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A B S T R A C T

A considerable amount of early breast tumors grown at a depth over 2 cm in breast tissues. With high near-
infrared absorption of iron-platinum (FePt) nanoparticles, we achieved few centimeters deep photoacoustic (PA)
imaging for the diagnosis of breast tumors. The imaging depth can extend over 5 cm in chicken breast tissues at
the low laser energy density of 20 mJ/cm2 (≤ ANSI safety limit). After anti-VEGFR conjugation and the tail-vein
injection, we validated their targeting on tumor sites by the confocal microscopy and PA imaging. Using a home-
made whole-body in vivo PA imaging, we found that the nanoparticles were rapidly cleared away from the site of
the tumor and majorly metabolized through the liver. These results validated the clinical potential of the FePt
nanoparticles in the low-toxicity PA theragnosis of early breast cancer and showed the capacity of our whole-
body PA imaging technique on monitoring the dynamic biodistribution of nanoparticles in the living body.

1. Introduction

Breast cancer is the second most common type of cancer after lung
cancer worldwide, and one in four women in the United States will
develop breast cancer during their lifetime. As the predominant con-
ventional approach for breast cancer detection, annual mammography
screening had been introduced to public. While x-ray mammography is
the current clinical tool for screening and diagnosis of breast cancer, it
has numerous limitations such as the inability of imaging dense breast
and the use of ionization radiation. To date, among various techniques
being developed to break the basic limitations of x-ray imaging, diffuse
optical tomography (DOT) and photoacoustic imaging (PAI) are parti-
cularly interesting and promising. DOT can provide both tissue struc-
tural and functional information at a depth of several centimeters.
However, the 5−10 mm spatial resolution of DOT is hard to identify
few millimeters sized lumps in breast tissues, which is critical for the
early diagnosis of breast tumor [1]. By contrast, PAI used acoustic de-
tection to overcome the problem of light scattering and offer sub-mil-
limeter resolution of anatomical, functional and molecular imaging at
few centimeters imaging depth [2–4]. Combined with the rich

endogenous and exogenous optical contrasts of absorption, PAI has
been successfully applied to the early detection of cancer. It is reported
that PAT can achieve 5 cm in vitro imaging depth in chicken breast
tissues theoretically [5]. The imaging depth reduced to around 2 cm for
whole-body imaging of mice in vivo [67]. Interestingly, a considerable
amount of early breast tumors usually grown at a depth over 2 cm in
breast tissues [8–10], which can be reached and resolved by PAI.
Therefore, PAI is a very suitable imaging modality for the early de-
tection of breast cancer in vivo. After finding suspected lumps in breast
tissues, to increase the sensitivity of detection, the specificity of diag-
nosis, and the depth of exploration, exogenous contrast agents for near-
infrared PAI are necessary. By far, many contrast agents have been
developed for boosting the performance of PAI [11–15]. The goal is to
obtain higher contrast-to-noise ratios, little or no toxicity, and rapid
clearance for tumor theragnosis in PAI. Currently, the nanoparticles for
photoacoustic imaging in NIR-II window can reach the maximum depth
of 5 cm under in vitro test at the laser energy of 20 mJ/cm2 [16].
However, most of their work didn’t validate the in vivo optimal imaging
depth, especially investigated whole-body biodistribution of nano-
particles in the living body based on PAI [15,16]. And maybe that is the
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reason why they couldn’t evaluate the toxicity of accumulation through
in vivo PA imaging at the same time.

