrating optical imaging with compressive sensing

Romberg [28] proposed a universally efficient CS strategy,
consisting of random waveform convolution and random time-
domain subsampling. The signal x with a pulse h is randomly
convoluted as Hx, where

H¼M�1=2FnΣF: ð7Þ
The F represents the discrete Fourier matrix whose entries are

Fυ;t ¼ e� j2π υ�1ð Þ t�1ð Þ=M ; 1rυ; trM: ð8Þ

The Σ is diagonal matrix whose nonzero entries are

Σ¼

ς1 0 ⋯ 0
0 ς2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ςM

2
66664

3
77775; ð9Þ

where ςυ are unit magnitude complex numbers with random
phases as follows: ς1 ¼ 71 with equal probability; ςM=2þ1 ¼ 71
with equal probability; ςυ ¼ exp jθ

� �
, where 2rυoM=2þ1 and θ

A 0;2π½ � yields uniform distribution; ςυ ¼ ςn

M�υþ2, i.e., the con-
jugate of ςM�υþ2, where M=2þ2rυoM. After random convolu-
tion, random subsampling is performed by randomly choosing a
small number of locations, or by breaking Hx into blocks and
summarizing each block with a single randomized sum. These
double random operations can be associated with double random
phase encoding [26], which is the most classic optical encryption
technique. Some cryptographic features can be embedded in ran-
dom phases Σ and random subsampling. This simultaneously
realizes optical sampling, compression and encryption. For
example, such a framework has been designed in [40] with the
architecture of double random masks, which is somewhat similar
to double random phase encoding. Another heuristic investigation
with respect to the integration of optical imaging and CS was given
in [27], which demonstrated the possibility of achieving super-
resolution with a single exposure by combining double random
phase encoding and CS. Random phases can serve as keys to offer
the security.
2.3. Diversity of measurement matrix

Do et al. [14] proposed a framework called structurally random
matrix (SRM), defined as

Φ¼
ffiffiffiffiffi
K
M

r
DBR; ð10Þ

where RARM�M is either a uniform random permutation matrix or
a diagonal random matrix whose diagonal entries Rii are i.i.d.
Bernoulli random variables with identical distribution
P Rii ¼ 71ð Þ ¼ 1

2. BARM�M is an orthonormal matrix which is
selected among popular fast computable transforms like DCT and
DARK�M represents a subsampling operator which selects a ran-

dom subset of rows in the matrix BR. The scalar coefficient
ffiffiffiffi
K
M

q
is

chosen to normalize the transform so as to ensure that the energy
of the measurement vector is almost close to that of the input
signal. This SRM can serve as a secret due to the fact that the
random permutation matrix R is a common technique in classic
encryption schemes. For example, Zhang et al. [34] suggested a
joint quantization and diffusion approach for the real-valued
measurements based on the distribution of measurements of
natural images sensed by structurally random ensemble. In addi-
tion, our work [36] also intended to design a robust coder for
encrypted images over packet transmission networks based on
SRM. Recently, Cambareri et al. [5] designed a novel multiclass
encryption scheme based on perturbing the measurement matrix.
The transmitter distributes the same encoded measurements to
receivers with different privileges so that they are able to recon-
struct the signal at various quality levels. Take the two-class
situation as an example, the relationship between the two mea-
surement matrices is formulated as

Φð1Þ ¼Φð0Þ þΔΦ; ð11Þ
where ΔΦ is an c-sparse perturbation matrix with entries

ΔΦi;j ¼
0; i; jð Þ=2Cð0Þ

�2ΔΦi;j; i; jð ÞACð0Þ

(
ð12Þ

where Cð0Þ is a subset of coKM entries chosen at random for each
Φð0Þ with density c=KM. A first-class user knowing the complete
sampling matrix Φð1Þ is able to exactly recover the signal while a
second-class user only with the knowledge of Φð0Þ is instead
subject to an equivalent non-white noise term ε¼ΔΦx because
of the true sampling y¼Φð1Þx.

