
Article

Trails of Data: Three Cases
for Collecting Web Information
for Social Science Research

Fumin Li1, Yisu Zhou1, and Tianji Cai1

Abstract
As the availability of online data grows rapidly, researchers are confronted with a pressing ques-
tion: How should social scientists collect Internet data for research? This study focuses on one of
the most commonly used data collection techniques: web scraping. Going beyond canned
approaches by leveraging a general framework of data communication, this study illustrates how
online information can be systematically queried and fetched for reproducible research. To gen-
eralize our approaches, we additionally explore the variations in site security and architecture that
analysts may encounter during the scraping process before they are given access to the desired
data. The approaches we introduce do not rely on any proprietary software and can be easily
implemented on any computing platform with programming languages such as Python or R. The
methodological discussion in this study is meant to be applicable to current web-based research
efforts. We include three examples with complete Python implementation. We also present an
integrated workflow that enables researchers to produce analytical data sets that are traceable and
thus verifiable for analysis or replication. Lastly, options related to the validity and efficiency of data
are discussed, and we highlight the ongoing debate surrounding the ethics of online data collection,
ultimately advocating for the fair use of online data.

Keywords
data collection, reproducible research, web scraping, headless browser, APIs, Python

The field of quantitative social science has undergone an extensive transformation over the past
decade (Salganik, 2017). The proliferation of quantifiable information available to researchers has
led to the emergence of multiple subfields within the social sciences, one of which is computational
sociology (Bainbridge, 2007), in which researchers harness a massive scale of data and computing
power to reconfigure classic sociological studies. Accompanying the proliferation of data sources is
the increased accessibility of computer power coupled with declining costs. However, applying
computational approaches within the field of social science has not been without its critiques

1 University of Macau, China

Corresponding Author:

Tianji Cai, University of Macau, Avenida da Universidade, Taipa, Macau, China.

Email: tjcai@um.edu.mo

Social Science Computer Review
1-21
ª The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0894439319886019
journals.sagepub.com/home/ssc

mailto:tjcai@um.edu.mo
https://sagepub.com/journals-permissions
https://doi.org/10.1177/0894439319886019
http://journals.sagepub.com/home/ssc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0894439319886019&domain=pdf&date_stamp=2019-11-07

(e.g., Crawford, Miltner, & Gray, 2014; McFarland, Lewis, & Goldberg, 2016). While discussions
on the applicability, ethics, and affordances have been growing over the last 5 years (for a review,
see Lazer & Radford, 2017), we feel that a major component of data collection within this vibrant
field has been missing and as such aim to bring much needed attention to an increasingly popular
data source: the Internet. To be sure, there is no shortage of recipes to harvest Internet data from a
general (e.g., Kouzis-Loukas, 2016; Mitchell, 2018; Munzert, Rubba, Meissner, & Nyhuis, 2015)
and social science perspective (Ignatow & Mihalcea, 2017), but in this article, we illustrate and
discuss scraping data from the open Internet through a methodological lens.

We believe that the web scraping approach is noteworthy for two reasons. First, web scraping
requires more of an engineering effort while at the same time insisting that the researcher pos-
sesses a deep understanding of the quantification process, thus arguably making such digital data
collection quite a different undertaking than the more traditional off-line methods. With the
fluidity of the online world, the ambiguous ethical boundaries of accessing data pose new chal-
lenges for analysts. Naturally, such an undertaking requires more education and open discussion
than the field of social sciences currently offers. Currently, traditional methodological training
courses typically focus on retrospective data collection from surveys and in-depth interviews.1

And, while the development of more user-friendly computational software platforms has certainly
benefited researchers in many respects, the “plug-and-play” technology has also impeded students
and colleagues from developing the necessary in-depth knowledge of quantification to carry out
more complicated tasks (Moran, 2005). No doubt, there are enthusiasts writing comprehensive
documents on this very topic;2 however, we are not interested in simply writing one more recipe to
add to the plug-and-play catalog, but instead, aiming to demystify and make more rigorous the
practice using a common framework.

The second motivation concerns debates among empirical quantitative social scientists regarding
reputable research. As research design becomes increasingly complicated, it requires more effort
from the research community to scrutinize, verify, and eventually reproduce the results. From an
empirical point of view, we note that even though the replication of scientific findings is an integral
part of the scientific research enterprise (Peng, 2009, 2011), the social science community has yet to
accept reproducibility as the norm (King, 1995).3 In recent years, social scientists from multiple
disciplines have launched a debate about reproducibility (Anderson et al., 2016; Camerer et al.,
2016; Christensen & Miguel, 2016; Gilbert, King, Pettigrew, & Wilson, 2016). The questions
surrounding reproducibility puts a spotlight on the legitimacy issues that contribute to the lack of
faith in social science research. Today, only a handful of journals enforce a strict data availability
policy (Herndon & O’Reilly, 2016). As stated previously, in the digital world, the level of complex-
ity in data collection arguably exceeds that in the analog world (Salganik, 2017). Hence, we are
interested in making web scraping more transparent to the community by showing how data are/
could be produced and reproduced.

We believe there is no simple answer to definitively address all the issues associated with online
data collection. In this article, we focus on one increasingly useful approach for data collection: data
scraping from the Internet. Our intention is to present to the social science community multiple
existing web scraping techniques, and we argue that the existing methods can all be put under a
unified framework for web data collection. We illustrate two principal scraping approaches and give
specific steps for three examples: a collection of media releases from a metropolitan police depart-
ment in the United States, posts on the social media site Twitter, and data gathered from a centralized
database in China that contains court sentencing documents. These examples gradually increase in
data collection complexity. Although bits and pieces of canned approaches to data scraping has
existed for quite some time, our article is instructive in the following respects. First, it does not rely
on any proprietary software and thus can be achieved on almost any computing platform with open-
source software. Second, we are completely transparent with our collection strategy for all three

2 Social Science Computer Review XX(X)

cases, which makes the final data product traceable, verifiable, and reproducible. We hope to provide
more transparency on how data are collected as well as clarity on the steps required to transform
ready-made data into analytical data for research purposes. Third, the framework shown is general-
izable to various scenarios of online data. Finally, for social scientists, it is important to note that
acquiring the desired data is only a part of the design process, and acting responsibly in an area
where the ethical boundaries are less clear is an equally important component of the overall research
design. Keeping responsible data scraping in mind, we conclude with some practical advice from the
existing literature on ethical best practices.

Background

Despite the benefits of having access to online data, the pure abundance of information has
paradoxically acted as a limiting factor for researchers. To utilize Internet data for social science
research, we found it easier to backwards-engineer the research query, imagining situations start-
ing at the end of the data trail and working backward toward the initial creation of data production.
That is, our research design typically starts from websites or individual web pages as they are
displayed to the end users, and then we scale-up our queries to include all other possible data
points with similar characteristics.

