IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 19, 2021, accepted January 22, 2021, date of publication January 26, 2021, date of current version February 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054750

Fast Algorithm Based on Parallel Computing
for Sample Entropy Calculation

XINZHENG DONG'-2, CHANG CHEN3, QINGSHAN GENG*, WENSHENG ZHANGS,
AND XIAOHUA DOUGLAS ZHANG 3, (Senior Member, IEEE)

!'School of Software Engineering, South China University of Technology, Guangzhou 510006, China

27Zhuhai Laboratory of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Zhuhai College, Jilin University, Zhuhai
519041, China

3CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau

#Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou 510080, China

SResearch Center of Precision Sensing and Control, Institute of Automation, Chinese Academy of Sciences, Beijing 100864, China

Corresponding author: Xiaohua Douglas Zhang (douglaszhang @um.edu.mo)
This work was supported in part by the Science and Technology Development Fund, Macau, under Grant 0004/2019/AFJ and

Grant 0011/2019/AKP, and in part by the University of Macau under Grant FHS-CRDA-029-002-2017,
Grant EF005/FHS-ZXH/2018/GSTIC, and Grant MYRG2018-00071-FHS.

ABSTRACT Sample entropy is a widely used method for assessing the irregularity of physiological
signals, but it has a high computational complexity, which prevents its application for time-sensitive scenes.
To improve the computational performance of sample entropy analysis for the continuous monitoring of
clinical data, a fast algorithm based on OpenCL was proposed in this paper. OpenCL is an open standard
supported by a majority of graphics processing unit (GPU) and operating systems. Based on this protocol,
a fast-parallel algorithm, OpenCLSampEn, was proposed for sample entropy calculation. A series of 24-
hour heartbeat data were used to verify the robustness of the algorithm. Experimental results showed that
OpenCLSampEn exhibits great accelerating performance. With common parameters, this algorithm can
reduce the execution time to 1/75 of the base algorithm when the signal length is larger than 60,000.
OpenCLSampEn also exhibits robustness for different embedding dimensions, tolerance thresholds, scales
and operating systems. In addition, an R package of the algorithm is provided in GitHub. We proposed a
sample entropy fast algorithm based on OpenCL that exhibits significant improvement for the computation
performance of sample entropy. The algorithm has broad utility in sample entropy when facing the challenge
of future rapid growth in the quantity of continuous clinical and physiological signals.

INDEX TERMS Algorithm, fast computation, graphics processing unit, parallel computing, sample entropy.

I. INTRODUCTION approximate entropy to measure the complexity and unpre-

Since entropy has been applied to the field of informatics [1],
this measure of time series complexity has been continuously
developed and improved. It is widely used in various fields
such as astronomy [2], economics [3], and biology [4]. Over
the past 20 years, the two most commonly used types of
entropy, approximate entropy [5] and sample entropy [6],
have been used for the measurement of nonlinear complexity
in biological signals.

Since Kolmogorov-Sinai entropy [7], a theoretical met-
ric used in nonlinear dynamic systems, is computationally
difficult and not easily promulgated, Pincus [5] proposed

The associate editor coordinating the review of this manuscript and

approving it for publication was Yilun Shang

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

dictability of systems. Richman and Moorman [6] proposed
sample entropy, which improved the shortcoming of sequence
self-matching in approximate entropy. Multiscale entropy
extends sample entropy to multiple time scales or signal
resolutions to provide an additional perspective when the time
scale of relevance is unknown. Furthermore, Costa et al. [8]
applied multiscale entropy to physiological time series and
clinical areas. His research showed that the entropy of healthy
people is higher than that of cardiac autonomic neurosis
patients. To date, as one of the nonlinear features used
to evaluate sympathetic and parasympathetic cardiac func-
tions, multiscale entropy has been used to study blood glu-
cose data [9], electrocardiogram (ECG) data [4], airflow
data [10], [11], electroencephalogram (EEG) data [12] and

20223

https://orcid.org/0000-0002-2486-7931
https://orcid.org/0000-0002-2817-3400

IEEE Access

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

so on. Researchers have also performed disease diagnosis and
prognosis and assessed patient status based on the level of
sample entropy.

Relative to Kolmogorov-Sinai entropy, the sample entropy
algorithm has simplified the theoretical derivation and cal-
culation steps, but it still includes the step of checking
the similarity between vector pairs, which is the most
time-consuming part of the entropy algorithm. Execution
time increases quadratically with increasing series length N.
To improve computational efficiency, many researchers
have modified the sample entropy algorithm by combin-
ing existing methods. For example, Lee [13] combined
the K-dimensional tree method and sample entropy, which
can shorten the execution time. Manis [14] edged the
bucket-assisted algorithm to sample entropy. In addition,
they proposed a lightweight algorithm when the embedding
dimension is small [15]. These methods sort the vector pairs,
which can reduce the number of similarity checks and thus
reduce the execution time. They advanced the running speed
of sample entropy, but the effect on physiological data with
a large data length is not obvious. We know that clinical
continuous data are often characterized by large data volumes
and many observational indicators. A Holter monitor, for
example, is used to monitor 24 hours of continuous cardiac
data in heart patients, and EEG signals in epileptic patients
typically consist of 32 or 196 channels. How to quickly and
easily perform sample entropy calculations on large amounts
of clinical data is addressed in this paper.

