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Abstract: Mediation, which in social science literature means that an independent

variable X affects a dependent variable Y through a mediator M , is a key concept

in causal inference. For establishing mediation via data analysis, there is a long

debate in the literature on whether we still require the “total effect” of X on Y to

be statistically significant, given the significance of both the “mediated effect” and

the “direct effect” of X on Y . In the last decade, it has been shown and widely

accepted that total-effect test can erroneously reject “indirect-only mediation”

and “competitive mediation” and should not be applied to establish mediation of

these two types. For “complementary mediation”, however, the situation becomes

more complicated and no consensus is reached so far. This article provides an

explicit proof that the total effect has to be statistically significant whenever

mediated effect and direct effect bear the same sign and are both significant,

as long as the least square estimation (LSE) and F -tests are used to estimate

and test mediation effects. We also show that the similar result can be obtained

when the Sobel test is used in the place of the F -test. Our results support the
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growing consensus that the total-effect test should be abolished for establishing

mediation.

Key words and phrases: Complementary mediation, hypothesis testing, linear

model, mediation analysis, total-effect test.

1. Introduction

The concept of mediation has been broadly used in many areas of social

sciences, which generally means that an independent variable X affects

a dependent variable Y through a mediator M . It plays an important

role in understanding causal mechanism, and is the focus of many research

problems. The classic mediation model (Baron and Kenny (1986)) can be

represented by the linear regression below:

M = iM + aX + εM , (1.1)

Y = iY + bM + dX + εY , (1.2)

where the errors are assumed to follow independent normal distributions

εM ∼ N(0, σ2
M), εY ∼ N(0, σ2

Y ).

Apparently, there are two paths from X to Y in the model: a direct path

“X → Y |M” standing for the direct effect of X on Y while M is controlled

(which equals to d), and an indirect path “X →M → Y ” representing the
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mediated effect of X on Y via the mediator M (which equals to a × b).

Reorganizing (1.1) and (1.2), we obtain the following linear model with X

and Y only:

Y = i∗Y + cX + ε∗Y , (1.3)

where i∗Y = iY + biM , ε∗Y = εY + bεM , and c = a× b+ d stands for the total

effect of X on Y combining the indirect effect a × b and the direct effect

d. Based on the relationship between the direct effect d and the mediated

effect a × b, mediation via the mediator M can be further classified into

three sub-types: the competitive mediation, which happens when the direct

and indirect paths bear opposite signs so that their effects offset each other;

the complementary mediation, which happens when the direct and indirect

paths bear the same sign so that their effects enhance each other; and the

indirect-only mediation, which happens when the direct effect d = 0 while

the indirect effect a× b 6= 0.

Figure 1: Mediation. Adapted from Baron and Kenny (1986), Figure 3.

Although it is straightforward to judge the existence of mediation when
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the mediation model and according parameters are precisely known (e.g.,

mediation exists in the classic mediation model if a × b 6= 0), the task

becomes challenging in practice as only data instead of parameters of the

regression model are available. Baron and Kenny’s classic procedure to es-

tablish mediation (Baron and Kenny (1986)) requires the simple correlation

between X and Y to be significant, in addition to the significance of the

indirect effect a × b. MacKinnon, Warsi and Dwyer (1995) demonstrated

that the simple correlation is exactly the total effect c = a× b+d under the

classic setting above. Therefore, Baron and Kenny’s classic procedure in

fact required both the indirect-effect test for a×b and the total-effect test for

c to be significant. While many researchers (Judd and Kenny (1981); Rose

et al. (2004); Mathieu and Taylor (2006)) followed Baron and Kenny (1986)

to require the total-effect test for establishing any mediation, some (Collins,

Graham and Flaherty (1998); Kenny, Kashy and Bolger (1998); Rose et al.

(2000); MacKinnon, Krull and Lockwood (2000); MacKinnon et al. (2002);

Shrout and Bolger (2002)) recommended suspending the test for some types

of mediation, leading to a long debate among researchers, especially social

scientists, on principles to establish mediation via data analysis.