The Anatomy of Web Communication

Recall that the goal of web page data collection is to automatically browse and store the web page
content and organize the information into analyzable data. But not all web pages are created equally.
Aweb page can be classified as either static or dynamic depending on how information is stored and
displayed (Frye, Plusch, & Lieberman, 2003). A static web page shows the same information for
everyone, whereas a dynamic web page loads information based on a user’s inquiry or behavior.4 In
other words, the content of a dynamic web page is generated dynamically within the web browser
after the user interacts with the site, as opposed to a static web page where the web browser presents
the same information, regardless of who is accessing the site. For instance, police departments in
major metropolitan areas in the United States, such as Los Angeles, regularly release crime-related
information to the general public along with other useful information, providing a great source for
understanding crime and policing that can be easily located through the police department’s news-
room section. Because each static web page is self-contained, analysts can manually save the web
page and later extract the data within it. Comparatively, in China, courts are mandated to release
detailed sentencing information to the official website, China Judgement Online (CJO), where the
documents are uploaded and searchable to the general public. Yet, due to the scope of information
for each case, CJO does not display everything from the documents on the returned query page.
Once the user submits their search terms, the returned page proceeds to interact with specific
browsing behaviors, such as scrolling down the page, and by showing a varying number of search
results. As such, the construction and underlying architecture of the CJO website is different from
their LA counterpart. The dynamic structure of the CJO pages does not allow a user to simply save
each web page as an HTML file to pull the desired information.5

Although both of these examples are online sources, the ways that such data can be useful to
analysts are very different. Once we ascertain what type of information we need (e.g., Landers,
Brusso, Cavanaugh, & Collmus, 2016), we typically apply one of two approaches to collecting the
data. In Approach 1, we send data fetch requests to the website’s server and directly capture the
response from the website. In situations like these, a server’s responses are usually in a machine-
readable data format and are stored in HTML, XML, or JavaScript Object Notation (JSON) files.6

This approach is suitable for static websites with no authentication mechanisms. The appeal of such

Li et al. 3

an approach is in its simplicity and efficiency. It requires low technical know-how, and many canned
programs can achieve this goal easily. But the limitation is obvious: It is very sensitive to the
dynamic elements of the site as well as the website’s anti-scraping mechanisms, a problem that is
discussed further in the examples (see the next section for details).

To address this issue, we implement Approach 2, which is suitable for when the website is
dynamic and/or has an authentication process. This strategy mimics how a human would browse a
website and is robust against most anti-scraping mechanisms. The disadvantage is that it is
relatively slow and less efficient. In addition, modern web pages contain many hidden components
to track a user’s location, behavior, and advertising preferences, which, while useful to the website
owner, are not likely to be utilized by analysts. When capturing a complete web page, all the
contents from a single page are fetched during data collection, making postprocessing burden-
some. Therefore, analysts should determine beforehand which approach to use based on some
initial inspection.

Instead of committing to any singular approach, it is important to understand how information is
communicated over the Internet. In Figure 1, we illustrate how these two approaches could be
understood under a single unified framework, namely, the client–server communication framework.
On the left-hand side is the client computer that requests the data by pushing a request (e.g., a user
clicking a blue link on a web page or a line of query command sent from a terminal), to the right-
hand side server computer. The server receives the request and later sends the response to the client
if the request is accepted by the server. When the requested information is ready, the information
will be sent to the client via the response in machine-readable formats such as XML, JSON, and
HTML. Under this client–server communication framework, Approach 1 is implemented before the
web browser starts to render the data into a human-readable format by directly siphoning off the
response data stream. Approach 2 works on the very end of the client side after all the responses are
processed by the web browser into rendered HTML pages. Thus, Approach 1 typically results in
nested, machine-readable data. A simple contrast of these two approaches is that Approach 2 works
on the final product (i.e., the web pages) and Approach 1 works on the intermediary product (i.e.,
the response data).

The reason that this framework works is that as long as the information displayed on the website
is intended for browsing, the transmission of information on the Internet complies with specific rules
that both the client and the server follow.7 For data collectors, we need to understand how to produce

Figure 1. Client–server communication cycle.

4 Social Science Computer Review XX(X)

these requests in an automated fashion. In most cases, the common protocol used is http. Under this
protocol, each request or response is uniformly organized, and the contents can be located and
visited via a global address called the URL. Thus, the first step is typically for the client to establish
a communication channel with the server to request certain content. Once such request is granted,
the server will point the client toward a specific URL. With the URL, the web browser can then
retrieve the content using http and store it in a structural format. When we send a request or receive a
response for each URL, both will have a header component and a body component. The body of the
response usually contains the data that we want to transfer through clients and servers. The header
describes the request by listing how the data should be encoded, the type of formats, and who is
requesting the data.

In static websites, if we want to retrieve all the news that the Los Angeles Police Department
(LAPD) posted on their website, for instance, we can directly request the web pages that contain the
news from its URLs and automate this request for other similar web pages quite easily. However, a
simple URL request is not feasible if we want to download all homicide-related sentencing docu-
ments from the CJO website because unlike the LAPD news web page, the desired URLs for those
CJO documents are hidden from us. For dynamic websites such as the CJO, the user originally has a
frame web page with no specific content and needs to query the server using specific search
conditions. Each query will then generate a request. If the request is accepted by the server, then
a response will be delivered to the browser and the contents are injected into the frame page,
rendered into human-readable format. However, the website will dynamically generate (or “refresh”)
the page based on the user’s behavior such as scrolling down a page. Therefore, different users will
see different web pages.

Anti-Scraping Protections

We demonstrated in previous sections that before the automation process can be implemented, the
researcher first needs to locate the desired contents and understand how the contents are stored and
delivered to the client. This is a crucial step to construct any trails of data due to the variety of web
page architecture. Locating the contents is like following bread crumbs on a trail, and in that
process, the researcher must circumvent a great deal of obstacles and distractions that many websites
now deploy to guard against unwanted intruders; such mechanisms are collectively called anti-
scraping protections.

Anti-scraping protections guard against nonhuman requests of data fetching initiated within a
short period of time to avoid a server crash due to an overwhelming number of requests. In our case,
a large number of data queries for research purposes would fit into this category, which many
websites define as unwanted. Thus, analysts must understand how their data treasures are hidden
and act accordingly.

The simplest website access control is to require proper authentication from the user before the
website responds to any requests.8 Once the analyst obtains proper credentials, their requests are
formerly recognized by the server. There are a variety of authentication methods beyond simply
username and password, such as using cookies or captcha (see the glossary). There is no standard
recipe for authentications, and the researcher has to monitor the http communication to understand
how the server allows access to certain client requests.

Like authentication, analysts need to be aware of other protection mechanisms such as limiting
Internet protocol (IP) addresses, detecting robot web browsers, and tracking user behavior. The most
common protection is to limit or terminate access based on the number of requests sent from a single
IP address during a certain period of time. If the number of requests exceeds the limit, either further
requests will be terminated or a captcha will be deployed to determine whether the request is sent by
a human or a machine. To work around such protections, the researcher could either use a proxy

Li et al. 5

server to change IP addresses after a certain number of requests have been made or add delays
between requests to make them within the website’s limit. Because analysts are the cause of extreme
request loads on the server’s end, we suggest making the scraping frequency within a certain limit as
a sign of politeness (see Discussion section for detail).

Another major type of protection is based on the detection of the robot web browser. In a http
request, the header field tells the server what the client wants to do, for example, retrieving or
subscribing information, and a subfield of the header field, namely User-Agent, provides some
basic information about the client such as the type of computer and detailed version information of
each of the web browsers installed on the computer. Some websites use the information provided by
the User-Agent subfield to grant discretionary access to a specific computer. Thus, to configure
the right User-Agent subfield by each request would solve the problem. However, in more
complex cases, certain websites generate a unique signature by combining the information from
the client web browser, authentication, and IP address and embed it in http cookies while connected.
Therefore, additional engineering efforts, such as cookies construction and modification of the
User-Agent subfield, are needed to communicate with these sites.9

The cookies have a trove of information embedded within them. In the cookies stored, informa-
tion from the user, such as log in, browsing history, and even clicking on a particular part of the
page, can be detected. Constructing cookies requires some experience with the target website and is
usually done after the analyst understands the entire operational routine of the authentication
mechanisms. Some cookies are very complicated, as the codes for generating these are mixed into
unreadable codes for humans.

The last category of protection is to track user behavior, such as the movement of a mouse cursor,
to see whether the request is sent by a human. Tracking user behavior is commonly implemented
along with the other protections mentioned above. Hence, it is not easy to get around, and efforts to
identify and block specific ways of encoding the tracking request are required.