Graphics processing unit (GPU) was originally designed
for performing graphics-related tasks. Because of the emer-
gence of general-purpose GPU (GPGPU) programming
and its enormous computing power, GPU is increasingly
used in various general-purpose applications [16]. In three
areas of medical image processing—image reconstruc-
tion [17]-[23], image registration [24]-[26] and image
segmentation [27]-[30]—many computing applications
have exploited the capabilities of GPU to reduce execu-
tion times. Thus, the use of GPU to process biomedi-
cal signals has become a topic of interest. For example,
Martinez-Zarzuela et al. [31] proposed a GPU-based imple-
mentation of cross-approximate entropy and achieved two
orders of magnitude acceleration in analyzing magnetoen-
cephalography (MEG) recordings. Konstantinidis et al. [32]
used GPU parallel capabilities to offer a feasible solution
for the real-time sensing of a user’s affective state during
emotion-aware computing. Eklund er al. [33] described how
to perform statistical analysis for functional magnetic res-
onance imaging (fMRI) data on a GPU and showed that
nonparametric tests of fMRI data based on a GPU are pos-
sible. Currently, personal computer (PC) is usually paired
with a GPU device. This allows for running biological
computations on a PC in a high-performance computing
(HPC) environment. Shen et al. [34] introduced a parallel
implementation of a computer simulation for ECG on a
PC with a GPU and demonstrated that the setup not only
meets calculation requirements but also avoids the use of

20224

expensive supercomputers. Zhu and Wei [35] demonstrated
the advantages of GPU for the simulation of action potential
propagation in cardiac tissue.

There are three popular implementation frameworks
for GPGPU programming: CUDA from Nvidia (https:/
developer.nvidia.com/cuda), DirectCompute from Microsoft
(https://developer.nvidia.com/directcompute) and OpenCL
[36] from the Khronos Group. CUDA is only available for
NVIDIA’s GPU. DirectCompute is specific to Microsoft
Windows. Therefore, they are not portable among different
operating systems. OpenCL is an open standard supported
by major GPU device vendors and operating systems [37].
Taking advantage of the parallel capability of a GPU and
OpenCL’s portability across GPU and operating systems,
we aim to develop an OpenCL-based parallel algorithm for
calculating sample entropy.

Multi-core CPUs are typically composed of a small
number of high-frequency processor cores, while GPUs
are composed of hundreds of processing units running
at a low-frequency. Such massively parallel architecture
brings high computing performance. OpenCL provides hard-
ware abstractions and programming interfaces to perform
task-parallel or data-parallel computations in a heterogeneous
computing environment consisting of the host CPU and any
attached OpenCL devices. An OpenCL device is divided
into one or more compute units which are further divided
into one or more processing elements. Computations occur
within the processing elements. The processing elements
in one compute unit execute a single stream of instruc-
tions or each processing element maintains its own program
counter [36].

The contribution of the paper can be summarized in the
following points. First, we brought parallel computing based
on GPU for the improvement of computational performance
of sample entropy. Based on the principle of parallel comput-
ing, we proposed a new method to quickly calculate sample
entropy based on the OpenCL framework. Second, we com-
pared the speedup performances among our new method and
several existing methods in different embedding dimensions,
tolerances, scales and operating systems. Finally, we provide
a C + + implementation and an R package for our method,
which can help researchers quickly calculate sample entropy
for clinical data with a large data size.

il. METHODS
A. SAMPLE ENTROPY

Let X = {x1,x2, ..., xy} represent a time series of length V.
The template vector X, (i) of length m is constructed from X:

-:XH—m—l} (D

and the distance function between two such vectors is
defined:

Xon (D) = {xi, Xig1, Xig2s -

d(m,i,j) =d[Xm (D), Xm ()]
= mlglx {|x,~+k_1 — Xjyk—1 }, wherek =1,--- ,m. (2)

VOLUME 9, 2021

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

IEEE Access

Then, the number of similar vectors within a distance
threshold r from X, (i) can be defined as

m _ N—m ..
Bl =3 H i) 3)

and the number of vectors similar to X,,+1(i) can be defined
as

m _ N—m ..
AT (r) = ijl)]_#l_H (m+1,i,j,r) (4)
where H (m, i, j, r) is defined as

H i) — { 1, d(mij)<r)

0, otherwise
Finally, we define the sample entropy as:

SampEn (m,r,N)

A™(r) m m
— an(r), A" (r)#0and B" (r)#0
—In . otherwise
(N—m)(N —m—1)
(6)

where the probability that two vectors of length m are similar
is defined as
N—m 1

—B"() (]
m—1

B"(r) = ——
=N lam NZ

and the probability that two vectors of length m+ 1 are similar
as

N—m 1
A" (") ®
m—1

A" () = —
=y m st NC

To improve the calculation efficiency by eliminating
repeated comparisons, we define the forward B} (r) and
Al (r):

N—m L

B fomara (1) = 3 H On.0,),7) ©)
N—m

Alforwara () = Hm+1,0j,r) (10)

and the total number of forward similar vectors of length m
and m + 1:

N—m
Bforward = Zi:l B;flforward (r) 1D
—m

N
Aforward =) Alforwara (1) (12)

Note that Bpyryarg = =28 ="=Dp" ;) and Apprwara =
Wem@=m=D gm(r); therefore, the sample entropy can be
calculated as follows when Bfyryard #0 and Agorwara # 0:

A (r)
B (r)

Aforward

SampEn (m,r,N) = —In

(13)
B forward

VOLUME 9, 2021

B. THE OPENCL-BASED PARALLEL ALGORITHM

OpenCL (Open Computing Language) is an open standard for
general-purpose parallel programming across heterogeneous
processing platforms such as Central Processing Unit (CPU),
GPU and other processors [36]. An OpenCL program has
two parts: kernels that execute on OpenCL devices and a
host program that executes on the host. The host program
defines the context for the kernels and manages their execu-
tion. A kernel is a function executed on an OpenCL device.
Hundreds of processing elements within one GPU can simul-
taneously execute one kernel with different data. It means that
we can use different data for the same function calculation at
the same time. Our algorithm combines such a data parallel
programming model and traditional sample entropy algo-
rithm to improve computing performance. Because it uses the
OpenCL standard to perform parallel computing, we call it
OpenCLSampEn.