An obvious argument against the total-effect test is the competitive

mediation: when the direct and indirect paths bear opposite signs, their
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effects offset each other, and hence the total effect can be non-significant

even when the mediated path is strong. The phenomenon is well-known, as

shown in the long list of publications on the topic (Conger (1974); Velicer

(1978); McFatter (1979); Davis (1985); Hamilton (1987); Cohen (1988);

Tzelgov and Henik (1991); Kenny, Kashy and Bolger (1998); MacKinnon,

Krull and Lockwood (2000); Shrout and Bolger (2002); Lord and Novick

(2008); Hayes (2009); Zhao et al. (2010); Rucker et al. (2011)). There

are also simulated data (McFatter (1979); Collins, Graham and Flaherty

(1998); Hayes (2009)) and real-data examples (Zhao (1997); Zhao et al.

(2010); Li et al. (2013)) in support of the argument. A second argument,

offered by Shrout and Bolger (2002), is that when the independent variable

X occurs temporally long before the dependent variable Y , or when the

expected effect size is small, it would be too difficult for the mediated effect

to survive the total-effect test. The authors’ hypothetical example was

how out-of-home placement of children affects their substance abuse during

adulthood. A third argument, by Zhao, Chen and Tong (2011), is that in

an indirect-only mediation where the mediated a× b path is significant but

the direct d path is not, the large statistical error of d path relative to its

effect size may inflate the statistical error of the total effect c relative to its

effect size. A total-effect test in this situation may produce a misleading
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non-significant c when mediation a × b is in effect strong. There is also

a real data example (Zhao et al. (1994)) in support of the argument. A

fourth argument, which Zhao et al. (2010) mentioned in passing, is that

in a complementary mediation, where the direct and indirect paths bear

the same sign and both are significant, the total-effect test always passes,

making the test superfluous. Encouraged by these arguments, many recent

authors (Hayes (2009); MacKinnon and Fairchild (2009); Zhao et al. (2010);

Rucker et al. (2011); Zhao, Chen and Tong (2011)) advocated ignoring the

test for all types of mediation.

However, even though it has been well agreed to suspend the total-

effect test for competitive mediation as well as indirect-only mediation, not

all mediation experts agree to drop the total-effect test for complementary

mediation. The detailed debate can be found in Shrout and Bolger (2002),

Rose et al. (2004), Wen et al. (2004), Mathieu and Taylor (2006), and Wen

and Ye (2014). Although both sides have proposed various arguments to

defend themselves, no explicit statistical formulation and solid mathemat-

ical proof for the original problem are available so far even for the classic

mediation model, making the debate last for decades until now.

This article aims to resolve this issue. By reformulating the original

problem into a geometric problem about the rejection regions of different
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tests involved, we provide an explicit proof that the total effect has to

be statistically significant whenever mediated and direct effects bear the

same sign and are both significant, as long as the least square estimation

(LSE) and the F -test or the Sobel test (Sobel (1982)) are used to estimate

and test mediation effects. Considering that the LSE-F and LSE-Sobel

frameworks are the classic standard approaches for mediation analysis, our

finding provides support to the growing consensus that the total-effect test

should be abolished for establishing mediation.

2. Frameworks to Establish Complementary Mediation

In the classic mediation model, treating the direct effect d and the

mediation effect a×b in the classic mediation model as unknown constants,

we obtain the obvious equivalence between “c = a×b+d = 0” and “a×b =

0 and d = 0” as long as a × b and d bear the same sign. Furthermore,

it is intuitively natural to believe that the same conclusion would hold for

statistical inference, i.e., if the two paths d and a × b bear the same sign

and are both significant, their combination c = a× b+ d must point in the

same direction and also be statistically significant. If the intuition is indeed

correct, we would be able to assure the significance of total effect c by testing

the significance of a, b, and d, and the total effect test would be redundant.
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To the best of our knowledge, however, there is no explicit theoretical proof

for this intuition in the literature so far due to the complexity of statistical

inference. The lack of theoretical guarantee of this intuition has led to many

confusions, disagreements, and a long debate on the role of total effect test

for establishing complementary mediation.

In the literature, there are different ways to estimate and test media-

tion effects in the mediation model. Baron and Kenny (1986) suggested to

estimate (a, b, d, c) by their LSEs (â, b̂, d̂, ĉ) and claim the indirect path of

mediation effect by the Sobel test, which tests

H0 : a× b = 0 vs H1 : a× b 6= 0 (2.1)

with statistic

S =
âb̂(

â2Var(b̂) + b̂2Var(â)
)1/2 ,

whose asymptotic distribution under the null is the standard normal. The

LSE-Sobel framework enjoys the advantage of straightforward intuition as

it infers the indirect mediation effect a × b directly with a single test. Its

limitation, however, lies in the fact that the Sobel test is not an exact test

as the distribution of the test statistic S depends on the values of a and b.