Li et al. [21] introduced a deterministic construction of sensing
matrix via algebraic curves over finite fields, which is a natural
generalization of DeVore's construction [13] using polynomials
over finite fields. The diversity of algebraic curves provides
numerous choices for the sensing matrices, i.e., more choices of
key in the encryption scheme, which may be valuable for the
potential use of the sensing matrix for cryptographic purpose.
3. Random permutation meets parallel compressive sensing

Traditionally, a multidimensional signal needs to be reshaped
into an 1D signal prior to sampling using CS. Nevertheless, such a
transformation makes the required size of the sensing matrix
dramatically large and increases the storage and computational
complexity significantly. To solve this problem, Fang et al. pro-
posed a novel solution [17,16], referred to as parallel compressive
sensing (PCS), which reshapes the multidimensional signal into a
2D signal and samples the latter column by column with the same
sensing matrix. Moreover, a so-called acceptable permutation can
effectively relax the RIP for PCS.
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Definition 2 (Fang et al. [17]). For a 2D sparse signal X with
sparsity vector s¼ s1; s2;…; sN½ � satisfying JsJ1 ¼ s, where sj is the
sparsity level of the j-th column of X, a permutation Pð�Þ is called
acceptable for X if the Chebyshev norm of the sparsity vector of
P Xð Þ is smaller than JsJ1 of X.

When a 2D s-sparse signal is exactly reconstructed by using
PCS, a sufficient condition is given by the following lemma.

Lemma 1 (Fang et al. [17]). Consider a 2D s-sparse signal X, if the RIP
of order JsJ1 holds for the sensing matrix Φ, i.e., δ2 J s J1 o

ffiffiffi
2

p
�1,

then X can be exactly reconstructed using PCS scheme.

This lemma implies that with respect to PCS, the RIP require-
ment of the sensing matrix Φ at a given reconstruction quality is
related to JsJ1. A zigzag-scan permutation is considered accep-
table in relaxing the RIP condition before using the PCS [17], but it
is tailored for the sparse signal following a layer model. Fang et al.
further generalized the permutation as random permutation for
the 2D sparse signal whose distribution is unknown in advance to
enhance reconstruction performance for PCS [16]. Although ran-
dom permutation was suggested in [17] and further exploited in
[16], but a strict mathematic proof has not been revealed. In the
following, we give a mathematic derivation. Assume that Pð�Þ is a
random permutation operation, then Xn ¼ P Xð Þ, where XnARM�N

is a permuted 2D signal with sparsity vector sn. Observing the
relationship between random and acceptable permutations, we
have the following theorem.

Theorem 1. For a 2D sparse signal X, if the distribution of the
sparsity level in each column is not sufficiently uniform
(JsJ1 ¼ σ � ⌈ s

N⌉, where σ is assumed to be not less than 2.72 but
JsJ1⪡M), then the random permutation Pð�Þ can be an acceptable
permutation with overwhelming probability.

Proof. If Jsn J1r JsJ1, i.e., Pr Pð�Þ is acceptable	 
¼ 0, meaning
that each column of X tends to have similar sparsity levels, Pð�Þ
does not work. However, such an X has relaxed the RIP require-
ment for PCS without permutation. Thus, we consider the X where
the distribution of the sparsity level in each column is not suffi-
ciently uniform, which, more importantly, accords with the feature
of a natural signal. Each element in X will be randomly located at
any index of Xn, that is, the transition of all the indices from X to
Xn yields the uniform distribution. Each non-zero element of X
appears in each column of Xn with equal probability 1

N. This has a
strong resemblance to the classical probability problem of s balls
and N boxes. The probability is given by

P P �ð Þ is acceptable	 

¼ P Jsn J1o JsJ1
	 


¼ 1�P Jsn J1Z JsJ1
	 


¼ 1�
XM

k ¼ J s J1
P Jsn J1 ¼ k
	 


:

Let the incident Λ1 be the occurrence of Jsn J1 ¼ k and the inci-
dent Λ2 be the occurrence of ( j; snj ¼ k. If Λ1 occurs, then Λ2 must
occur; not vice versa. It means that the cardinality of Λ1 is not
greater than that of Λ2 and furthermore,