From the definition of sample entropy, we can know
that the straightforward sample entropy algorithm can be
divided into three steps: inputting data, checking the similar-
ity between vector pairs, and calculating logarithm. The time
complexity of these three steps is linear, quadratic, and con-
stant respectively. Obviously, checking the similarity between
vector pairs is the main time-consuming execution in sample
entropy calculation. Therefore, the acceleration algorithm of
sample entropy is reflected in improving the efficiency of
checking similarity. In our method, we will make the sim-
ilarity comparison as parallel as possible. Specifically, this
process can be divided into the following four steps, which
are shown in Fig. 1.

1. Construct an array of size N — m, which holds all the
template vectors of length m + 1 from the input time series
with N points.

2. Sort the array by the first element of each template
vector. The sorted array can reduce unnecessary comparisons
between template vector pairs in the next step. After that, all
elements of the sorted array are unfolded into a point array
one by one. Thus, a new time series with (N —m) x (m + 1)
points is constructed.

3. Calculate A;’}orward (r) and BZlfOVW ara (), Where i ranges
from 1 to N — m. Different from other steps running on
the CPU, this step runs on the GPU. Af’}brward (r) and
B;’ffomard (r) can be calculated together in one single ker-
nel. A single kernel execution can run on all the processing
elements of the GPU device in parallel, so Azlﬁ)rw arg (1) and

Zlforw ara (1) can’be computed in parallel for different i, which
will have a considerable acceleration effect. A vector array
of length N — m is used to store the result, and each vector
consisting of two elements A;.f’forward (r) and lefwward (r)is
placed at the i-th element of the vector array.

4. Calculate Afypward and Bforyard, then obtain the result
SampEn (m, r, N). Both Afyyara and Bfopwara can be obtained
by accumulating each Aff}brward (r) and Bff’forward (r), respec-
tively, in the vector array. Then, we can obtain the final result
SampEn (m, r, N) by calculating the negative logarithm of
the quotient of Afypyara divided by Bforward -

20225

IEEE Access

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

Algorithm

Data structure when m=2 Host

GPU

xafxexa] . [x

Construct an array (of size N-m) of

A kernel is defined by calculating A; and B;

Xq (% | X3 X 2 template vectors (of length m+7)
from the input time series with N points
X2| X3 | X4 X1
___ Y

for a specific i, N-m intances of the kernel
are executed on hundreds of processing
elements within a GPU device.

Sort the array by the first element of
each template vector, convert the sorted
vector array to an array (of size (N-m)*
(m+1)) of points

A 4

Calculate Ami,forward(r) and Bmi,fom/ard("),
where j ranges from 1 to N-m

Calculate Afonyarg @nd Bronyaras
then get the result SampEn(m,r,N)

End

FIGURE 1. Flow chart of the main process of the OpenCL-based parallel algorithm.

In the first step, the array of template vectors is built at the
storage cost of three times the volume of the original signal
length. In the second step, the average time cost of sorting is
O(N x log, N). However, the combination of these two steps
provides the basis for the third step so that we can not only
eliminate unnecessary comparisons between vectors but also
take advantage of the locality of concurrent accesses [38].
The execution time of the third step, which accounts for the
majority of all steps, will be greatly reduced, thus improving
the overall computing performance.

In OpenCL, when a kernel is submitted for execution by
the host, an index space is defined. An instance of the ker-
nel executes for each point in the index space. This kernel
instance is called a work-item. Each work-item executes the
same code, but the data can be different in each work-item.
Several work-items compose a work-group. The work-items
in a given work-group execute concurrently on the processing
elements of a single compute unit. The work-items executing
a kernel have the access to four distinct memory regions:
global memory, constant memory, local memory and private
memory. A local memory region is local to a work-group, and
a private memory region is private to a work-item [36].

In our algorithm, the third step is defined as a kernel
running on an OpenCL device, and other steps are contained

20226

in a host program. The host program defines the context
for the kernel and manages its execution. The input param-
eter of the kernel is stored in the constant global memory
region, the output parameter is stored in the global memory
region, and other internal variables of the kernel are private
to work-items. The input data of the kernel is organized in a
one-dimensional sequence. Besides this, the local work size
of the kernel is set to 128, an empirical optimal value, which
is selected by repeated experiments and comparisons. Single
precision is a basic feature, while double precision is an
optional extension feature in OpenCL devices, so we choose
single precision for the portability of kernel across a variety
of OpenCL device. We developed the algorithm in the C + +
programming language and encapsulated it into an R package
for convenience. The R package has been tested on differ-
ent platforms: Linux, Windows, MacOS. It is available on
GitHub: https://github.com/dongxinzheng/ParallelSampEn.

C. THE BASICSAMPEN, KDTREESAMPEN AND
LIGHTWEIGHTSAMPEN ALGORITHMS

To verify the performance of the proposed algorithm, three
algorithms are used for comparison with our algorithm:
BasicSampEn, KDTreeSampEn and LightWeightSampEn.
We use the C code of M. Costa, which is available

VOLUME 9, 2021

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

IEEE Access

TABLE 1. Characteristics of the signals filtered from datasets.