Alternatively, Judd and Kenny (1981) suggested to establish mediation

by estimating and testing a, b, d, c separately, based on the observation
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that the original test in (2.1) can be recast as an equivalent problem below:

H0 : a = 0 or b = 0 vs H1 : a 6= 0 and b 6= 0, (2.2)

which can be resolved by checking whether a 6= 0 and b 6= 0 separately via

the tests below:

H0 : a = 0 vs H1 : a 6= 0, (2.3)

H0 : b = 0 vs H1 : b 6= 0. (2.4)

If the null hypothesis is rejected for both (2.3) and (2.4), it is apparent

that the null hypothesis for test (2.2) should be rejected too. A natural

way to implement this idea is the LSE-F framework, in which a, b, d, c are

estimated by LSE and tested by the F -test. Because the F -tests for a, b, d, c

are all exact, the LSE-F framework enjoys the theoretical convenience that

the LSE-Sobel framework does not have.

Moreover, to deal with cases where the noise terms εM and εY fol-

low a heavy-tail distribution, e.g., Laplace distribution, Pollard (1991) pro-

posed the LAD-Z framework, which follows the similar strategy as the

LSE-F framework. More precisely, in LAD-Z one estimates the regres-

sion coefficients by the more robust least absolute deviation estimation

(LAD) and tests their significance by the Z-test: comparing the Z-statistic
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zj = |β̌j|/sd(β̌j) with the standard normal distribution to establish the

statistical significance, where β̌j is the LAD estimate of regression coeffi-

cient β and sd(β̌j) is the estimated standard deviation of β̌j. MacKinnon,

Warsi and Dwyer (1995) provided a comprehensive review of the different

frameworks and compared their performance via simulations.

3. Main Results

3.1 The major theorem

In this study, we focus on the LSE-F framework. Let â, (b̂, d̂), and ĉ

be the LSEs of the coefficients a, (b, d), and c in regression models (1.1),

(1.2), and (1.3), respectively. We use Ra(α), Rb(α), Rd(α) and Rc(α) to

denote the rejection regions of the corresponding F -tests under the critical

level α ∈ (0, 1), and pa, pb, pd and pc are the corresponding p-values.

We note that the debate of “whether the total-effect test is superfluous

for establishing complementary mediation” can be resolved by verifying

whether Ra(α) ∩ Rb(α) ∩ Rd(α) ⊆ Rc(α) for all α ∈ (0, 1). Apparently,

if Ra(α) ∩ Rb(α) ∩ Rd(α) is always a subset of Rc(α), we would have

pc ≤ max{pa, pb, pd}, which in turn means that the total effect c must be

significant if a, b and d are all significant. In this paper, we show via

the following theorem that the rejection regions indeed enjoy such as nice
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geometry under a mild condition.

Theorem 1. Suppose there are n data points in the classic mediation model.

Let 1 = (1, . . . , 1)T be the n-dimensional column vector whose elements all

equal to 1, and let X,M,Y be the column data vectors for variables X,

M and Y respectively. Let D = (1,X,M,Y) denote the data matrix of

the regression. If rank(D) = 4, then the condition â × b̂ × d̂ > 0 implies

sign(ĉ) = sign(d̂) and

Ra(α) ∩Rb(α) ∩Rd(α) ⊆ Rc(α) for all α ∈ (0, 1).

To verify Theorem 1, we need to derive the concrete form of the involved

LSEs and rejection regions. For a multivariate linear regression problem

Y = β0X0 + β1X1 + . . .+ βpXp + ε (3.5)

with n data points {(Xi0, Xi1, . . . , Xip, Yi)}ni=1, we let β̂ be the LSE of β =

(β0, . . . , βp), and let Rj(α) be the level-α rejection region of the F -test for

testing hypotheses

H0 : βj = 0 vs H1 : βj 6= 0. (3.6)

Let Y = (Y1, . . . , Yn)T and Xj = (X1j, . . . , Xnj)
T be the response vector

and the jth predictor vector, respectively. We write the design matrix as

X = (X0,X1, . . . ,Xp), and denote

X[−j] = (X0, . . . ,Xj−1,Xj+1, . . . ,Xp) for all j ∈ {0, . . . , p}.
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Table 1: Tests to establish mediation: models, hypotheses and rejection

regions of the F -tests for each parameter.