P Jsn J1 ¼ k
	 


rP ( j; snj ¼ k
n o

:

On the other hand, apparently,

P ( j; snj ¼ kþ1
n o

rP ( j; snj ¼ k
n o

:

Thus,

P P �ð Þ is acceptable	 

Z1�

XM
k ¼ J s J1

P ( j; snj ¼ k
n o
Z1� M� JsJ1þ1ð ÞP ( j; snj ¼ JsJ1
n o

:

Let p¼ J s J 1
MN ¼ s

MN.

P ( j; snj ¼ JsJ1
n o

¼
M

JsJ1

 !
p J s J1 1�pð ÞM� J s J1 :

Due to the fact that s⪡MN and then p is very small, we have

M

JsJ1

 !
p J s J1 1�pð ÞM� J s J1 � λ J s J1

JsJ1ð Þ!e
�λ;

where λ¼ pM ¼ s
N. JsJ1ð Þ! can be calculated according to Stirling's

approximation as follows

JsJ1ð Þ!�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π JsJ1

p JsJ1
e

� � J s J1

;

hence,

M� JsJ1þ1ð ÞP ( j; snj ¼ JsJ1
n o

� M� JsJ1þ1ð Þλ J s J1e�λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π JsJ1

p
JsJ1ð Þ J s J1e� J s J1

¼ M� JsJ1þ1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π JsJ1

p λ
JsJ1

� � J s J1

e J s J1 �λ

¼
M�σ⌈

s
N
⌉þ1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ � ⌈ s

N
⌉

r λ
σ � ⌈ s

N⌉

� �σ�⌈ s
N⌉

eσ�⌈
s
N⌉�λ

r
M�σ⌈

s
N
⌉þ1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ � ⌈ s

N
⌉

r ⌈
s
N
⌉

σ � ⌈ s
N
⌉

0
B@

1
CA

σ�⌈ s
N⌉

eσ�⌈
s
N⌉�λ

¼
M�σ⌈

s
N
⌉þ1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ � ⌈ s

N
⌉

r 1
σ

� �σ�⌈ s
N⌉

eσ�⌈
s
N⌉�λ ¼ C � e

σ

� � J s J1
;

where the constant C ¼ M�σ⌈ s
N⌉þ1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ�⌈ s
N⌉

p
eλ

oM. Generally, as long as JsJ1

is large enough, it can guarantee C � e
σ

� � J s J1 o1. With the increase

of JsJ1, the value of C � e
σ

� � J s J1 decreases exponentially and
converges to zero. Therefore, the random permutation is able to be
an acceptable permutation with overwhelming probability.

This completes the proof.□
4. Embedding random permutation in parallel compressive
sensing

A block diagram of our approach is depicted in Fig. 2. The
encoding process is mainly composed of two steps, random per-
mutation and random measurement. A 2D signal XARM�N is
firstly reshaped into a 1D signal x ið Þ	 
MN

i ¼ 1, which is then per-

formed by random permutation. The permuted signal xn ið Þ	 
MN
i ¼ 1 is

converted back to the 2D format XnARM�N . After the permutation,
the signal Xn is sampled column by column using a randommatrix
with i.i.d. entries from a subgaussian (Gaussian or Bernoulli) dis-
tribution Φ, i.e., Yn j½ � ¼ΦXn j½ �, where YnARK�N and Xn j½ � repre-
sents the jth column of Xn. In the decoding phase, X̂

n

can be
recovered from the received Ŷ

n

and is then processed by the
reverse permutation to derive the signal X̂ of interest, as shown in
Fig. 2.

In what follows, we investigate the security of the proposed
scheme embedding random permutation in PCS. Assume that
Alice sends an encrypted message Yn ¼ΦP Xð Þ ¼ΦXn to Bob, who
decrypts the message by solving the following convex



Fig. 2. A schematic diagram of the proposed approach.