ID Mean Standard deviation (SD) Number of points Sample entropy
1 0.734 0.221 116766 0.236
2 0.700 0.117 122819 0.357
3 0.614 0.103 136483 0.673
4 0.658 0.099 128744 1.025
5 0.688 0.162 116284 0.304
6 0.720 0.106 117709 0.539
7 0.720 0.119 117655 0.518
8 0.678 0.122 126848 0.502
9 0.689 0.151 118697 0.469
10 0.690 0.142 119859 0.655
TABLE 2. Configurations for test platforms.
Platform Operating system GPU CPU Memory
version capacity
macOS High Sierra Intel Iris Plus 2.3 GHz Intel Core i5 16 GB
Windows Windows 10 Home Edition NVIDIA GeForce MX150 2.0 GHz Intel Core i7 8 GB
Linux CentOS 7 NVIDIA Tesla V100 PCle 16 GB 2.4GHz Intel® Xeon® Gold 6148 Processor 128 GB

in PhysioNet [8], [39], [40], as the basic algorithm:
BasicSampEn is used to calculate multiscale sample entropy
of clinical data. A fast algorithm proposed by Yu-Hsiang
Lee [13] is called KDTreeSampEn. In the calculation of a
matching part of the vector X, (i), this method constructs
a high-dimensional binary tree model, the K-dimensional
tree, and gives the tolerance r to determine the range of
the nearest neighbor search. It sorts the original sequence
in m-dimensional space and divides the space into several
small parts, which can reduce the number of comparisons
between vectors and quickly determine A}" (r) and BY" (r) .
A lightweight fast algorithm proposed by Manis, G. et al.
in 2018 [15] is faster for a short time series and small m
parameter. It is implemented to perform the comparison and
called LightWeightSampEn in the following. The algorithm
first sorts all vectors and finds vectors that meet the require-
ments and counts them by dichotomy. It also reduces the num-
ber of comparisons by sorting the vectors, thereby reducing
the running time of the program.

D. EXPERIMENTAL DATASETS

The public clinical dataset nsr2db (Normal Sinus Rhythm RR
Interval Database) from PhysioNet [39] was considered for
evaluation of the four methods in our comparisons. It includes
beat annotation files for 54 long-term ECG recordings of
subjects in normal sinus rhythm (30 men, aged 28.5 to 76, and
24 women, aged 58 to 73). We obtained the RR interval files
from the annotation files using the “ann2rr” command in
the WFDB (WaveForm DataBase) package from PhysioNet
and then removed the possible outliers that were not in this
range [0.3, 1.5] in each file. Finally, ten files with more
than 100,000 lines were randomly selected, as 100,000 is the

VOLUME 9, 2021

maximum number of points from one time series used in our
comparisons. Table 1 shows the characteristics of the signals
taken for evaluation of the four methods.

IIl. RESULTS

All four algorithms were tested on three different platforms:
macOS, Windows, and Linux. Each platform represents a
combination of an operating system and specific hardware
resources. Table 2 shows the configurations of each test plat-
forms. The macOS results was showed from part A to part
D in this Section, while corresponding results from Windows
and Linux were placed in supplementary materials. Then, the
comparison of the three platforms under typical parameter
values was shown in part E.

All algorithms were implemented in the C + + program-
ming language within an executable file and run in the
R language (version 3.6.1) environment for the following
comparisons. Ten physiological signals were used in each
comparison, and each signal was repeated 10 times. Thus,
the results are shown as the average execution time and
standard deviation of 100 runs. To exclude overheads from
the running time, the data were read from the file into memory
before timing. In addition, the creation time of the GPU con-
text, which is a constant time connecting to the GPU, was also
excluded. We designated the ‘gettimeofday’ function as the
timing function for the macOS and Linux operating systems
and designated the ‘QueryPerformanceCounter’ function as
the timing function for the Windows operating system.

A. SPEEDUP PERFORMANCE FOR TYPICAL

PARAMETER VALUES

We first checked the execution times of the four algo-
rithms for the common condition: embedding dimension

20227

IEEE Access

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

Execution time for m=2 and r=0.15*SD

104

Execution Time (seconds)
(&)}

Number of points (X1000)

Method —— BasicSampEn -=- KDTreeSampEn

LightWeightSampEn —4- OpenCLSampEn

FIGURE 2. Execution time of the four algorithms on time series of different lengths for typical parameter values m = 2 and

r = 0.15 % SD. Values are given as the means + standard deviation.

Speedup for m=2 and r=0.15*SD

Method —— BasicSampEn -#- KDTreeSampEn

50 60 70 80 90 100
Number of points (X1000)

LightWeightSampEn —4- OpenCLSampEn

FIGURE 3. Speedup of the four algorithms gained from BasicSampEn on time series of different lengths for typical parameter
values m = 2 and r = 0.15 = SD. Values are given as the means + standard deviation.

m = 2 and tolerance r = 0.15 % SD, where SD
means the standard deviation of a physiological signal.
Fig. 2 shows the execution time of all algorithms for dif-
ferent signal lengths. Compared with BasicSampEn, three
acceleration algorithms all have a significant decrease in
execution time. Compared to the other two acceleration
algorithms, OpenCLSampEn algorithm has the best perfor-
mance and the shortest execution time. Furthermore, Open-
CLSampEn’s execution time does not raise with signal length

20228

as rapidly as that of BasicSampEn, KDTreeSampEn and
LeightWeightSampEn.

In order to clearly show the behavior of the four algo-
rithms when the signal length is small, a metric named
“speedup”’, the quotient of execution time for each algorithm
and basic algorithm, was used to evaluate the computing per-
formance. In Fig. 3, it can be clearly seen that BasicSampEn
is the most time-consuming of all algorithms. As a result,
the speedup of BasicSampEn is a constant 1, and that of the

VOLUME 9, 2021

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

IEEE Access

Speedup for different values of m and r=0.15*SD

751

50 1

251

m=3

751

50 1

251

2510 20 30 40 50 60 70 80 90100 2510 20 30 40 50 60 70 80 90100

2510 20 30 40 50 60 70 80 90100

Number of points (X1000)

Method —— BasicSampEn -=— KDTreeSampEn

LightWeightSampEn —4— OpenCLSampEn

FIGURE 4. Speedup of the four algorithms gained from BasicSampEn on time series of different lengths for different
values of m and r = 0.15 « SD. Values are given as the means =+ standard deviation.

other three algorithms is greater than 1, which means that
they are all faster than BasicSampEn. When the length of
the physiological signal is smaller than 5,000, these three
accelerated algorithms have a similar growth trend that is
slightly faster than the basic algorithm. With the increase
of the data size, the speedup of OpenCLSampEn increases;
its maximum is 75 compared with than BasicSampEn when
the length is larger than 60,000. For a sample entropy anal-
ysis of clinical data, such as respiratory signals, 24-hour
heartbeat signals and EEG signals, our method can quickly
calculate the results. However, for all lengths, the speedups of
KDTreeSampEn and LeightWeightSampEn are always less
than 5. For physiological signals with a large amount of
data, KDTreeSampEn and LeightWeightSampEn have lim-
ited computing capacity and cannot greatly improve the com-
puting performance. It is worth noting that the large standard
deviation of OpenCLSampEn’s speedup is derived from the
basic algorithm, not the OpenCLSampEn algorithm itself.