Test Model Hypotheses Rejection region of F -test

Ta M = iM + aX + εM H0 : a = 0, H1 : a 6= 0 Ra(α) =

{
||M1,X −M1||/(2− 1)

||M−M1,X||/(n− 2)
> λ1,n−2(α)

}
Tb Y = iY + bM + dX + εY H0 : b = 0, H1 : b 6= 0 Rb(α) =

{
||Y1,M,X −Y1,X||/(3− 2)

||Y −Y1,M,X||/(n− 3)
> λ1,n−3(α)

}
Td Y = iY + bM + dX + εY H0 : d = 0, H1 : d 6= 0 Rd(α) =

{
||Y1,M,X −Y1,M||/(3− 2)

||Y −Y1,M,X||/(n− 3)
> λ1,n−3(α)

}
Tc Y = i∗Y + cX + ε∗Y H0 : c = 0, H1 : c 6= 0 Rc(α) =

{
||Y1,X −Y1||/(2− 1)

||Y −Y1,X||/(n− 2)
> λ1,n−2(α)

}

The classic theory for linear regression (Neter, Wasserman and Kutner

(1989)) tells us that

β̂ = (X′X)−1X′Y, (3.7)

Rj(α) =

{
(X,Y) :

||YX −YX[−j]||/1
||Y −YX||/(n− p− 1)

> λ1,n−p−1(α)

}
, (3.8)

where YX stands for the projection of vector Y onto the linear space,

span(X), and λt,s(α) represents the αth-quantile of F -distribution with the

degrees of freedom (t, s). Applying (3.8) to the mediation model (1.1)-

(1.3), we obtain the rejection regions Ra(α), Rb(α), Rd(α), and Rc(α) for

the corresponding F -tests, as summarized in Table 1.
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3.2 Simplifying the problem via orthogonal data transformation

Although (3.7)-(3.8) and Table 1 provide the mathematical formulation

of the LSEs and rejection regions of interest, it is inconvenient to verify

Theorem 1 directly based on them. To further simplify the problem, we

notice that the statistical inference of β in terms of LSE and F -tests does

not depend on the choice of the coordinate system in the data space of the

regression model as stated by the lemma below:

Lemma 1. Let D = (X0,X1, . . . ,Xp,Y) be the data matrix of regression

model (3.5). For any n × n real orthogonal matrix Γ satisfying Γ′Γ = In

and global scale parameter γ > 0, define D̃ = (X̃0, X̃1, . . . , X̃p, Ỹ) = γΓD

be the transformed data matrix and

Ỹ = β0X̃0 + β1X̃1 + . . .+ βpX̃p + ε (3.9)

be the transformed regression problem. Let β̃ be the LSE of β and R̃j(α) be

the corresponding rejection region of F -test for hypotheses (3.6) under the

transformed problem (3.9). We have

β̃ = β̂ and R̃j(α) = Rj(α) for all j ∈ {0, . . . , p} and α ∈ (0, 1).

Lemma 1 means that we can choose a convenient coordinate system

to work with in a regression model without changing the results of sta-
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tistical inference for regression coefficient. Considering that data matrix

D = (1,X,M,Y) in the classic mediation model and rank(D) = 4, the

four column vectors in D span a 4-dimensional subspace in Rn. With the

freedom to reset the coordinate system of Rn and the scale of the four

data vectors, we can certainly find an orthogonal coordinate system of

the data space under which the vector representation of the four origi-

nal data vectors becomes 1̃ = (1, 0, . . . , 0)T , X̃ = (x1, x2, 0, . . . , 0), M̃ =

(m1,m2,m3, 0, . . . , 0), Ỹ = (y1, y2, y3, y4, 0, . . . , 0) with x2 > 0,m3 > 0 and

y4 > 0. Let D̃ = (1̃, X̃, M̃, Ỹ) be the data matrix under the new coordinate

system. Clearly, D̃ is an upper triangular matrix.