Y. Zhang et al. / Neurocomputing 205 (2016) 472–480476
optimization problem

minJXn j½ �J1 s:t: Yn j½ � ¼ΦXn j½ �; jA 1;N½ � ð13Þ

and so X¼ P�1 Xn
� �

. An eavesdropper, Eve, attempts to recover the
plaintext X or the encryption keys Φ and Pð�Þ after intercepting
the ciphertext Yn.
4.1. Asymptotic spherical secrecy

Considering Shannon's definition of perfect secrecy that the
probability of a message conditioned on the cryptogram is equal to
the a priori probability of the message, the proposed scheme does
not achieve perfect secrecy, as stated in Lemma 2.

Lemma 2. Let X be a random variable, whose probability is
PX Xð Þ40, 8XARM�N, and Φ be a K�M measurement matrix. With
respect to the encryption model Y ¼ΦPðXÞ, we have I X;Yð Þ40, and
so perfect secrecy is not achieved.

Proof. We prove this lemma by contradiction. Apparently, I X;Yð Þ
40 if and only if X and Y are statistically independent. In the
context of X ¼ 0, Y ¼ΦPðXÞ ¼ΦPð0Þ ¼Φ � 0¼ 0 and so
PY j X Y ¼ 0jX ¼ 0ð Þ ¼ 1. On the other hand, only X in the null space
of Φ which is a new transform Φ ¼ΦPð�Þ are mapped to Y ¼ 0;
whereas, we have PY Y ¼ 0ð Þo1 due to the assumption that
PX Xð Þ40, 8XARM�N . As a result, we conclude that
PY j X Y ¼ 0jX ¼ 0ð ÞaPY Y ¼ 0ð Þ, meaning that X and Y are statisti-
cally dependent.

By the RIP, Y provides information about the norm of X. The
fact that the l2-norm of a vector can be considered as its energy
has been utilized by Cambareri et al. [5] in introducing the notion
of asymptotic spherical secrecy for CS encoding in which the
measurement matrix serves as a key.□

Definition 3 (Asymptotic spherical secrecy, Cambareri et al. [5]). Let
x nð Þ ¼ x0; x1;…; xnð ÞARn be a plaintext sequence of increasing
length n and y nð Þ be the corresponding ciphertext sequence.
Assume that the power of the plaintext is positive and finite, i.e.,

Wx ¼ lim
n-1

1
n

Xn

k ¼ 1
x2k ; 0oWxoþ1: ð14Þ

A cryptosystem is said to have asymptotic spherical secrecy if

f Y nð Þ j X nð Þ y; xð Þ-
D
f Y nð Þ jWx

yð Þ; ð15Þ

where -
D

denotes the convergence in distribution as n-1.

This definition implies that it is impossible for Eve to infer the
plaintext x but its power from the statistical properties of the
random measurements y. Although not achieving perfect secrecy,
the proposed scheme satisfies asymptotic spherical secrecy.
Theorem 2 (Asymptotic spherical secrecy of the proposed scheme).
Let

(1) X nð Þ ¼ Xij
� �

ARM�N be a bounded-value plaintext with power
0oWXoþ1, defined as WX ¼ limn-11

n

PM
i ¼ 1

PN
j ¼ 1 X

2
ij,

where n¼MN;

(2) Xn nð Þ ¼ P X nð Þ
� �

¼ Xn

ij

� �
ARM�N with power WXn ¼ limn-11

nPM
i ¼ 1

PN
j ¼ 1 Xn

ij

� �2
;

(3) Y nð Þ ¼ Yij
� �

ARK�M be the corresponding ciphertext, where

Yij ¼
PM

k ¼ 1ΦikX
n

kj. As n-1, we have

Yij-D
N 0;MWX=K
� �

: ð16Þ

Proof. Permutation does not affect the power and thusWXn ¼WX.
After the random permutation, the energy is approximately uni-
formly distributed to each column of Xn nð Þ. In other words, the
power of each column converges to that of the whole plaintext in
distribution, i.e.,