B. SPEEDUP PERFORMANCE FOR DIFFERENT
EMBEDDING DIMENSION M

From the last section, we know that when m = 2 and
r = 0.15 * SD, OpenCLSampEn offers the highest speedup
performance for a physiological signal with a data length

VOLUME 9, 2021

greater than 10,000. However, what happens when the values
of parameters m or r change? We fixed the tolerance r to
0.15 % SD and changed the embedding dimension m from
2 to 10; the results are shown in Fig. 4. OpenCLSampEn
still has a much higher speedup than the other two algo-
rithms, but the speedup of OpenCLSampEn decreases with
the increase of m, from a high of approximately 75 to a low
of approximately 25. This is because when the embedding
dimension increases, similarity calculations between vectors
require more elements for vector comparison. The speedup
of LightWeightSampEn has the same change trend as the
change in embedding dimension m but is different from
the trend of KDTreeSampEn, although this cannot be seen
clearly in Fig. 4 because the change in value is too small.
This is because the KDTreeSampEn algorithm has a greater
advantage in high-dimensional range queries, although the
improvement is negligible compared to OpenCLSampEn.

C. SPEEDUP PERFORMANCE FOR DIFFERENT
TOLERANCE R

Fig. 5 shows the comparison of the acceleration performance
of the four algorithms when tolerance r was changed from
0.05 * SD to 0.85 * SD and the embedding dimension m was
fixed at 2. Similar to Fig. 4, OpenCLSampEn still has a much

20229

IEEE Access

150 1

100 1

501

150 1

100 1

Speedup for m=2 and different values of r

r=0.25"SD

r=0.05"SD

r=0.15"SD

r=0.35"SD r=0.45"SD r=0.55"SD

r=0.85"SD

r=0.65"SD r=0.75"SD

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

1

2510 20 30 40 50 60 70 80 90100 2510 20 30 40 50 60 70 80 90100

2510 20 30 40 50 60 70 80 90100

Number of points (X1000)

Method —— BasicSampEn -= KDTreeSampEn

LightWeightSampEn —— OpenCLSampEn

FIGURE 5. Speedup of the four algorithms gained from BasicSampEn on time series of different lengths for different values of r and

m = 2. Values are given as the means + standard deviation.

higher speedup than the other two algorithms. The speedup
of OpenCLSampEn decreases with the increase of r, from the
high of approximately 150 to a low of approximately 30. The
reason is that when tolerance r increases, the total number
of compared vector pairs will increase, which requires more
elements for vector comparison. The variation trend of the
other two methods is consistent with that of openCLSampEn,
although they cannot be seen clearly in Fig. 5 because the
change in trend is too small.

D. SPEEDUP PERFORMANCE FOR MULTISCALE ENTROPY
Fig. 6 depicts the ensemble speedup of different algorithms
for multiscale entropy on physiological signals with different
lengths. Typical parameter embedding dimensions m = 2 and
tolerance r = 0.15 x SD were used. The accumulated execu-
tion times of multiple scales from 1 to 20 were used to cal-
culate the ensemble speedup. Yentes et al. [41] found that at
least 2,000 points could obtain stable sample entropy values.
Thus, the length of the signal would start from 40,000, which
still has 2,000 points after a coarse-graining process when

20230

the scale factor increases to 20. From Fig. 6, the speedup of
OpenCLSampEn increases from 10 to 40 with increasing data
length, but the speedups of the other two algorithms decrease
with increasing length, and the upper limit is always below 4.
Therefore, when the OpenCLSampEn algorithm is applied to
the analysis of multiscale entropy, it has a large computing
performance advantage. Compared with Fig. 3, the highest
speedup of the OpenCLSampEn algorithm is reduced from
76 to 40 when the data length reaches 100,000. The reason is
that the accumulated time is the sum of execution times of 20
different time scales, while the speedup of the short signal is
significantly smaller than that of the long signal.

E. SPEEDUP PERFORMANCE ON DIFFERENT PLATFORMS

In order to verify the portability of the proposed algorithm
across GPU devices and operating systems, three platforms
were used for testing (Table 2). The results for m = 2 and
r = 0.15 % SD are shown in Fig. 7. The top panels of
Fig. 7 show that although the speedups of each algorithm on
different operating systems are different, they have consistent

VOLUME 9, 2021

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

IEEE Access

Speedup for multiscale entropy

Speedup

70 80 90 100

Number of points (X1000)

Method —— BasicSampEn -—= KDTreeSampEn

LightWeightSampEn —4— OpenCLSampEn

FIGURE 6. The ensemble speedup of the four algorithms for multiscale entropy on time series of different
lengths. Typical parameter values m = 2 and r = 0.15 % SD are used. The sum of multiple time scale
execution times from 1 to 20 is used to calculate the ensemble speedup. Values are given as the means +

standard deviation.

growth, trends with increasing signal length. The speedup of
OpenCLSampEn exceeds the other two algorithms when the
signal length is greater than a certain threshold. The threshold
is 10,000 for the macOS and Windows operating systems
and 20,000 for the Linux operating system, which can be
seen in the bottom panels of Fig. 7. In addition, the speedup
results of the Windows and Linux operating systems for dif-
ferent embedding dimensions m, tolerances r, and multiscale
entropies are consistent with those of MacOS, which are
available in the supplementary materials.