Because different coordinate systems can be mapped to each other via

orthogonal transformations, we can also interpret D̃ as a transformation of

the original data matrix D, i.e., there exists an orthogonal matrix Q such

that D̃ = γQ′D, where the factor γ = 1/
√
n rescales the vector 1 to have

unit length. In theory, the configuration of orthogonal matrix Q is typi-

cally not unique, as there are often more than one coordinate systems that

satisfy our conditions. In practice, however, we can always find a specific

configuration of Q via the standard Gram-Schmidt process. We detail the

process in the Supplementary Materials. Since Lemma 1 ensures that D
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and D̃ lead to the exactly same LSEs and rejection regions for (a, b, d, c),

and projection calculation becomes much easier for the transformed data

matrix D̃, we can derive an explicit form of LSEs and geometric shapes of

rejection regions of interest in Lemma 2.

Lemma 2. Based on the transformed data matrix D̃, we have:

â = ã = m2/x2, b̂ = b̃ = y3/m3, ĉ = c̃ = y2/x2, d̂ = d̃ = (m3y2−m2y3)/x2m3;

Ra(α) = R̃a(α) = {r > rn,α} ,

Rb(α) = R̃b(α) = {p > pn,α} ,

Rc(α) = R̃c(α) =
{
q > rn,α(p2 + 1)1/2

}
,

Rd(α) = R̃d(α) =


{|q − rp| > pn,α(r2 + 1)1/2}, if âb̂ĉ ≥ 0,

{|q + rp| > pn,α(r2 + 1)1/2}, if âb̂ĉ < 0;

where r = |m2|/m3, p = |y3|/y4 and q = |y2|/y4; rn,α = [λ1,n−2(α)/(n −

2)]1/2 and pn,α = [λ1,n−3(α)/(n − 3)]1/2 are constants for fixed sample size

n and significant level α.

Lemma 2 tells us that each of the four rejection regions of interest cor-

responds to a subspace in a 3-dimensional space indexed by (p, q, r), which

degenerates to a region in p-q plane Pr for each specific value of r. Let
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Rj(α|r) be the intersection of Rj(α) and Pr for all j ∈ {a, b, c, d}. Appar-

ently, Ra(α|r) = Pr
⋂
I(r > rn,α) corresponds to either an empty set or the

whole p-q plane Pr depending on the value of r. Region Rb(α|r) is the right

half of Pr beyond the vertical line p = pn,α. RegionRc(α|r) corresponds the

space above the higher branch of the hyperbola with asymptotes q = ± rn,αp

and vertices (0,± rn,α). The structure of region Rd(α|r) = R+
d (α|r) ∪

R−d (α|r), however, is a bit complicated. When âb̂ĉ ≥ 0, Rd(α|r) con-

tains two disconnected sub-regionsR+
d (α|r) andR−d (α|r), whereR+

d (α|r) ={
q > pn,α

√
r2 + 1 + rp

}
being the region above the straight line with inter-

cept tr,α = pn,α
√
r2 + 1 and slope kr = r, andR−d (α|r) =

{
q < −pn,α

√
r2 + 1 + rp

}
being the region below the straight line with intercept −tr,α and slope

kr = r. When âb̂ĉ < 0, however, the two components of Rd(α|r) change

accordingly into the new forms below: R+
d (α|r) =

{
q > pn,α

√
r2 + 1− rp

}
and R−d (α|r) =

{
q < −pn,α

√
r2 + 1− rp

}
, with R−d (α|r) vanishes due to

the constraints that p > 0 and q > 0. Figure 2 provides a graphical demon-

stration for the geometry of Rb(α|r), Rc(α|r) and the effective components

of Rd(α|r) under different conditions, respectively.
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Figure 2: A graphical illustration of Rb(α|r),Rc(α|r) and Rd(α|r) in the

p-q for a fixed r: (A) Rb(α|r), (B) Rc(α|r), (C) Rd(α|r) when âb̂ĉ ≥ 0, (D)

Rd(α|r) when âb̂ĉ < 0.

3.3 Geometric analysis for complementary mediation

To claim complementary mediation, we typically require âb̂d̂ > 0 as a

necessary condition.
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Corollary 1. If âb̂d̂ > 0, we have: (1) sign(ĉ) = sign(d̂), and (2) R−d (α) =

∅, and thus Rd(α) = R+
d (α) =

{
q > rp+ pn,α(r2 + 1)1/2

}
.