Arguably, it requires relatively high levels of technical know-how to successfully implement the
above steps. As such, we recommend utilizing a headless web page browser as a pragmatic
alternative. The headless web page browser is a web browser without a graphical appearance and
is often used for web development such as analyzing website performance or debugging web
applications automatically. From a data collection perspective, the headless browser automates
human browsing behavior, including keyboard input and mouse movement to facilitate web data
collection, hence not considered by websites as a robot user. However, one disadvantage of using the
headless browser is that it demands high CPU and RAM resources. While the headless browser does
not execute the graphical part of a website, it still needs to load almost everything else on it.
Therefore, the running time is longer than that of a single http request. Thus, using a headless
browser is usually considered as a last resort when anti-scraping mechanisms cannot be bypassed or
computational cost is not a major concern.

Increasingly, many website owners also design their sites to respond to certain permitted
requests to facilitate data gathering by a third party. This is usually referred to as an application
programming interface (API). An API is essentially a canned version of data collection routines,
protocols, and tools made by the website owners to facilitate data collection. The operation of an
API is similar to a math function: Through http communication, the client only needs to supply the
input to the server with specific parameters, and the server conducts the computations and pre-
pares the queried data, then sends it back to the client. Many modern dynamic web pages trans-
form the frame and the contents of a web page separately, such that the web page can just reload a
partial portion of a page instead of the whole page. APIs usually provide the pure contents of the
web page in XML or JSON, thus the responses from APIs usually contain few redundancies. From
a data collection perspective, finding the APIs might be a good way to extract our desired data out
of the redundancies.

6 Social Science Computer Review XX(X)

Illustrated Examples

In this section, we illustrate the previous discussion with three examples: (1) LAPD’s website, which
is a static web page, to extract data from news releases; (2) Twitter’s API to retrieve tweets
according to search conditions; and (3) China’s CJO website that implements a dynamic structure
and complex anti-scraping measures. These three cases were chosen specifically to address the
variation in website architecture and data accessibility hurdles that analysts will likely encounter.
The LAPD case is static, and we demonstrate web scraping techniques using Approach 1. The
Twitter case is dynamic but with ready-made tools to make it easy to retrieve data. We also applied
Approach 1 to this case. The CJO case is dynamic and requires analysts to program their own
pipeline with an existing tool kit; we use Approach 2 for this case. In terms of the data collection
effort, these three cases progress in their complexity and difficulty. All cases were realized using
Python language.

LAPD Example

The LAPD website is completely open to the public and doesn’t require any authentication for http
communication. There are no anti-scraping methods deployed. We use Approach 1 to directly send
http requests and extract data from the received responses before they are rendered by the web
browsers. Suppose we are interested in all of the released news archives from 2017, and we can
obtain the 2017 news archive list from the LAPD at http://www.lapdonline.org/2017_archives, with
each news archive organized by month. Since this web page is our first layer list web page, we
extract the URLs of each month’s archive from here and then visit each URL to get the second layer
list of web pages (monthly archives, e.g., http://www.lapdonline.org/december_2017). In the second
layer list, we can find the exact links to our interested news topic and then extract a brief description
of each single news story as well as the URL to the web page of its full article that is our document
web page. To facilitate the data collection process, two Python libraries are utilized: Requests
(Version 2.20.1; Reitz, 2014) to deal with the http requests and responses and Beautiful Soup
(Version 4.6.3; Richardson, 2015) to parse the received HTML data and subsequently extract data
from the received HTML code.

Since the HTML data contain a series of tags to indicate its elements, we can parse the documents
by locating specific tags. For instance, in the list web page of the LAPD 2017 news archive, all the
tags that contain the monthly archive URLs are under the tag <div class="span9">, and each
monthly archive URL is under a <p> tag stored in the value of the “href” attribute that is nested
inside the start-sign of the <a> tag. Each second-layer web page of the monthly archives contains a
list of news topics, and each piece of the news has a date, title, a category code, and a dedicated
URL for the detailed article. Similar to the first-layer web page, the URLs for each of the detailed
news articles are enclosed in the value of the “href” attribute under a <p> tag nested in a main tag
(<div class="span9">). After successfully parsing the data, for example, detailed news, we
store the extracted information into a two-dimensional data chart that uses columns as the variables
and rows as the observations, following the tidy data convention (Wickham, 2014). All codes and
annotations are included in the online repository.

Retrieving Tweets Using Twitter’s API

Using Twitter to conduct social media studies in both academia and the greater industry has been a
thriving endeavor in recent years (e.g., Blank, 2017). Compared to other platforms, Twitter’s infra-
structure allows any user to follow other accounts, allowing researchers to harvest almost 100% of
their data through Twitter’s APIs. While many commercial and free tools have been developed for

Li et al. 7

http://www.lapdonline.org/2017
http://www.lapdonline.org/december_2017

researchers who have no prior technical or programming skills to collect data, finding appropriate
tools can be time-consuming and challenging due to various issues such as operation platform,
version, and specialized features. Here, we offer an example that directly utilizes Twitter’s API for
data retrieval that can be easily extended to other scraping requests for researchers with basic
programming skills. For simplicity, we omit the steps that each user would use to first register a
Twitter developer account in order to obtain the API.

The official standard Twitter search API allows the analyst to search tweets posted in the past 7
days, and the user must be authenticated before using the official Twitter APIs. Here, we submit a
query to find tweets that contain key word “Donald Trump.” We will use two pieces of information,
the “API key” and the “API secret key” for authentication while sending requests to the Twitter
server. The authentication process of Twitter’s API is complicated if the analyst wishes to program
the entire pipeline from scratch, but given Twitter’s popularity, the pipeline has already been
automated, greatly simplifying the process. To demonstrate our case, we chose the Twython (Version
3.7.0; McGrath, 2019) package. The authentication for Twitter’s API requires two steps: (1) send the
two pieces of information to gain an “Access Token” and (2) send the “API key” and the retrieved
“Access Token” to get authenticated. After authentication, we can query the Twitter server, using
“Donald Trump” as the query key word, “en”(English) as the desired language of the tweets, and get
100 tweets per request.

Since the official API limits how much time one can go back in history, analysts can also utilize
Twitter’s own advanced search function, which involves a bit more work to access Twitter data that
are older than the normal limit (e.g., 7 days). Suppose we want to find tweets that contain the same
key word “Donald Trump” from January 30 to January 31, 2019. After filling the dialogue boxes for
the desired key word and dates on the advanced search page at https://twitter.com/search-advanced
and clicking the search button, we scroll down to the bottom of the search results page to see all the
results. If the developer mode is activated on the web browser (e.g., Firefox developer mode), we
can see that while the cursor is scrolling down the page, the browser is simultaneously sending new
requests to load more results. Among the different requests, the XML http request is one of the most
essential because it directly transfers data between the web browser and the server in JSON format
without reloading the entire page. Two parameters are important in the request: “q” that contains the
search key word (e.g., “Donald Trump” in our case) and “position” that indicates the position
where the search results should load. Since each of the responses contain 20 tweets from the search
results, the server needs to know where to reload the results. If no value is given, the response will
start from the beginning of the search results. Once the XML http Request (XHR) is granted, the raw
tweets can be extracted from the received responses using Python library Beautiful Soup.

The following code constructs the XHR that retrieves tweets using this method. The variable
header builds the headers for the request, which declares our identity honestly to the server. The
variable search_params supplies the search conditions such as the key word and the starting and

1. # auth_step_1, Get ACCESS_TOKEN by sending API_KEY and API_SECRET
2. twitter = Twython(API_KEY, API_SECRET, oauth_version=2)
3. ACCESS_TOKEN = twitter.obtain_access_token()
4.
5. # auth_step_2, Get authenticated by sending API_KEY and ACCESS_TOKEN
6. twitter = Twython(API_KEY, access_token=ACCESS_TOKEN)
7.
8. # Get 100 English tweets with keyword "Donald Trump"
9. twitter.search(q='Donald Trump', count=100, locale='en')

Box 1. The request for retrieving tweets from official Twitter application programming interface.