IV. DISCUSSION
Sample entropy is a widely used method for assessing the
irregularity of physiological signals, but it has a high com-
putational complexity, which prevents its application for
time-sensitive scenes. To improve the computational perfor-
mance of sample entropy analysis for the continuous moni-
toring of clinical data, a fast algorithm based on OpenCL was
proposed in this paper. Considering the popularity of graphics
cards in PCs and high-performance computers, a parallel
computing model is employed in this algorithm. For imple-
mentation, the OpenCL GPGPU framework was adopted
because it is an open industry standard that offers portability
across GPU devices and operating systems.

Compared with the basic sample entropy algorithm and
the other two algorithms reported in the previous litera-
ture, we found that our improved algorithm has the greatest

VOLUME 9, 2021

acceleration effect for clinical data, not only for commonly
used parameter values m = 2 and r = 0.15 * SD but also for
different embedding dimensions m and different tolerances
r. The effective design of the OpenCLSampEn algorithm
and the adequate utilization of computing resources are the
reasons for the results. Beyond that, the speedup of our
proposed algorithm increases with increasing signal length,
which is applicable to the analysis of physiological signals
with large data sizes and multichannel signals. As a compar-
ison, the speedup of other algorithms remains at a stable low
level when the signal length increases. Our algorithm also
has a good acceleration effect in different operating systems
(Windows, Linux, macOS) and GPU devices. In addition,
our algorithm can be used to improve the computational
efficiency of the proposed entropies based on sample entropy,
such as the multiscale sample entropy (MSE), refined MSE
(RMSE) [42], composite multiscale entropy (CMSE) [43],
refined CMSE (RCMSE) [44], etc. To make it easier for
beginners to understand and use the algorithm, we provided
an R package of this algorithm in GitHub as a convenience for
researchers to calculate the sample entropy for large amounts
of clinical data.

The proposed algorithm still has some small limitations.
One limitation is that when the length is less than a certain
threshold (5,000 for PCs), the speedup of our proposed algo-
rithm does not provide significant improvement compared to
the other two algorithms. This is because in this algorithm,

20231

IEEE Access

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

Speedup for different platforms

macOS

80 1

60 1

Windows

Linux

0_ ——— ——— = —_—

2510 20 30 40 50 60 70 80 90100
macOS

2510 20 30 40 50 60 70 80 90100

Windows

2510 20 30 40 50 60 70 80 90100

Linux

Number of points (X1000)

Method —— BasicSampEn -=- KDTreeSampEn

LightWeightSampEn —4— OpenCLSampEn

FIGURE 7. Speedup of the four algorithms on different operating systems (macOS, Windows, Linux) for typical parameter values m = 2
and r = 0.15 = SD. Values are given as the means + standard deviation. The top panels show the speedup of data length from 2,000 to
100,000. The bottom panels show the details of the corresponding top panels when the data length is between 2,000 and 20,000.

transferring data between the memory object and host mem-
ory takes up a small constant overhead. In addition, there is
an extra overhead incurred when creating the GPU context
before the calculation needs to be considered. Therefore,
the method does not possess the advantage of computational
performance in terms of sample entropy calculation for short
time series. Another limitation is that a graphics card that sup-
ports OpenCL is required. This is not a problem for current
mainstream PCs and HPCs. Therefore, we do not recommend
analyzing long time series on a computer without a GPU.

V. CONCLUSION

We proposed a sample entropy fast algorithm based on
OpenCL that exhibits a significant improvement in sample
entropy computations for clinical data with a large data
size. It combines entropy calculation, parallel computing,
and OpenCL, uses the computing performance advantages
of GPU to improve the sample entropy calculation, so as to
obtain a stable, fast and wide-range sample entropy algo-
rithm. These advantages provide the algorithm with broad
utility in the analysis of sample entropy when facing the
challenge of future rapid growth in the quantity of various
continuous clinical and physiological signals.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp.379-423, Jul. 1948, doi: 10.1002/j.1538-
7305.1948.tb01338.x.

20232

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

(10]

(11]

[12]

R. Narayan and R. Nityananda, ‘““Maximum entropy image restoration in
astronomy,” Annu. Rev. Astron. Astrophys., vol. 24, no. 1, pp. 127-170,
Sep. 1986.

A. Zellner, Bayesian Methods and Entropy in Economics and Economet-
rics. Amsterdam, The Netherlands: Springer, 1991.

C. Chen, Y. Jin, I. L. Lo, H. Zhao, B. Sun, Q. Zhao, J. Zheng, and
X. D. Zhang, “Complexity change in cardiovascular disease,” Int. J. Biol.
Sci., vol. 13, no. 10, pp. 1320-1328, 2017.

S. Pincus, “Approximate entropy as a measure of system complexity,”
Proc. Nat. Acad. Sci. USA, vol. 88, no. 6, pp. 2297-2301, 1991.

J. S. Richman and J. R. Moorman, “Physiological time-series analysis
using approximate entropy and sample entropy,” Amer. J. Physiol.-Heart
Circulatory Physiol., vol. 278, no. 6, pp. H2039-H2049, Jun. 2000, doi:
10.1152/ajpheart.2000.278.6.H2039.

H. van Beijeren, J. R. Dorfman, H. A. Posch, and C. Dellago,
“Kolmogorov-sinai entropy for dilute gases in equilibrium,” Phys. Rev.
E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 56, no. 5,
pp. 5272-5277, Nov. 1997.

M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis
of complex physiologic time series,” Phys. Rev. Lett., vol. 89, no. 6,
Jul. 2002, Art. no. 068102, doi: 10.1103/PhysRevLett.89.068102.

X. D. Zhang, Z. Zhang, and D. Wang, “CGManalyzer: An r package for
analyzing continuous glucose monitoring studies,” Bioinformatics, vol. 34,
no. 13, pp. 1609-1611, Jul. 2018.