Based on the above reasoning, for complementary mediation, the ge-

ometry of Ra(α|r), Rb(α|r), Rd(α|r) and Rc(α|r) can be demonstrated as

in Figure 3. Obviously, Theorem 1 holds if and only if

Ra(α|r) ∩Rb(α|r) ∩Rd(α|r) ⊆ Rc(α|r) for all α ∈ (0, 1) and r ∈ (0,+∞).

(3.10)

As (3.10) trivially holds for all r ≤ rn,α, we only need to consider the

scenario where r > rn,α. In this case, the geometry in Figure 3 shows that

a sufficient and necessary condition of (3.10) is: the boundary of Rb(α|r)∩

Rd(α|r) stays away from the boundary of Rc(α|r) for all α ∈ (0, 1), which

is ensured by the condition: for all n > 3 and α ∈ (0, 1),

πn,α = trn,α − rn,α = pn,α(r2n,α + 1)1/2 − rn,α ≥ 0. (3.11)

The Lemma below guarantees that inequality (3.11) holds. Therefore,

we complete the proof of Theorem 1.

Lemma 3. For all n > 3 and α ∈ (0, 1), pn,α ≥ rn,α.



19

p
0 1 2 3 4 5

q
0

  
  

 2
  

  
 4

6

Figure 3: Geometry of Rb(α|r)
⋂
Rd(α|r) and Rc(α|r) in p-q plane for

complementary mediation.

3.4 Impact to the analysis of complementary mediation

The above results suggest that total-effect test is superfluous in estab-

lishing complementary mediation under the LSE-F framework, and we only

need to follow the procedure below in practice:

1. obtain â, b̂, d̂ via LSE;

2. check whether âb̂d̂ > 0; stop if the condition fails;

3. test whether â, b̂ and d̂ are statistically significant via the standard

F -test for regression coefficients; stop if some of the tests fail;
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4. claim there is a complementary mediation if we finally reach this end.

3.5 Extension to mediation of other types

A similar geometric analysis can also be adopted to study mediation of

other types. It has been widely accepted that the total-effect test should not

be considered for establishing competitive mediation, because the mediation

effect and the direct effect may cancel out due to the competition, leading to

an insignificant total effect. To support the above argument via geometric

analysis, we only need to show that Rb(α|r)
⋂
Rd(α|r) and Rc(α|r) do not

bother each other in general.
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Figure 4: Geometry of Rb(α|r)
⋂
Rd(α|r) and Rc(α|r) in p-q plane for

competitive mediation: (A) when âb̂ĉ ≥ 0, (B) when âb̂ĉ < 0.

Figure 4 demonstrates the geometry of Rb(α|r)
⋂
Rd(α|r) and Rc(α|r)
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when âb̂d̂ < 0. Because the value of âb̂ĉ can be positive or negative in

this case (condition âb̂d̂ < 0 does not necessarily lead to a positive or

negative âb̂ĉ as in the complementary mediation), the geometry of Rd(α)

has two alternative forms depending on the sign of âb̂ĉ based on Lemma 2

and needs to be discussed separately. Figure 4 (A) and (B) correspond

to each of the two scenarios, respectively. From these figures, we can see

that Ra(α)∩Rb(α)∩Rd(α) and Rc(α) can either completely separate from

each other (when âb̂ĉ > 0) or share a common sub-region (when âb̂ĉ < 0),

confirming that the total effect test is indeed irrelevant to establishing a

competitive mediation.
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Figure 5: Geometry of Rb(α|r)
⋂
Rc
d(α|r) and Rc(α|r) in p-q plane for

indirect-only mediation: (A) when âb̂ĉ ≥ 0, (B) when âb̂ĉ < 0.
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Similarly, we expect an unconstrained relationship between Ra(α) ∩

Rb(α) ∩ Rc
d(α) and Rc(α) for indirect-only mediation, as it’s also widely

adopted that the total-effect test may not be significant for this case. Fig-

ure 5 demonstrates the geometry of Rb(α|r)
⋂
Rc
d(α|r) and Rc(α|r) with no

further constraints on LSEs. The figures show that there exist cases where

Rb(α|r)
⋂
Rc
d(α|r) and Rc(α|r) intersect but do not contain each other, as

in Figure 5 (A), or completely separate from each other, as in Figure 5 (B),

confirming an unconstrained relationship between Ra(α) ∩ Rb(α) ∩ Rc
d(α)

and Rc(α) in general. These results suggest that the geometric analysis

proposed in this paper could serve as a general tool for studying mediation

of various types.