The iron-platinum (FePt) alloy nanoparticles (NPs) are superior
candidates because of the synergy of both metal elements, platinum and
iron. It has excellent superparamagnetic property from iron and X-ray
absorption from platinum. Combined with its strong near-infrared
(NIR) absorption, it became promising contrast agents in MRI/CT/
fluorescence/PA quadruple modal molecular imaging [17–20]. What’s
more, with controlled composition, shape, and size, FePt nanoparticles
could be modified for diverse biomedical applications [21–25]. Speci-
fically, the surfactants surrounding each FePt nanoparticle can be
conjugated with biomolecules like antibodies, proteins, and drugs,
rendering the particles better water-soluble, preferable biocompat-
ibility, lower toxicity and more precisely targeted delivery. These fea-
tures of FePt nanoparticle make it a potential contrasts agent for the
targeting PA diagnosis and even magnetothermal [26] or photothermal
therapies [27] of breast cancers. But even so, the imaging depth of PAI
and the biodistribution of FePt NPs haven’t been carefully evaluated
and validated. Here, we conjugated anti-vascular endothelial growth
factor receptor (anti-VEGFR) antibody on FePt nanoparticles targeting
the neo-vasculatures of breast tumor microenvironments [28–30]. First,
verified by fluorescence confocal microscopy and PAI, the anti-VEGFR
conjugated FePt NPs can target and detect breast tumors in deep tissues.
The depth of in vivo PAI is more than 5 cm, which is 2.0 cm deeper than
that without contrast agents. In particular, revealed by in vivo PAI, the

FePt nanoparticles were majorly and quickly metabolized through the
liver. Overall, the anti-VEGFR conjugated FePt NPs enable the func-
tional and low-toxicity PAI at few centimeters’ depth, which paves a
new path for early detection and even targeting therapy of breast
tumor.

2. Methods

2.1. Materials

Platinum acetylacetonate (Pt(acac)2, ACROS, 97 %), iron penta-
carbonyl (Fe(CO)5, Aldrich, 99 %), 1,2-hexadecanediol (Aldrich, 90 %),
oleyl amine (ACROS, C18 content 80∼90 %), oleic acid (Aldrich, 90
%), 1-octadecene (ACROS, 90 %), cysteamine (Sigma, 95 %), ethyl-3-
[3-dimethylaminopropyl] carbodiimide hydrochloride (Aldrich, 98 %),
N-hydroxysuccinimide (Acros, 98 %) and anti-VEGFR antibody
(Ebioscience, anti-mouse-cd309 biotin, 500 μg/mL)

2.2. Synthesis of 12 nm FePt nanoparticles

As-prepared FePt nanoparticles (∼12 nm) were synthesized ac-
cording to a previous article [20,31]. The typical procedure is described
as follows: Pt(acac)2 (195 mg), Fe(CO)5 (66 μL), 1,2-hexadecandiol
(400 mg), oleyl amine (4 mL) and oleic acid (4 mL) and 1-octadecene (4
mL) were loaded into a three-neck flask. The mixture in the N2

Fig. 1. (a) Schematic illustration of the home-made photoacoustic imaging system, and (b) the water tank for mouse tumor experiment; (c) Schematic illustration of
the home-made whole-body photoacoustic imaging system, and (d) schematic drawing of the light illumination scheme.
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atmosphere was heated to 240 °C at a heating rate of 15 °C/min. As a
result, the mixture was maintained at the refluxing temperature of 240
°C for 45 min before cooling to room temperature. In the further sample
collection, the black product was precipitated by adding ethanol, which
was used as anti-solvent, and then separated by centrifugation at 3500
rpm. The above separation process was repeated 3∼5 times. Finally,
the final product was stored in hexane or toluene for material char-
acterization.

2.3. Ligand exchange of 12 nm FePt nanoparticles

In the procedure of ligand exchange, the dry FePt nanoparticles (∼
50 mg) were dispersed in Dimethyl sulfoxide (10 mL) by sonication.
Cysteamine (∼ 1 g) was mixed into the previous mixture at room
temperature. The temperature of the mixture was kept at ∼55 °C
(heating rate ∼ 5 °C/min) overnight. Finally, the ligand-exchanged
nanoparticles were washed to clean the physically adsorbed ligand on
the particle surfaces by the addition of methanol and hexane. Then, the
ligand-exchanged nanoparticles were collected and stored in a bottle
filled with N2.