8 Social Science Computer Review XX(X)

https://twitter.com/search-advanced and clicking the search button
https://twitter.com/search-advanced and clicking the search button

ending dates. At Line #10, we assemble the request by adding the header and parameters together. It
also takes the response from the server after calling the requests.get function in the Python
library Requests. Lines #11 and #12 extract the position for the next request and the raw tweets from
the JSON object archiving the current response.

By submitting a sequence of XML requests, the tweets that match the search conditions can be
retrieved. For instance, the code below downloads and prints all tweets that contain the key word
“Donald Trump” from January 30 to 31, 2019. The function get_json implements the code
presented in Box 3. At the beginning, the position parameter is set to be null. The function
get_json is called until the search results reach the end. The command get_tweets simply
utilizes functions in the Python library Beautiful Soup to clean up the retrieved tweets.10

China’s CJO Example

China’s CJO is a very complicated case because it requires proper authentication by issuing specific
signatures to each browsing session and regularly updates its anti-scraping protections. There are
two ways to bypass these mechanisms. The most efficient way is to program a header subfield (e.g.,
User-Agent) in the same way as any ordinary web page browser would in the header field of the
http requests, which requires the researcher to have a deep understanding of how the authentication
and anti-scraping methods work on this website. Web developers typically achieve this by examin-
ing the requests and their cookies that a website will send to the browser. This is the key step, but
also the most complicated one, because it requires knowledge of web application development to

1. def get_json(since, until, keyword, position):
2. headers = {
3. 'User-Agent': "For academic purpose, please contact us: XXX@XXX.XXX.",
4. }
5. search_params = {
6. 'q': keyword + " since:" + since + " until:" + until,
7. 'max_position': position
8. }
9. url = "https://twitter.com/i/search/timeline"
10. r = requests.get(url, headers = headers, params = search_params)
11. new_position = r.json()['min_position']
12. tweets_HTML = r.json()['items_html']
13. return tweets_HTML, new_position

Box 2. Retrieving tweets from Twitter with in-web page application programming interface.

1. position = ""
2. while True:
3. response = get_json(since="2019-01-30", until="2019-01-31", keyword='Donald

Trump', position=position)
4. if len(response[0].strip()) == 0:
5. print(response)
6. break
7. position = response[1]
8. tweets = get_tweets(response[0])
9. for key,value in tweets.items():
10. print(key, value)

Box 3. Downloading tweets with key word “Donald Trump” from January 30 to January 31, 2019.

Li et al. 9

understand what is stored in the cookie and how to use such information to construct a legit http
authentication. Once the researcher has that, Approach 1 is still a valid strategy, but we do not
recommend this approach because from a research replication point of view, this method of data
collection does not allow the information to be traced or verified. This is because CJO changes it
authentication process almost monthly, meaning that whatever http requests previously worked will
likely cease working after some time.

Based on this assumption, we suggest a less efficient, but equally workable, solution: to use the
headless browser for automating human browsing behaviors. Basically, we write a program to view
the web page for us. There is no need to sniff out which request will bring the desired response.
Because we will extract data from the rendered web pages (thus, less efficient), what you see in the
web page is what you are going to get in the later steps. Of course, the cost of using the headless
browser is high CPU and RAM usage. With enough patience, this strategy would avoid triggering
any anti-scraping methods because as far as the server is concerned, the requests are being sent by an
ordinary browser with mouse and keyboard input. As such, no matter how often the website updates
its anti-scraping mechanisms, our program rarely needs to be updated, as long as it behaves like any
human browser. The only factor to consider is the requesting interval. Usually, the website deter-
mines whether the requests are from a robot user if the intervals between requests are too small.

For simplicity, only the major steps of using a headless browser are presented here, all the codes
and a detailed step-by-step guide, such as how to set up a terminal environment and install depen-
dencies, can be found in the online repository. Our example involves fetching all the murder cases
on the CJO with a sentence date range of September 3 to September 4, 2018. To download those
documents, we first need to initialize the headless browser that is interactively controlled by
Python’s Selenium package (Muthukadan, 2018), which directly manipulates the browser’s web-
driver to communicate with the server by simulating human browsing behavior. A webdriver
(chromedriver is the webdriver for Chrome; geckodriver is for Firefox) is literally the “driver” of
a headless browser, which allows the user to locate the elements (tags in the HTML source, e.g.,
buttons, input boxes, text boxes) in a loaded web page, and based on that, control the headless
browser with mouse- and keyboard-instructive codes. All the procedures are manipulated by pro-
gramming codes, but the codes are all about mimicking mouse clicking, keyboard inputting, and of
course, extracting desired information from the rendered web page HTML source.

Running a web browser in the headless mode means all the regular web surfing, such as
searching and subscribing, needs to be done without a graphic interface according to the structure
of the http communications. The following code initializes Firefox in the headless mode.

Line #7 initializes the Firefox webdriver in the Selenium package, a Python interface that controls
the web browser by programming. Together with the webdriver interface, the path to the webdriver
software (i.e., geckodriver for Firefox) must be assigned. Lines #8 and #9 define the amount of time
(10 s) allowed for page loading and script executing before reporting an error, respectively.

1. # construct an option of headless to the browser
2. opts = FirefoxOptions()
3. opts.add_argument("--headless")
4.
5. # create a webdriver to control a Firefox browser.
6. # point to the position of geckodriver which is the programmable controller for Firefox
7. driver = webdriver.Firefox(executable_path="geckodriver.exe", options=opts)
8. driver.set_page_load_timeout(10) # set timeout for 10 seconds
9. driver.set_script_timeout(10)

Box 4. Initializing Firefox in the headless mode.

10 Social Science Computer Review XX(X)

Suppose we are interested in all available murder cases on the CJO website sentenced from
September 3 to September 4, 2018. After filling the search conditions for Type of Crime = 刑事案

件 (“xingshi anjian” or “Criminal cases”), Case = 故意杀人罪 (“guyi sharen zui” or “Murder”),
Start Date = 09/03/2018, and End Date = 09/04/2018 in the dialogue boxes on the search page of
the CJO, and by clicking the search button, an http communication is initiated. In an ordinary web
browsing event by a human, a user will click the buttons and scroll options to select the search
conditions, they will also input characters via a keyboard into the boxes if necessary. These
mouse-clicking and keyboard-inputting behaviors can all be programmed into a headless browser.
In order to tell the headless browser to execute an instruction, we must locate the element first.
The webdriver allows many ways to locate an element, the most convenient being XML Path
(XPath) language. XPath is essentially a path syntax that locates the tags in an XML document,
and it can also be used in an HTML document. In developer mode of Chrome and Firefox, the
XPath of an element can be generated by selecting the option in its mouse right-click menu. The
selecting behaviors of search conditions can be constructed with the following code. The date
conditions can be selected via mouse behaviors, but it is easier to input the start and end dates with
a keyboard. When all search conditions are selected or input, we can then locate the search button
and send a click instruction to it. Once the request is granted, the browser will redirect to a search
result page with a list of sentencing documents that satisfy the search conditions. The correspond-
ing URLs for the listed documents can be found by analyzing the HTML source code of the results
page, just as in the LAPD example. In addition to XPath, the webdriver allows us to locate an
element with its attribute value (e.g., id, class). To locate multiple documents in the search results,
it is better to use class_name instead of XPath, since we should construct XPath manually for
multiple elements.