Y. Jin, C. Chen, Z. Cao, B. Sun, I. L. Lo, T.-M. Liu, J. Zheng, S. Sun, Y. Shi,
and X. D. Zhang, “Entropy change of biological dynamics in COPD,”
Int. J. Chronic Obstructive Pulmonary Disease, vol. 12, pp. 2997-3005,
Oct. 2017.

S. Sun, Y. Jin, C. Chen, B. Sun, Z. Cao, I. Lo, Q. Zhao, J. Zheng, Y. Shi, and
X. Zhang, “Entropy change of biological dynamics in asthmatic patients
and its diagnostic value in individualized treatment: A systematic review,”
Entropy, vol. 20, no. 6, p. 402, May 2018.

A. G. Hudetz, J. D. Wood, and J. P. Kampine, “Cholinergic reversal of
isoflurane anesthesia in rats as measured by cross-approximate entropy of
the electroencephalogram,” Anesthesiology, vol. 99, no. 5, pp. 1125-1131,
Nov. 2003.

VOLUME 9, 2021

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039
http://dx.doi.org/10.1103/PhysRevLett.89.068102

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

IEEE Access

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Y.-H. Pan, Y.-H. Wang, S.-F. Liang, and K.-T. Lee, “Fast computation
of sample entropy and approximate entropy in biomedicine,” Comput.
Methods Programs Biomed., vol. 104, no. 3, pp. 382-396, Dec. 2011.

G. Manis, “‘Fast computation of approximate entropy,” Comput. Methods
Programs Biomed., vol. 91, no. 1, pp. 48-54, Jul. 2008.

G. Manis, M. Aktaruzzaman, and R. Sassi, “Low computational cost for
sample entropy,” Entropy, vol. 20, no. 1, p. 61, Jan. 2018.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU computing,” Proc. IEEE, vol. 96, no. 5, pp. 879-899,
May 2008.

C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, and R. Weissleder,
“High throughput transmission optical projection tomography using low
cost graphics processing unit,” Opt Exp., vol. 17, no. 25, pp. 22320-22332,
2009.

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain opti-
cal coherence tomography system using a graphics processing unit,”
J. Biomed. Opt., vol. 14, no. 6, 2009, Art. no. 060506.

L.-W. Chang, K.-H. Hsu, and P.-C. Li, “Graphics processing unit-based
high-frame-rate color Doppler ultrasound processing,” IEEE Trans. Ultra-
son., Ferroelectr., Freq. Control, vol. 56, no. 9, pp. 1856-1860, Sep. 2009.
D. Liuand E. S. Ebbini, “Real-time two-dimensional temperature imaging
using ultrasound,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Sep. 2009, pp. 1971-1974.

P. Coupé, P. Hellier, X. Morandi, and C. Barillot, “Probe trajectory inter-
polation for 3D reconstruction of freehand ultrasound,” Med. Image Anal.,
vol. 11, no. 6, pp. 604-615, Dec. 2007.

I. Goddard, T. Wu, S. Thieret, A. Berman, and H. Bartsch, “Implement-
ing an iterative reconstruction algorithm for digital breast tomosynthesis
on graphics processing hardware,” Proc. SPIE, vol. 6142, Mar. 2006,
Art. no. 61424V.

G. Pratx and L. Xing, “GPU computing in medical physics: A review,”
Med. Phys., vol. 38, no. 5, pp. 2685-2697, 2011.

P. Hastreiter and T. Ertl, “Integrated registration and visualization of
medical image data,” in Proc. Comput. Graph. Int., Jun. 1999, pp. 78-85.
J. Antoine Maintz, “‘A survey of medical image registration,” Med. Image
Anal., vol. 2, no. 1, pp. 1-36, Mar. 1998.

O. Fluck, C. Vetter, W. Wein, A. Kamen, B. Preim, and R. Westermann,
“A survey of medical image registration on graphics hardware,” Comput.
Methods Programs Biomed., vol. 104, no. 3, pp. e45-e57, Dec. 2011.

M. Rumpf and R. Strzodka, “Level set segmentation in graphics hard-
ware,” in Proc. Int. Conf. Image Process., 2001.

J.Y. Hong and M. D. Wang, ““High speed processing of biomedical images
using programmable GPU,” in Proc. Int. Conf. Image Process. ICIP,
Oct. 2001, pp. 1103-1106.

O. Sharma, Q. Zhang, F. Anton, and C. Bajaj, “Multi-domain, higher
order level set scheme for 3D image segmentation on the GPU,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010,
pp. 2211-2216.

A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, “Medical image
processing on the GPU—Past, present and future,” Med. Image Anal.,
vol. 17, no. 8, pp. 1073-1094, Dec. 2013.

M. Martinez-Zarzuela, C. Gémez, F. J. Diaz-Pernas, A. Fernindez,
and R. Hornero, “Cross-approximate entropy parallel computation on
GPUs for biomedical signal analysis. Application to MEG recordings,”
Comput. Methods Programs Biomed., vol. 112, no. 1, pp. 189-199,
Oct. 2013.

E. I. Konstantinidis, C. A. Frantzidis, C. Pappas, and P. D. Bamidis,
“Real time emotion aware applications: A case study employing emotion
evocative pictures and neuro-physiological sensing enhanced by graphic
processor units,” Comput. Methods Programs Biomed., vol. 107, no. 1,
pp. 16-27, Jul. 2012.

A. Eklund, M. Andersson, and H. Knutsson, “FMRI analysis on
the GPU—Possibilities and challenges,” Comput. Methods Programs
Biomed., vol. 105, no. 2, pp. 145-161, Feb. 2012.