1
M

XM
k ¼ 1

Xn

ij

� �2
-
D

lim
n-1

1
n

XM

i ¼ 1

XN

j ¼ 1
Xn

ij

� �2

¼ lim
n-1

1
n

XM

i ¼ 1

XN

j ¼ 1
X2
ij ¼WX: ð17Þ

We calculate

E Y2
ij

h i
¼ E

XM

k ¼ 1
ΦikX

n

kj

� �2
 �

¼ 1
K

XM

k ¼ 1
Xn

kj

� �2
-
D
M
K
WX; ð18Þ

thereby yielding the result stated in Theorem 2.□
5. The realization of chaos

Chaos technique has widely used in designing some encryption
models [22,23,39,11,10,37]. In order to validate the feasibility of
the proposed encryption models at first, we utilize chaos to
implement the proposed scheme embedding random permutation
in PCS. The whole process is under the control of the skew tent
chaos map with four keys, μ, z 0ð Þ, μ0 and z0 0ð Þ.

5.1. Generate the permutation order

There are a number of classic methods in realizing the per-
mutation operation Pð�Þ from one or more keys using chaos, some
of which are stated as follows:

Straightforward transform: Use 2D chaotic transforms such as
Arnold map to directly project the indices of the 2D signal, e.g.,
[35].

Matrix rotation: Employ chaotic sequence to construct the
rotation matrix acting on 1D signal, e.g., [38].

Index sorting: Sort the chaotic sequence to generate the index
matrix, applying to the indices of the 1D signal, e.g., [30].
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Here, we apply the method “index sorting” to perform the
permutation. According to [30], a permutation sequence is pro-
duced using the skew tent map by the following steps:

(a) Set the keys μ and z 0ð Þ to iterate the skew tent map MNþm
times, then discard the first m values to get rid of the transient
effect.

(b) Sort the remaining MN values z ið Þ	 
mþMN
i ¼ mþ1 to obtain

z ið Þ	 
mþMN
i ¼ mþ1.

(c) Search the values of z ið Þ	 
mþMN
i ¼ mþ1 in z ið Þ	 
mþMN

i ¼ mþ1, and store the

corresponding indices Index ið Þ	 
MN
i ¼ 1.

Apparently, Index ið Þ	 
MN
i ¼ 1 indicates an order of the integers

from 1 to MN. The above steps have been widely used to generate
the permutation order in image encryption schemes. However, the
complexity O n2log n

� �
is high. A novel algorithm, whose com-

plexity is only O nlognð Þ, was designed in [33]. The procedures are:

(a) Initialize a flag sequence flag kð Þ	 
MN
k ¼ 1 and a permutation

sequence Index kð Þ	 
MN
k ¼ 1 to 0 and set i¼1.

(b) Calculate z kþ1ð Þ ¼ T z kð Þ;μ� �
and χ ¼ ⌈MN � z kþ1ð Þ⌉.

(c) If flag χ
� �¼ 0, then set Index ið Þ ¼ χ, flag χ

� �¼ 1 and i¼ iþ1;
otherwise, go to Step b.

(d) If ioMN, go to Step b.

5.2. Construct the measurement matrix

Following the idea of [18], the chaotic measurement matrix
which approximately obeys Gaussian distribution is constructed
by the following steps:

(a) Define the chaotic sequence Δ d; k;μ0; z0 0ð Þ� �
≔ z0 nþ i�ð	

dÞgki ¼ 0,
which is extracted from the chaotic sequence generated by the
skew tent map with sampling distance d and keys μ0 and z0 0ð Þ.

(b) Introduce a new transform ϑ kð Þ	 
KM�1
k ¼ 0 ¼ �2f �Δ d; k;μ0;

�
z0 0ð ÞÞþ1gjk ¼ KM�1.

(c) Create the measurement matrix column by column using the

sequence ϑ kð Þ	 
KM�1
k ¼ 0 , as given by

Φ¼
ffiffiffiffi
2
K

r ϑ 0ð Þ ⋯ ϑ KM�Kð Þ
⋮ ⋱ ⋮

ϑ K�1ð Þ … ϑ KM�1ð Þ

0
B@

1
CA ð19Þ

where the scalar
ffiffiffiffiffiffiffiffiffi
2=K

p
is used for normalization.