1. # Select Cause of Action as " " (Murder)
2. CAUSE_XPATH = [
3. '//*[@id="_view_1540966814000"]/div/div[1]/div[1]',
4. '//*[@id="_view_1540966814000"]/div/div[3]/div[1]/div[2]/div/div[1]',
5. '//*[@id="1"]/i',
6. '//*[@id="161"]/i',
7. '//*[@id="162_anchor"]'
8.]
9. for x in CAUSE_XPATH:
10. driver.find_element(By.XPATH, x).click()
11. time.sleep(0.5)
12.
13. # Select Case Type as " " (Criminal Case)
14. TYPE_XPATH = [
15. '//*[@id="selectCon_other_ajlx"]',
16. '//*[@id="gjjs_ajlx"]/li[3]'
17.]
18. for x in TYPE_XPATH:
19. driver.find_element(By.XPATH, x).click()
20. time.sleep(0.5)
21.
22. # Input start and end date
23. DATE_START_XPATH = '//*[@id="cprqStart"]'
24. DATE_END_XPATH = '//*[@id="cprqEnd"]'
25. driver.find_element(By.XPATH, DATE_START_XPATH).send_keys('2018-09-03')
26. driver.find_element(By.XPATH, DATE_END_XPATH).send_keys('2018-09-04')
27.
28. # Press the Search button
29. driver.find_element(By.XPATH, '//*[@id="searchBtn"]').click()

Box 5. Submitting a search request for murder cases sentenced from September 3 to September 4, 2018.

Li et al. 11

After we get the HTML of each document in the results list, we can extract some basic
information and the URL link of each document. With the known URLs, a simple loop of http
requests can retrieve each of the sentencing documents by pushing a GET request for each of the
URLs.

Next, a loop of GET requests among the document links can be sent to the server that archives the
sentencing documents to fetch the sentencing documents. To avoid terminations due to detected
nonhuman requests, we also need to limit the number of requests by adding a random pause between
consecutive requests, change the IP addresses by rotating among different proxies, and imitate
human behavior by simulating mouse scroll and click. Finally, all extracted data will be stored
tidily in the format that most data scientists use.

Discussion

In previous sections, we introduced a general framework for collecting open data from the
Internet. We illustrated two approaches from this framework with three examples, and the final
data set is in compliance with tidy data (Wickham, 2014), which most analysts would immedi-
ately recognize. We can save our acquired data into a plain text format that can be imported into
any analytical workflow for downstream analysis. In this section, we discuss some of the
challenges involved.

1. # At search result webpage, set the option for showing 15 cases per page
2. select = Select(driver.find_element(By.XPATH, '//*[@id="_view_1545184311000"]/div[8]/div/se

lect'))
3. select.select_by_visible_text('15')
4.
5. # Scrape the search result
6. docList = list()
7. while True:
8. # Get the list for current page
9. docList_raw = driver.find_elements(By.CLASS_NAME, 'LM_list')
10. # Scarping each case info
11. for case in docList_raw:
12. title = case.find_element(By.CLASS_NAME, 'caseName').text
13. docType = case.find_element(By.CLASS_NAME, 'labelTwo').text
14. link = case.find_element(By.CLASS_NAME, 'caseName').get_attribute('href')
15. court = case.find_element(By.CLASS_NAME, 'slfyName').text
16. docCode = case.find_element(By.CLASS_NAME, 'ah').text
17. docDate = case.find_element(By.CLASS_NAME, 'cprq').text
18. judgeReason = case.find_element(By.CLASS_NAME, 'list_reason').text
19. docList.append({
20. 'title': title,
21. 'docType': docType,
22. 'link': link,
23. 'court': court,
24. 'docCode': docCode,
25. 'docDate': docDate,
26. 'judgeReason': judgeReason
27. })
28. # Get the "Next Page" button
29. nextPage = driver.find_element(By.LINK_TEXT, ' ')
30. # Click the "Next Page" button if it was clickable
31. if nextPage.get_attribute('class') != 'disabled pageButton':
32. nextPage.click()
33. time.sleep(2)
34. else:
35. break

Box 6. The complete process of retrieving sentencing documents from the China Judgement Online.

12 Social Science Computer Review XX(X)

Validity, Efficiency, and Politeness

It is worth some discussion to address the validity of our code. In the rapidly changing world of the
Internet, we are not only confronted with new websites or web services being added every day but
with older websites updating themselves with the latest technologies. Along the way, new anti-
scraping protections are deployed, arguably the biggest hurdle for researchers. Experienced analysts
are constantly monitoring communication sessions to adapt their own pipelines. In addition, static
sites such as the LAPD are becoming rare. Many websites that are currently built around user-
generated content will begin to load dynamically according to different user behaviors. Even some
static sites, such as the Chicago Police Department’s newsroom section, increasingly use sophisti-
cated scripts to generate report-like pages in the format of pdfs. Nonplain text content will add some
complications for scrapers.

As the Internet continues to advance, complex modern websites will be more like the CJO. Just
within the time period of our project, the website’s anti-scraping mechanisms were upgraded at least
4 times in its major components and countless times in its smaller ones. With each upgrade, new
obstacles were introduced for the analysts to tackle. Undeniably, hurdles like these show the fluid
nature of collecting web data. Now, changes in website security are rolling out not in months, but in
weeks, or even days. In this sense, web scraping requires more of an engineering effort than social
science has traditionally demanded. As a result, in our experience, users should not view our
provided codes as a foolproof option for data collection but a starting point for learning to build
a pipeline by oneself. The example codes may be outdated soon, but the logic behind the steps to
analyze the structure of a website will remain true for a much longer period of time.

A related concern is about the efficiency of data collection. For smaller sites such as the LAPD, a
modern computer could fetch all the abovementioned data in a matter of minutes, depending on
network connection speed. But for larger sites, such as the CJO or Twitter, the volume of data is
huge. To increase efficiency, web data collectors regularly use IP proxies, which are services that can
offer hundreds of thousands of unique IP address. The researcher can then deploy their scraping
programs through each individual IP address to communicate with the data server to coordinate a
data collection. But this option will multiply the client computer’s computational load (particularly
in the case of the headless browser, which is an option we recommend in the dynamic setting) as
well as the server’s traffic. Users should anticipate that beforehand.

Ethics

The last aspect of this type of research concerns the ethics of web scraping. Ironically, this should
typically be the first consideration, but it is usually either buried deep in the recipe (e.g., Mitchell,
2018) or completely missing from it (e.g., Bonzanini, 2016). Currently, the ethics surrounding web
scraping are ambiguous, at best. For engineers, the question of “should we do it?” always seems to
come after “how can we do it?” as witnessed by a burgeoning publication market filled with web
scraping recipes, of which we have listed quite a few in this text. On the other side of this debate is
the emerging literature that largely falls under the name of “critical data studies” (Iliadis & Russo,
2016). This camp points out that conducting research using available online data does not exempt
researchers from the ethical issues (Boyd & Crawford, 2012). They claim that simply because “the
information was already on the web,” it does not grant researchers the right to harvest large-scale
information without undergoing proper procedures (Zimmer, 2010).

Our position is somewhere in-between. We want to conduct ethical research as well as advocate
for established approaches for doing online research without tying our hands behind our back.
Currently, there is no clear case with regard to the ownership of online data. Even the fight over
the legality of web scraping has changed direction several times.11 However, we should point out

Li et al. 13

that the ownership issue is actually of little concern to us because though we collect information
from websites, as social scientists, we have little interest in owning such data. We simply wish to
perform analyses with it. Additionally, facts and statistics are not covered by copyright law (Mitch-
ell, 2018). As a consequence, the three cases we showed in this article do not include the final data
set, only the ways to produce the results.

We would also like to point out that the researchers are still bounded to ethics. There are several
considerations for researchers when utilizing online data collection (Zimmer, 2010), such as chal-
lenges to the traditional nature of informed consent, properly identifying and respecting the privacy
of websites, developing sufficient strategies for data anonymization, and addressing the importance
of institutional review on human subjects. As a practitioner-oriented piece, the current study advo-
cates the following practices.