W. Shen, D. Wei, W. Xu, X. Zhu, and S. Yuan, “Parallelized computation
for computer simulation of electrocardiograms using personal computers
with multi-core CPU and general-purpose GPU,” Comput. Methods Pro-
grams Biomed., vol. 100, no. 1, pp. 87-96, Oct. 2010.

X. Zhu and D. Wei, “A computer simulation of clinical electrophysiolog-
ical study,” in Proc. 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Aug. 2008, pp. 585-588.

VOLUME 9, 2021

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

A. Munshi, “The OpenCL specification,” in Proc. Hot Chips Symp.,
Aug. 2011, pp. 1-314.

P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra,
“From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming,” Parallel Comput., vol. 38, no. 8,
pp- 391407, Aug. 2012.

E. S. John, G. David, and G. Shi, “OpenCL: A parallel programming stan-
dard for heterogeneous computing systems,” Comput. Sci. Eng., vol. 12,
no. 3, pp. 66-72, May 2010.

A.L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,
“PhysioBank, PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals,” Circulation, vol. 101,
no. 23, Jun. 2000, doi: 10.1161/01.cir.101.23.e215.

M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy anal-
ysis of biological signals,” Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 71, no. 2, Feb. 2005, Art. no. 021906, doi:
10.1103/PhysRevE.71.021906.

J. M. Yentes, N. Hunt, K. K. Schmid, J. P. Kaipust, D. McGrath, and
N. Stergiou, “The appropriate use of approximate entropy and sam-
ple entropy with short data sets,” Ann. Biomed. Eng., vol. 41, no. 2,
pp. 349-365, Feb. 2013.

J. F. Valencia, A. Porta, M. Vallverdu, F. Claria, R. Baranowski,
E. Orlowska-Baranowska, and P. Caminal, “Refined multiscale entropy:
Application to 24-h holter recordings of heart period variability in healthy
and aortic stenosis subjects,” IEEE Trans. Biomed. Eng., vol. 56, no. 9,
pp. 2202-2213, Sep. 2009, doi: 10.1109/TBME.2009.2021986.

S.-D. Wu, C.-W. Wu, S.-G. Lin, C.-C. Wang, and K.-Y. Lee, “Time series
analysis using composite multiscale entropy,” Entropy, vol. 15, no. 3,
pp. 1069-1084, Mar. 2013.

S.-D. Wu, C.-W. Wu, S.-G. Lin, K.-Y. Lee, and C.-K. Peng, “Analysis of
complex time series using refined composite multiscale entropy,” Phys.
Lett. A, vol. 378, no. 20, pp. 1369-1374, Apr. 2014.

XINZHENG DONG received the B.S. degree in
computer science and technology from Informa-
tion Engineering University, Zhengzhou, China,
in 2006, and the M.S. degree in computer appli-
cation technology from Beijing Information Sci-
ence and Technology University, Beijing, China,
in 2009. He is currently pursuing the Ph.D. degree
in software engineering with the South China
University of Technology, Guangzhou, China. His
research interests include digital health, artificial
intelligence, and high-performance computing.

a0 n

CHANG CHEN received the B.S. degree in
applied mathematics from Beijing Normal Uni-
versity, China, in 2016, and the Ph.D. degree in
biomedical sciences from the University of Macau,
in 2020. She is currently working with MSD
Research and Development (China) Company Ltd.
as a Statistician. Her research interests include
exercise, heart rate variability, and consistency
analysis.

20233

http://dx.doi.org/10.1161/01.cir.101.23.e215
http://dx.doi.org/10.1103/PhysRevE.71.021906
http://dx.doi.org/10.1109/TBME.2009.2021986

IEEE Access

X. Dong et al.: Fast Algorithm Based on Parallel Computing for Sample Entropy Calculation

QINGSHAN GENG received the Ph.D. degree in
cardiovascular medicine from the Guangdong Car-
diovascular Institute, Guangzhou, China, in 2000.

He is currently a Chief Physician of cardiology
with Guangdong General Hospital and a Distin-
guished Professor with the South China University
of Technology. His research interests include
cardiovascular medicine, behavioral medicine, and
psychosomatic medicine.

WENSHENG ZHANG is currently a Professor
with the Research Center of Precision Sensing
and Control, Institute of Automation, Chinese
Academy of Sciences, China. He has published
over 160 refereed articles in flag-ship journals,
such as the IEEE, Elsevier, IFAC, and Springer,
international conferences, and book chapters.
He also has more than 40 authorized invention
patents. As a principal or co-principal investigator,
he participated over 20 China-funded research
projects. His broad research interests include artificial intelligence, machine
learning, big data knowledge mining, probability graph model representation
and reasoning, deep learning, precision perception and intelligent control,
3D digital physical simulation, and embedded video image processing.
He received several awards, including the Second Prize of National Science
and Technology Progress Award, and so on.

20234

XIAOHUA DOUGLAS ZHANG (Senior Member,
IEEE) is currently a Professor with the Faculty
of Health Science, University of Macau, China.
He is also a fellow of the American Statistical
Association and an elected member of the Interna-
tional Statistical Institute. He has published over
100 refereed articles. He has worked in quantita-
tive high-throughput genotyping and phenotyping
for more than 20 years. The novel methods
developed by him and his colleagues along with
their applications have a high impact on the high-throughput screening
research field, especially in RNAi high-throughput screening (HTS)
research. His lab focuses on research in digital health/medicine, artificial
intelligence, and big data analysis. His current research in this area includes
conducting studies in continuous monitoring of physiological signals (such
as blood glucose, respiratory signals, and cardiovascular signals) and
high-throughput genomics (such as CRISPR/CAS9 HTS and RNA-seq) to
address medical questions in diabetes, respiratory diseases, cardiovascular
diseases, neuro diseases, cancers, and so on. Critical research also includes
the development of novel experimental designs, analytic methodology,
and software (including R packages) for analyzing big data in digital
health/medicine and precision medicine.

VOLUME 9, 2021