For the anti-VEGFR antibody conjugation of FePt nanoparticles, the
anti-VEGFR antibody modified carboxylic group was incubated with
ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) at
4 °C. After 10 min, a suitable amount of N-hydroxysuccinimide (NHS)
was mixed with this solution at 4 °C for 10 min. Then, the cysteamine-
modified FePt nanoparticles were added into the above solution and
then, the mixture was stirred at 4 °C for overnight. Finally, the pallets
were centrifuged in 10,000 rpm for 10 min and washed in phosphate-

buffered saline (PBS) twice before the next steps.

2.4. In vitro and in vivo PAI and confocal microscopic imaging

The animal and phantom tests were performed by using the home-
made multispectral PAI system and whole-body PAI system (Fig. 1)
[2,4]. In this two imaging systems, a pulsed light from an OPO laser
(wavelength range from 680 to 1064 nm; pulse duration: 5–10 ns;
frequency rate: 20 Hz; Surelite I-10, Continuum) was adopted as a laser
source to illuminate the phantom or the animals. To record the PA
signals, two 7.5 MHz transducers were circularly rotated by a rotary
stage at 360 positions (7.5 MHz central frequency; bandwidth range
from 5.03 to 9.46 MHz; V321, Olympus-NDT). The complex wave field
signal was first amplified by a Pulser/Receiver (5073R, Olympus) and
subsequently converted into digital data. Finally, the images were re-
constructed by our developed algorithm. For the phantom experimental
tests, the targets with different concentrations of anti-VEGFR con-
jugated FePt NPs were placed into the solid phantom. For the phantom
materials, the agar powder (1–2%) solution was used to solidify the
Intralipid as the scatterer. We used India ink as control absorber. Fi-
nally, the object-bearing solid phantom was immersed in water to
measure the photoacoustic properties of anti-VEGFR conjugated FePt
NPs. For all the animal experiments, all the protocols were approved by
the Animal Management and Ethics Committee of the University of
Macau. The green fluorescence protein (GFP)-labeled 4T1 breast cancer
cells were cultured and subcutaneously injected into the back of the
nude mice. All the in vivo experiments were performed when the tumors
reached a size of about 80–140 mm3. The GFP-labeled 4T1 breast

Fig. 2. (a) General scheme of the modification of cysteamine and the conjugation of anti-VEGFR antibody on the surface of FePt NP for in vivo whole-body PAI. (b)
FTIR spectra of as-prepared FePt NPs (black), cysteamine-modified FePt NPs (blue), and anti-VEGFR antibody conjugated FePt NPs (green). (c) The fluorescence
spectrum and (d) the corresponding fluorescence image of anti-VEGFR antibody conjugated FePt NPs. (e) The zeta-potential of anti-VEGFR antibody conjugated FePt
NPs in water. (f) The absorption [20] and (g) PA spectra of anti-VEGFR antibody conjugated FePt nanoparticles dispersed in water.

Y. Liu, et al. Photoacoustics 19 (2020) 100179

3



tumor-bearing mice were intravenously injected with anti-VEGFR
conjugated FePt NPs at a dose of 0.8 mg/mL (for 30 g body weight). The
900-nm excited PAI was performed at different time points (0, 0.5, 1, 2,
4, and 6 h) after tail-vein injection. The temperature of the water bath
for the PAI system was kept at 37.5 °C. After PAI, the tumors were
excised and cryo-sectioned for fluorescence confocal imaging (Carl
Zeiss LSM 710 Confocal Scanning Microscope). The GFP contrast of
tumor cells and the red fluorescence of FePt NPs were all excited by a
488 nm continuous wave laser.