For research purposes, we only scrap public data. By public we mean that any user can access the
information without signing up. We strongly suggest analysts stay away from protected computers.
We also instruct the analysts to show etiquette when scraping. This means typically checking for (a)
the terms of service and (b) robots.txt because some sites allow scraping while many do not. For
those that do, typically, when users sign up for the web service, they explicitly grant the website
consent to use and reproduce their information for the website or for third parties. Therefore, it is
acceptable for researchers to collect data via scraping following the site-permitted approaches.12 We
always recommend that the researcher contact the website before engaging in web scraping in order
to obtain permission and clarify any data ownership issues. In many cases, permission is actually
built into the API.

In another scenario, when there is no clear indication as to whether the website allows or
prohibits scraping, we point readers’ attention to the notion of Fair Use (Lessig, 2002). In essence,
fair use is “Any copying of copyrighted material done for a limited and transformative purpose, such
as to comment upon, criticize, or parody copyrighted work. Such uses can be done without per-
mission from the copyright owner” (Stim, 2010, p. 244). The legal definition of “transformative” is
sufficiently vague that researchers could use it to defend their own practice. In most cases, fair use
analysis falls into the category of commentary/criticism and parody. Whether research falls into that
category is open for debate, however.

One of the most important factors in deciding whether research falls into the fair use category
depends on the amount and substantiality of the proportion taken. It is widely believed that the less
one takes from the original content, the stronger the case for fair use. This fits well into the sampling
framework of researchers. As academic researchers, we care less about individual particularities but
rather seek to find regularity at the group level. As a result, having access to the entire population is
ideal but not necessary. We could yield good enough estimates of the population given that we
acknowledge the error in choosing the observed samples. For instance, a 5% sampling rate is vastly
different from taking half of the population (Xin & Cai, 2019). Systematically querying a subset of
the population is recommended once the researcher identifies their specific study population. Taking
only a proportion of the entire population also helps to solve the issue of privacy and data anon-
ymization, and using a random sample makes it much more difficult for a third party to reidentify
the sampled individual.

During the data collection period, we advise analysts to stay identifiable even when using a
preprogrammed User-Agent field (i.e., deploy robot crawlers). The analysts should insert iden-
tifiable information in the User-Agent field to let the website know who is accessing their
data.13 Users should also mind not to cause too much traffic and overload the site. This means
not to scrape the same resources over and over. It also means to not put your own efficiency over
another’s browsing experience. We suggest limiting the interval with which analysts would
send out http requests or headless browser requests (in our CJO example, we set our interval to
0.5–2 s per request).

14 Social Science Computer Review XX(X)

Lastly, we highly recommend not posting data sets online because data ownership is a
highly disputed area. An excellent legal discussion is offered by Bernard (2017) and more
recently the Electronic Frontier Foundation (Fischer & Crocker, 2019). We encourage more
readers to join the discussion of online data collection, as more data are being produced today
than ever.

For institutional researchers, there is another consideration. In the cases where online data
involve human subjects—and they mostly do in the social sciences—the institutional review
boards or other forms of ethical review boards serve as the gatekeeper of human subject
protection. However, depending on the type of data the analyst wishes to scrap, existing IRB
rules may or may not be well equipped to protect subjects. Metcalf and Crawford (2016) pointed
out that under the Common Rule principle, which is the primary regulation governing human
subjects’ research in the United States, projects that make use of publicly available or existing
data sources are typically considered as posing minimal risk and thus qualify as exemptions.
This is true in our cases. LAPD’s news section and the CJO are both examples of publicly
available government information. Twitter’s own API puts restrictions on how much information
we can get about users. However, it might be problematic in other cases, as even data that
involve de-identified public data sets, when looked at as a whole, can produce unexpected harm
(e.g., Metcalf & Crawford, 2016; Zimmer, 2010). As such, because there is no generally
accepted practice or clearly delineated guidelines, analysts are left to self-regulate. We advocate
for open and candid discussions with each institution’s ethics board, as the interpretation of risks
and harm ultimately puts the ethical burden on the analysts and the institution. From an indi-
vidual analyst’s point of view, to paraphrase Abbott (2016), we need to realize that this largely
involuntary data generation process “does violence to the nature of these subjects” (p. 287). This
is irreversible; thus, we as researchers much regularly remind ourselves to modify and monitor
our practices, “not in the direction of making it ‘scientific’ or ‘clean’,” but for the purpose of
making the research more humane.

Appendix

Glossary

– Anti-scraping mechanisms
� Scraping web pages often involves a program sending a large number of requests to a

server in a short period of time, which would increase the load to the server, potentially
crashing it in certain cases. Thus, there are anti-scraping mechanisms on the server side to
verify whether a request is initiated from a human client or a malicious program. If the
request sender is determined to be a program, the server will simply refuse it.

– Application programming interface (API)
� Most of the computer applications we use on a daily basis are designed as a graphic

interface, which can be navigated easily by a mouse. But for software developers to
achieve automation, they program various tasks. An API can satisfy developers with its
programmable interfaces. Under an API, the developer can send proper control codes to
the application, and the application would return the results to the developer.

– CAPTCHA
� CAPTCHA is short for “Completely Automated Public Turing test to tell Computers and

Humans Apart.” This kind of strategy is broadly applied on contemporary websites (e.g.,
validation code on login web page). This strategy is an example of an anti-scraping
mechanism. To avoid hostile or abnormal requests, the server provides the client with
an image of twisted random characters, which can be recognized only by humans. Only

Li et al. 15

when the client recognizes and submits these twisted characters to the server, will the
client pass the validation request, and one is allowed to get further information.

– CPU and RAM usage
� Programs running on a computer consume both CPU (computing power) and RAM

(memory) resources. Controlling a headless browser consumes a great amount of CPU
and RAM resources as opposed to directly programming http requests.

– Developer mode of a web browser
� Contemporary web browsers have integrated a system for web developers, which can

inspect the HTML source code of the current browsing web page, and catch the details of
requests and responses that a click on the web page triggers. On Google Chrome, one can
simply right-click anywhere on the web page and select “Inspect” in the pop-up menu; on
Firefox, one can select “Inspect Element.”

– Firewall (see the China Judgement Online case)
� A firewall in computer networks is a security measure for network communication. It

identifies whether a connection is harmful to the protected system (e.g., high frequency of
requesting). If a connection is identified as harmful, the firewall will directly reject the
connection.

– Headless browser (maybe give an example? direct to an online tutorial?)
� Aweb page browser without a graphical appearance. It is usually used by web developers

for debugging their web applications. Since it can be programmed, we use it to replace
human browsing activity in the CJO example. The pros and cons of a headless web page
browser as compared to directly mimicking http requests are explained in the article.

� Webdriver: Chrome and Firefox both have a headless mode, but there still needs to be a
specific application—a webdriver—to control the headless web page browsers via pro-
gramming. The webdriver for Chrome is called chromedriver (https://chromedriver.chro
mium.org/) and for Firefox is geckodriver (https://github.com/mozilla/geckodriver/
releases).

– Hypertext markup language (HTML) file, which is a text-based web file.
� HTML is the direct source code of a web page. Web page browsers directly generate a

rendered web page from HTML source code. HTML has a nested structure identified with
tags. In theLAPDexample, the receiveddata thatwe are dealingwith areHTMLsource codes.
We navigate through the tags, locate, and then extract the information we want from it.

� <html>
<head>

<title>A Webpage</title>
</head>
<body>

<h1>The title</h1>
<p>

The paragraph.
</p>

</body>
</html>

– Hyper text transfer protocol (http)
� HTTP, a commonly used protocol for client–server communication. The client sends an

http request to the server, the server responds to the client with an http response. Both

16 Social Science Computer Review XX(X)

https://chromedriver.chromium.org/
https://chromedriver.chromium.org/
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases

request and response are formatted texts that consist of a Header part and a Body part.
The Body contains the transmitted information, and the Header contains a description of
the communication.