5.3. Computational secrecy

Cryptosystems relying on computation-secrecy such as RSA are
practical and widely used. In contrast to information theoretic
secrecy which is an ideal encryption requirement, computational
secrecy allows the ciphertext possessing complete or partial
plaintext information, which is common. This ensures that for Eve
Fig. 3. Four encoded images at different CRs. (a) C
to recover the plaintext from the ciphertext without the correct
key is equivalent to solving a computational problem that is
assumed to be extremely difficult (e.g., NP-hard). In the proposed
scheme, X is a 2D sparse signal with sparsity s. If a wrong key μ,
z 0ð Þ, μ0 or z0 0ð Þ, which is almost identical to the correct key, is used
by Eve in attempting to recover X, the result is unsuccessful due to
the high key sensitivity. Moreover, the unsuccessful recovery of
the signal using a wrong key can also be justified by the following
theorem.

Theorem 3 (Rachlin and Baron [25]). Let Φ and ~Φ be K�M
Gaussian matrices with entries generated by different keys. Let x be s-
sparse and y¼Φx. When ~sZsþ1, the l0 or l1 optimization used will
yield an ~s-sparse solution with probability one.

On the contrary, once an s-sparse solution is obtained using
some keys, Eve easily realizes that it must be the correct key.
Computational secrecy can be achieved if Eve is computationally
bounded; otherwise, the cryptanalysis will succeed. However, in
practical applications, the keys should be at least 264 bits and are
updated periodically to resist brute-force attack.

Every communication requires altering the session keys, which
can be securely transmitted. For instance, they are encrypted by
public-key encryption algorithms such as RSA. Apparently, it can
resist the potential attacks including known-plaintext attack,
chosen-plaintext attack and chosen-ciphertext attack. It is also
impossible for the attacker to cryptanalyze the proposed approach
using cipher-only attack, since analyzing the encoded data, having
a smaller amount than the original data, to retrieve the original
data without knowing the secret measurement matrix is an NP-
hard question.
6. Simulation

For simulation purpose, an image can be considered as a 2D
signal, which is sparsified by 2D discrete cosine transform (DCT2)
to obtain a 2D sparse signal X. The best s-term approximation is
acquired by keeping the s largest DCT2 coefficients and setting the
remaining to zeros. Random permutation and Gaussian matrix are
generated by using MATLAB code. Four images of size 512�512,
Peppers, Lena, Boat and Baboon, are used in the simulations. The
basis pursuit algorithm in the CVX optimization toolbox [19] is
employed to realize the PCS reconstruction. Apart from the basis
pursuit, other reconstruction algorithms can also be used. The
reconstruction performance is evaluated by peak signal-to-noise
ratio (PSNR).

6.1. Compressibility

The encoded (or encrypted) image can have various sizes
depending on the compression ratio (CR), i.e., the ratio of the
number of measurements to the total number of entries in the
DCT2 coefficient matrix. Fig. 3 shows four encoded images of the
R¼0.8; (b) CR¼0.6; (c) CR¼0.4; (d) CR¼0.2.
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original Peppers image corresponding to CR¼ 0:8;0:6;0:4;0:2. In
order to investigate the effect of encryption on CR, we plot PSNR
versus CR for different images with/without encryption in Fig. 4,
where “E” represents introducing random permutation encryption
while “N” means not introducing, which refers to the case that a
2D sparse signal is sampled column by column using the same
measurement matrix drawn from Gaussian ensembles. As
observed from Fig. 4, random permutation helps to improve the
PSNR of all images by around 2–6 dB at the same CR. In other
words, at the same PSNR, random permutation encryption makes
CR smaller. This is due to the fact that random permutation can
relax the RIP for 2D sparse signals with high probability in PCS, as
justified by Theorem 1.