3. Results and discussion

The as-prepared FePt NPs have sizes of 12.54±1.47 nm (Fig. S1).
The HR-TEM images (Fig. S1c) shows the lattice fringes corresponding
to a spacing distance of ∼0.19 nm, which are close to the lattice dis-
tance of the (200) facet of FePt alloy [32]. The alloying composition of
FePt nanoparticles was confirmed by X-ray energy-dispersive spectro-
meter (Fig. S2a). The results of the alloying composition show that the
Pt: Fe ratio is 66:34 for the sample in Fig. S1. Additionally, the typical
XRD scan (Fig. S2b) showed the strongest peaks of the (111) and the
(200) facet of a face-centered cubic (FCC) structure. Then we performed
ligand exchange on the surface of FePt NPs (Fig. 2a). Fourier Transform
Infrared (FTIR) spectra of the as-prepared FePt nanoparticles and cy-
steamine-modified FePt NPs reveal the characteristic bands from the
adsorbed ligands, including oleic acid, oleyl amine, and cysteamine, on
the surface (Fig. 2b). The FTIR spectrum of as-prepared FePt NPs
showed the characteristic bands of symmetric and antisymmetric
stretching of CHe vibrational bands at 2852 and 2917 cm−1,

respectively [31,33]. The spectrum of cysteamine-modified FePt NPs
present the significant bands of the CeN stretch and NHe stretching at
1090 cm-1 and 3315 cm−1, respectively [17,20]. Further, the con-
jugation of anti-VEGFR antibody onto the FePt NPs was achieved by the
reaction of the amine group of cysteamine on the nanoparticle surface
with carboxylic group of the antibody (Fig. 2a). The ligand exchanges of
FePt nanoparticles with cysteamine and anti-VEGFR antibody were
confirmed from the characteristic bands of 1207 (CeN stretch), 1514
(CNe), 1695 (NH2 scissoring), 3300 and 3450 (NeH2 groups of anti-
body) cm−1 [34,35]. Furthermore, the average surface zeta potential of
anti-VEGFR conjugated FePt NPs is approximately 10.6 mV (Fig. 2e),
indicating that the anti-VEGFR conjugated FePt NPs are stable in aqu-
eous solutions. These data, together with good water solubility, ensure
the complete and successful ligand exchange process. Then we tail-vein
injected the particles to see whether they can target the breast-tumors
in the animal model. Under 488 nm excitation, the anti-VEGFR con-
jugated FePt NPs showed a red fluorescence peak around 635 nm
(Fig. 2c). In the 488 nm excited fluorescence confocal image of cryo-
sectioned tumor tissues, this contrast of FePt NPs can reveal the tar-
geted distribution of particles (red color in Fig. 3) in the micro-
environment of GFP-labeled tumor cells (green color in Fig. 3). These
results demonstrated that the anti-VEGFR conjugated FePt nano-
particles have good targeting ability for breast tumors. For the PA
imaging, we examined the photoacoustic spectrum of anti-VEGFR
conjugated FePt NPs (Fig. 2g). It showed an optimal response at 900 nm
excitation, where FePt NPs have large absorption (Fig. 2g & f). In Fig. 2f
and g, the deviations between the PA and absorption spectra profiles
have been widely observed for photoacoustic imaging contrast agents,

Fig. 3. The confocal microscopic imaging of (a) GFP- transfected tumor biopsies, (b) the distribution of anti-VEGFR conjugated FePt NPs, and (c) the merged image in
the excised tumor tissue; (d) the 3-D representation of the merged images (220 × 220 × 35 μm).
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which should mainly be caused by two factors: (1 optical absorption
and PA spectra measure different photophysical processes; and (2 op-
tical illumination parameters are different, high-power pulsed laser for
PA spectra versus low-power continuous-wave light illumination for
absorption spectra [36,37].

It demonstrates that the nanoparticles have high-efficiency photo-
thermal conversion and can serve as effective PAI contrast agent.

To evaluate the PAI depth of FePt NPs, we first conducted the in vitro
phantom experiment. The control group filled the light absorber in a 3
mm-diameter cylinder containing 1% Intralipid, India ink, distill water,
and Agar powder. By controlling the dosage of India ink, the absorption
coefficient of the light absorber was tuned to 0.4 mm−1 at the wave-
length of 900 nm, which is close to that of breast cancer tissues. The

experimental group prepare same light-absorbing cylinder and added
100 μL FePt nanoparticles (0.8 mg/mL) into it. The laser energy density
for PAI is 20 mJ/cm2, which meets the safety criterion (≤20 mJ/cm2)
of the American National Standards Institute (ANSI). During the ex-
periment, we put different thickness of chicken breast tissues on the
light-absorbing phantom to test the imaging depth. We found that the
PA signals of the light-absorbing target decreased with the increase of
buried depth (Fig. 4). The imaging depth of the FePt NPs reached 5 cm
(Fig. 4b), which is 2.0 cm deeper than that of the control sample
(Fig. 4a).