� Request and response: Usually pushed to the server side and from the server side
– Both request and response will have a Header and Body component.
– User-Agent: An information field in the header component of an http request that

tells the server what is the initiator of the request. Most of the websites only respond
to the requests initiated by a web browser. The following is an example:

– user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.90
Safari/537.36

– HTTP cookie:
� In the http communication between client and server, the headers of the requests and

responses often include a field called “cookies,” which preserves specific information to
reference user-initiated communication behavior. The information inside the cookies field
records the status of the communication, which reminds the server of the process of
communication. In other circumstances, the validation information (e.g., login informa-
tion) is recorded in this field to remind the server of the authority of the client. This is also
an anti-scraping mechanism strategy.

– Internet protocol (IP) address
� Each node (a client or a server) of the Internet has an address to be located. An IP address

consists of four numbers, each number values from 0 to 255.
192.168.0.1

– JavaScript
� A script programming language that is widely applied in contemporary web applications

(e.g., websites). Due to the structure of a website, some programs should be executed on
the client-side, which are usually JavaScript codes. The server usually sends a JavaScript
source file (.js) to the client or embeds JavaScript codes inside HTML source codes. With
JavaScript running inside the browser, a web page would no longer be a static HTML,
and the browser can refresh a component of the web page instead of the whole page.
JavaScript can also actualize the verification part of the web page (e.g., a user login) and
the anti-scraping mechanism (e.g., generating web page content with program codes
instead of statically embedding it in the HTML codes to puzzle the scraper).

– JavaScript object notation (JSON)
� This data format was born from JavaScript, but now it has been used much more broadly.

Unlike the tagged structure of HTML and XML, JSON is organized as a “key: value”
structure. JSON is often used to transmit small- scale data with frequent connections.

� [
{

“name”: “Alice”,
“gender”: “female”,
“age”: “29”

},
{

“name”: “Bob”,
“gender”: “male”,
“age”: “28”

}
]

Li et al. 17

– Proxy:
� Web servers typically limit the requests that are sent by the same client in a short period of

time. The criterion to distinguish whether the requests are sent by the same client is based
on IP address detection. A proxy is an IP address which is used to mask the actual
location of a client’s requests. It can be used to deploy multiple scraping programs
simultaneously.

– Robot user
� Most websites welcome human users while limiting the access of robot users (i.e., bots,

crawlers, spiders). Robot users are automatic harvesters for different purposes. They are
often equipped with preengineered http requests.

– Static and dynamic websites
� A static site is where all the contents are pregenerated by the site administrator. The

content on the site does not change according to user behavior.
– Uniform resource locator (URL)

� URL, essentially an address. This address locates the path of a file in a computer file
system, which can be local or remote. In this article, we assume the URL refers to the path
of a web page. The following is the web page path of a URL’s definition in Wikipedia:
https://en.wikipedia.org/wiki/URL

– eXtensible markup language (XML)

� Just like HTML, XML is also a tagged text file, the difference is that XML only contains
the information but no layout description. It is often used to transmit large-scale structural
data. Like HTML, data in XML format are supposed to be read and written by computer
applications (e.g., web page browser).

� <quiz>
<qanda seq=“1”>

<question>
Who was the forty-second president of the USA?

</question>
<answer>

William Jefferson Clinton
</answer>

</qanda>
</quiz>

Authors’ Note

The funding sources had no role in the design, analysis, interpretation, or reporting of results, or in the decision
to submit the article for publication.

Data Availability

LAPD data can be found at: http://www.lapdonline.org
Sentencing documents can be retrieved from the CJO website at: http://wenshu.court.gov.cn
Tweets can be found at: https://twitter.com/search-advanced

Declaration of Conflicting Interests

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication
of this article.

18 Social Science Computer Review XX(X)

http://wenshu.court.gov.cn
https://twitter.com/search-advanced

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication
of this article: This research was supported by MYRG2018-00005-FED.

Software Information

All of the work was implemented in Python using libraries Requests, Beautiful Soup, Twython (Version No.
3.7.0), and the Selenium package. Please refer to the online repository for detailed environment setup.

Notes

1. We reviewed social science methodology textbooks from Sage, one of the major publishers. Among the
279 textbooks available, “web scraping” appeared 3 times (we performed the analysis by scraping the
Table of Contents [ToC] of each title and examined physical copies of those not provided in the online
ToC), which was typically found under specialized areas such as “text mining” or “Programming with
Python/R.” None of the comprehensive textbooks covered this topic, not a surprise since we found only
307 total entries under “web scraping” on the Web of Sciences, the majority of which belonged to
computer science and engineering (roughly 244). In large disciplines such as statistics, economics, political
science, sociology, and psychology (all subfields), there were only 32 entries from 1980 to 2019.

2. Paul Bauer wrote an excellent web book: https://bookdown.org/paul/big-data6/; William Marble’s concise
introduction is also very instructive: https://stanford.edu/∼wpmarble/webscraping_tutorial/webscraping_
tutorial.pdf.

3. For our purpose, we did not distinguish between the two terms “replication” and “reproducibility,” which
are both standard in the social sciences (Group A, see Barba, 2018). The major case (and its responses) are
cited here, with the Open Science Collaboration fitting into this category. For an extended discussion, see
National Academies of Sciences, Engineering, and Medicine (2019).

4. This is obviously not a precise classification. But for our purpose, we only distinguish web pages based on
whether the content of each page changes after the user interact with it.

5. All the cases discussed in this article are implemented under Python and can be accessed here: https://
github.com/f10w3r/trails_of_data. Because of the legal restrictions on sharing proprietary data publicly, we
chose not to share the final data sets in the repository. These data sets are available upon request.

6. See the glossary in the Appendix for a description of the technical terms. We do not assume that readers
must understand these terminologies in order to grasp the framework.

7. Therefore, in this article, we do not discuss any cases related to sites that require user registration to view.
Twitter is perhaps the exception because although all the tweets are public to anyone on the Internet, an
account is required to fetch data. But for other sites, the rules of engagement vary greatly depending on
their terms of service. For simplicity, we focus on public websites here.

8. For a detailed explanation for social scientists, see Janetzko (2017).
9. This is from an engineering perspective and is perhaps more straightforward than other approaches, but

because of ethical considerations, we advise analysts not to resort to this approach. Basically, for this
approach to work, the analyst needs to manufacture a User-Agent field in the http requests with
information that is likely not true in order to pass protection mechanisms.

10. The complication here is that Twitter changes the way it accepts advanced search requests from time to
time. Given that this method is outside of the official-supported application programming interface (API), it
is not very well documented. The analyst will have to monitor and analyze communication with the Twitter
server to understand how to make this method work. It is not difficult to understand Twitter’s motive for
this, as it now also offers a premium version of its API (https://developer.twitter.com/en/premium-apis.
html), which gives users similar functionality for a subscription fee.

11. The legal cases have changed from one direction to another just in a matter of years in the United States
alone. See section 9.3 of Munzert, Rubba, Meissner, and Nyhuis (2015) for a recent review.

Li et al. 19

https://bookdown.org/paul/big-data6
https://stanford.edu/<wpmarble/webscraping_tutorial/webscraping_tutorial.pdf
https://stanford.edu/<wpmarble/webscraping_tutorial/webscraping_tutorial.pdf
https://github.com/f10
https://github.com/f10
https://developer.twitter.com/en/premium-apis.html
https://developer.twitter.com/en/premium-apis.html

12. Appendix C of Mitchell (2018) offers an easy-to-follow introduction to this topic.
13. A good introduction on this topic can be found in section 9.3.3 of Munzert et al. (2015).

References

Abbott, A. (2016). Processual sociology. Chicago, IL: University of Chicago Press.
Anderson, C. J., Bahník, Š., Barnett-Cowan, M., Bosco, F. A., Chandler, J., Chartier, C. R., & Zuni, K. (2016).