6.2. Robustness

Introducing encryption into PCS makes it still possess high
reconstruction robustness, even for a small amount of encoded data.
This can be visually verified by the four decoded images shown in
Fig. 5. The decoded (or decrypted) images contain most of the visual
information of the original images, even at CR¼0.2. A significant
requirement in the transmission process is the robustness of a coding
system (or cryptosystem) against imperfection such as additive white
Gaussian noise (AWGN) and cropping attack (CA). These two cap-
abilities are quantified in Table 1 for the Peppers image. In particular,
the encoded images at different CRs are affected by these imperfec-
tions and the PSNRs of the corresponding decoded images are cal-
culated. Additive white Gaussian noise yields zero-mean normal
distribution with variance 1 while the cropping attack cuts one-
Fig. 4. PSNR versus CR for different images with/without random permutation
encryption.

Fig. 5. Four decoded images corresponding to the four encoded images in
eighth of the encoded image at the upper left corner. Observing Γ3

and Γ4, or Γ5 and Γ6 from Table 1, we can see that at a channel with
both AWGN and CA, random permutation encryption improves the
PSNR at the same CR. By individually comparing the variation trends
of Γ2�Γ1, Γ4�Γ3 and Γ6�Γ5, the tendency is that the smaller the
CR, the greater the improvement. In addition, vertically contrasting
these three rows of data reveals that PSNR improvements are similar
with and without AWGN (or CA). Thus, we come to the conclusion
that the proposed approach possesses a strong robustness against
AWGN and CA. It is worth mentioning that similar results are
obtained using other images. In addition, to test the sensitivity of the
four keys for the chaos realization, a tiny perturbation of 10�16 is
added, respectively, and the decoded images are depicted in Fig. 6.
Their indistinguishability justifies the high key sensitivity of the
proposed approach. In fact, this is guaranteed by the inherent
property of chaos, i.e., high sensitivity to initial conditions. The key
space is at least 264.
7. Conclusion

This paper is firstly dedicated to the design of some encryption
models for SCS. Some connections between CS and symmetric-key
cipher are analyzed. Next, random permutation is verified to be
able to efficiently relax the RIP condition with high probability.
Furthermore, an encryption scheme for PCS has been proposed.
Simulations using images as 2D signals show that at the same
compression ratio, random permutation encryption improves the
PSNR by 2–6 dB for all images. For a channel suffered from both
additive white Gaussian noise and cropping attack, it still
improves the PSNR when the compression ratio is fixed. It is found
that the proposed approach possesses a high robustness against
additive white Gaussian noise and cropping attack. Security ana-
lysis indicates that the asymptotic spherical secrecy is achievable.
The implementation of chaos validates the feasibility of the pro-
posed encryption models for CS.
Fig. 3 at various CRs. (a) CR¼0.8; (b) CR¼0.6; (c) CR¼0.4; (d) CR¼0.2.

Table 1
PSNR of different settings at various CRs.

CR 0.2 0.4 0.6 0.8

PCS�Nð ¼ Γ1Þ 20.0800 25.2575 29.4243 34.0949
PCS�Eð ¼ Γ2Þ 25.7507 30.0071 33.4539 37.7431
Γ2�Γ1 5.6707 4.7496 4.0296 3.6482
PCS�AWGN�Nð ¼ Γ3Þ 20.0899 25.2382 29.3072 33.0931
PCS�AWGN�Eð ¼ Γ4Þ 25.7405 29.9143 33.0547 35.8942
Γ4�Γ3 5.6506 4.6761 3.7475 2.8011
PCS�CA�Nð ¼ Γ5Þ 19.3763 24.6003 28.8997 33.5010
PCS�CA�Eð ¼ Γ6Þ 25.1834 29.4669 33.0240 37.3011
Γ6�Γ5 5.8071 4.8666 4.1243 3.8001



Fig. 6. The test of key sensitivity (CR¼0.2). (a) z 0ð Þ ¼ 0:33þ10�16; (b) μ¼ 0:63þ10�16; (c) z0 0ð Þ ¼ 0:73þ10�16; (d) μ0 ¼ 0:28þ10�16.
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