Then we examined the PA properties of the anti-VEGFR conjugated
FePt NPs in the home-made multispectral PAI system (Fig. 1a). At 900
nm excitation, the sensitivity of PAI detection was around 0.2 mg/mL

Fig. 4. The in vitro photoacoustic imaging results of absorber without Fept nanoparticles (a) and with Fept nanoparticles (b) at different depths at the laser energy
density of 20 mJ/cm2.
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(Fig. 5a and b). After the intravenous injection of anti-VEGFR con-
jugated FePt NPs, there is a significant rise of PA signal in the tumor
region from 0 to 2 h post-injection (Fig. 5c and d). Compared with
region without tumor, there is only a slight rise of PA signal in the
region from 0 to 6 h after injection (Fig. 5e and f). It indicates a targeted
delivery of NPs by enhanced retention and permeation and the affinity
binding of anti-VEGFR ligands. The PA signals started to decay after 2 h
and returned to the background level at 6 h post-injection (Fig. 5d),
suggesting an easy and rapid clearance of targeting-enriched FePt NPs
in the tumor microenvironment.

Finally, for the evaluation of nanopartilces metabolism, we in-
vestigated the biodistribution and clearance dynamics of FePt NPs in
mice with in vivo PAI. Due to deep imaging depth of PAI, our system can
make whole-body tomography imaging at different cross-section of
mice (Fig. 6a and b). Comparing the PA signals before and after in-
jection, we found the PA signals in stomach (ST) didn’t change a lot,
while the liver (LV) showed an obvious accumulation at 2 h post-in-
jection. This indicates that the injected FePt NPs can be effectively
cleared through liver within 6 h after injection. This PAI-based bio-
distribution analysis also demonstrates that we can achieve 3-cm deep

Fig. 5. The photoacoustic imaging results. (a) In vitro PA imaging results and (b) Linear relationship between PA signal and concentration of the anti-VEGFR
conjugated FePt nanoparticles. (c) In vivo PA imaging of tumor tissue before and after tail injection of the anti-VEGFR conjugated FePt nanoparticles under 900 nm
laser irradiation at different time points (0, 0.5, 1, 2, 4 and 6 h post-injection). (d) Normalized PA signals in tumors at different time points. (e) In vivo PA imaging of
region without tumor before and after tail injection of the anti-VEGFR conjugated FePt nanoparticles under 900 nm laser irradiation at different time points (0, 0.5, 1,
2, 4 and 6 h post-injection). (f) Normalized PA signals in region without tumor at different time points.
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PAI of FePt NPs in soft tissues.

4. Conclusion

In brief, we successfully developed low-toxicity FePtNPs for few
centimeters deep photoacoustic imaging of breast tumors. We first va-
lidated the targeting of anti-VEGFR conjugated FePt NPs by the mul-
tiphoton microscopy and in vivo PA imaging. We also verified that the
anti-VEGFR conjugated FePt NPs could serve as photoacoustic imaging
contrast agents for the in vivo detection of breast cancer. At low laser
energy density of 20 mJ/cm2 (≤ ANSI safety limit), the in vitro imaging
depth could extend over 5 cm with the help of FePt NPs. After a tail-
vein injection, their dynamic biodistribution and tumor targeting were
in vivo visualized by a whole-body PA imaging. The FePt NPs accu-
mulated in the tumor region from 0 to 2 h after injection and then were
rapidly cleared from the tumor sites after 6 h. We found the cleared
nanoparticles were majorly and fleetly metabolized through the liver.
These results validated the low-toxicity and clinical potential of the
FePt NPs in the PA theragnosis of breast cancer.
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