Response to comment on “estimating the reproducibility of psychological science.” Science, 351, 1037. doi:
10.1126/science.aad9163

Bainbridge, W. S. (2007). Computational sociology. In G. Ritzer (Ed.), The Blackwell encyclopedia of sociol-
ogy. doi:10.1111/b.9781405124331.2007.x

Barba, L. A. (2018). Terminologies for reproducible research. Computing Research Repository, abs/1802.03311
(arXiv:1802.03311).

Bernard, B. (2017, April 17). Web scraping and crawling are perfectly legal, right? [Blog post]. Retrieved from
https://benbernardblog.com/web-scraping-and-crawling-are-perfectly-legal-right/

Blank, G. (2017). The digital divide among Twitter users and its implications for social research. Social Science
Computer Review, 35, 679–697. doi:10.1177/0894439316671698

Bonzanini, M. (2016). Mastering social media mining with Python. Birmingham, England: Packt.
Boyd, D., & Crawford, K. (2012). Critical questions for big data. Information, Communication & Society, 15,

662–679.
Camerer, C. F., Dreber, A., Forsell, E., Ho, T. H., Huber, J., Johannesson, M., & Wu, H. (2016). Evaluating

replicability of laboratory experiments in economics. Science, 351, 1433–1436. doi:10.1126/science.
aaf0918

Christensen, G. S., & Miguel, E. (2016, December). Transparency, reproducibility, and the credibility of
economics research (Working Paper No. 22989). National Bureau of Economic Research. doi:10.3386/
w22989

Crawford, K., Miltner, K., & Gray, M. L. (2014). Critiquing big data: Politics, ethics, epistemology. Interna-
tional Journal of Communication, 8, 1663–1672.

Fischer, C., & Crocker, A. (2019, September 10). Victory! ruling in hiQ v. Linkedin Protects Scraping of Public
Data. Electronic Frontier Foundation. Retrieved from https://www.eff.org/deeplinks/2019/09/victory-rul
ing-hiq-v-linkedin-protects-scraping-public-data

Frye, C., Plusch, M., & Lieberman, H. (2003). Static and dynamic semantics of the web. In W. Wahlster (Ed.),
Spinning the semantic web (pp. 376–401). Cambridge, MA: MIT Press.

Gilbert, D. T., King, G., Pettigrew, S., & Wilson, T. D. (2016). Comment on “estimating the reproducibility of
psychological science.” Science, 351, 1037–1037. doi:10.1126/science.aad7243

Herndon, J., & O’Reilly, R. (2016). Data sharing policies in social sciences academic journals: Evolving
expectations of data sharing as a form of scholarly communication. In L. M. Kellem & K. Thompson
(Eds.), Databrarianship: The academic data librarian in theory and practice (pp. 219–243). Chicago, IL:
American Library Association.

Ignatow, G., & Mihalcea, R. (2017). An introduction to text mining: research design, data collection, and
analysis. Thousand Oaks, CA: Sage.

Iliadis, A., & Russo, F. (2016). Critical data studies: An introduction. Big Data & Society. doi:10.1177/
2053951716674238

Janetzko, D. (2017). The role of APIs in data sampling from social media. In L. Sloan & A. Quan-Haase (Eds.),
The Sage handbook of social media research methods (Chapter 10). Thousand Oaks, CA: Sage.

King, G. (1995). Replication, replication. Political Science & Politics, 28, 444–452. doi:10.2307/420301
Kouzis-Loukas, D. (2016). Learning Scrapy. Birmingham, England: Packt.
Landers, R. N., Brusso, R. C., Cavanaugh, K. J., & Collmus, A. B. (2016). A primer on theory-driven web

scraping: Automatic extraction of big data from the Internet for use in psychological research. Psychological
Methods, 21, 475–492.

20 Social Science Computer Review XX(X)

https://benbernardblog.com/web-scraping-and-crawling-are-perfectly-legal-right/
https://www.eff.org/deeplinks/2019/09/victory-ruling-hiq-v-linkedin-protects-scraping-public-data
https://www.eff.org/deeplinks/2019/09/victory-ruling-hiq-v-linkedin-protects-scraping-public-data

Lazer, D., & Radford, J. (2017). Data ex Machina: Introduction to big data. Annual Review of Sociology, 43,
19–39. doi:10.1146/annurev-soc-060116-053457

Lessig, L. (2002). The future of ideas: The fate of the commons in a connected world. New York, NY: Vintage
Press.

McFarland, D. A., Lewis, K., & Goldberg, A. (2016). Sociology in the era of big data: The ascent of forensic
social science. The American Sociologist, 47, 12–35.

McGrath, R. (2019). Twython (Version: 3.7.0): Pure Python wrapper for the Twitter API [Computer software].
Retrieved from https://github.com/ryanmcgrath/twython

Metcalf, J., & Crawford, K. (2016). Where are human subjects in big data research? The emerging ethics
divide. Big Data & Society, 3. doi:10.1177/2053951716650211

Mitchell, R. (2018). Web scraping with Python: Collecting more data from the modern web (2nd ed.). Sebas-
topol, CA: O’Reilly Media.

Moran, T. P. (2005). The sociology of teaching graduate statistics. Teaching Sociology, 33, 263–284. doi:10.
1177/0092055X0503300303

Munzert, S., Rubba, C., Meissner, P., & Nyhuis, D. (2015). Automated data collection with R: A practical guide
to web scraping and text mining. Hoboken, NJ: Wiley.

Muthukadan, B. (2018). Python: Selenium package [Computer software]. Retrieved from https://selenium-
python.readthedocs.io/

National Academies of Sciences, Engineering, and Medicine. (2019). Reproducibility and replicability in
science. Washington, DC: The National Academies Press.

Peng, R. D. (2009). Reproducible research and biostatistics. Biostatistics, 10, 405–408. doi:10.1093/bio-sta-
tistics/kxp014

Peng, R. D. (2011). Reproducible research in computational science. Science, 334, 1226–1227. doi:10.1126/
science.1213847

Reitz, K. (2014). Requests: Http for humans (Version 2.21.0) [Computer software]. Retrieved from http://docs.
python-requests.org/en/master/

Richardson, L. (2015). Beautiful Soup (Version 4.6.3) [Computer software]. Retrieved from https://www.
crummy.com/software/BeautifulSoup/bs4/doc/#

Salganik, M. J. (2017). Bit by bit: Social research in the digital age. Princeton, NJ: Princeton University Press.
Stim, R. (2010). Getting permission: How to license & clear copyrighted materials online & off. Berkeley, CA:

Nolo.
Wickham, H. (2014). Tidy data. The Journal of Statistical Software, 59. Retrieved from http://www.jstatsoft.

org/v59/i10/
Xin, Y., & Cai, T. (2019). Paying money for freedom: Effects of monetary compensation on sentencing for

criminal traffic accident offenses in China. Journal of Quantitative Criminology. doi:10.1007/s10940-019-
09409-w

Zimmer, M. (2010). “But the data is already public”: On the ethics of research in Facebook. Ethics and
Information Technology, 12, 313–325. doi:10.1007/s10676-010-9227-5

Author Biographies

Fumin Li works in the Department of Sociology at University of Macau. E-mail: yb87313@connect.um.
edu.mo

Yisu Zhou is associated with the Faculty of Education at University of Macau. E-mail: zhouyisu@um.edu.mo

Tianji Cai works in the Department of Sociology at University of Macau. E-mail: tjcai@um.edu.mo

Li et al. 21

https://github.com/ryanmcgrath/twython
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
http://docs.python-requests.org/en/master/
http://docs.python-requests.org/en/master/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#
http://www.jstatsoft.org/v59/i10/
http://www.jstatsoft.org/v59/i10/
mailto:zhouyisu@um.edu.mo
mailto:tjcai@um.edu.mo

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