4. Simulation Studies

4.1 Numerical validation of Theorem 1

The theoretical result above the total-effect test under the LSE-F frame-

work, as stated in Theorem 1, can be validated numerically by simulation.

For this purpose, we generated simulated data from the mediation model
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(1.1) and (1.2) as follows:

n ∼ Unif({4, · · · , 100}), (iM , iY , a, b, d) ∼ Unif[−1, 1]5,

X ∼ N(0, 1), σ2
M and σ2

Y ∼ Inv-Gamma(1, 1).

Totally, 1000 independent datasets of different sample sizes were simulated

for numerical validation.

For each simulated dataset, we calculated the LSEs (â, b̂, d̂, ĉ) and p-

values (pa, pb, pd, pc) accordingly under the LSE-F framework. If our theory

holds, we would expect to see that pc ≤ max{pa, pb, pd} and d̂ĉ > 0 for all

runs in which âb̂d̂ > 0. Figure 6 checks the above expectations in a graph-

ical manner. Figure 6 (A) checks the p-value condition by demonstrating

each simulated dataset with one point in a 2-dimensional space with the X-

axis representing max{pa, pb, pd}, the Y -axis standing for pc, and the shape

highlighting the type of points: black circles for datasets satisfying âb̂d̂ > 0,

and grey crossings for all the other datasets; Figure 6 (B) checks the estima-

tor sign condition in a similar way with the X-axis and Y -axis representing

d̂ and ĉ, respectively. We can see from these figures that although the

grey crossing points spread all over the figures, all black circle points are

located under the diagonal line in Figure 6 (A), and within the up-right

and down-left quadrants in Figure 6 (B). These results are consistent to
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our expectation, and thus validate our theory numerically.
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Figure 6: Numerical validation of Theorem 1: black circles represent

datasets with âb̂d̂ > 0, and grey crossings represent datasets with âb̂d̂ ≤ 0.

4.2 Exploratory analysis for other frameworks

To explore whether a similar result holds for other frameworks for estab-

lishing complementary mediation, we also implemented a similar numerical

analysis for the LSE-Sobel framework and LAD-Z framework with the same

group of simulated datasets. For the LSE-Sobel framework, we calculated

the LSEs (â, b̂, d̂, ĉ) for each simulated dataset, and p-values of the corre-

sponding tests, including pab, the p-value of the Sobel test for a × b, pd,

the p-value of the F -test for d, and pc, the p-value of the F -test for c. If a

similar result holds for the LSE-Sobel framework, we would expect to see
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that pc ≤ max{pab, pd} and d̂ĉ > 0 for all runs in which âb̂d̂ > 0.
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Figure 7: Numerical exploration for the LSE-Sobel framework: black circles

represent datasets with âb̂d̂ > 0, and grey crossings represent datasets with

âb̂d̂ ≤ 0.

Very similar to Figure 6, Figure 7 provides a graphical demonstration of

the results under the LSE-Sobel framework. Clearly, all black circle points

are located under the diagonal line in Figure 7 (A), suggesting that the LSE-

Sobel framework may share a similar property as the LSE-F framework,

i.e., pc ≤ max{pab, pd}. Furthermore, considering that Figure 7 (B) is

exactly the same as Figure 6 (B), as the LSE-Sobel framework and the

LSE-F framework are identical in parameter estimation, we tend to believe

that the total-effect test is superfluous under the LSE-Sobel framework as
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well. In fact, the theoretical result below provides us confidence about this

conjecture when sample size n is large enough.

Theorem 2. Let pab be the p-value of the Sobel test, and let pa and pb be

p-values of F -tests for a and b, respectively. Then, for all ε > 0, there

exists N > 0 such that as long as the sample size n > N , we have pab ≥

max{pa, pb} − ε.

Theorem 2 leads to the following corollary immediately.

Corollary 2. If âb̂d̂ > 0, then

sign(ĉ) = sign(d̂) and lim
n→∞

P
(
pc ≤ max{pab, pd}

)
= 1.

For the LAD-Z framework, however, the similar property does not hold

anymore. Let (ǎ, b̌, ď, č) be the LADs of model parameters (a, b, d, c), and

let (p∗a, p
∗
b , p
∗
d, p
∗
c) be the p-values of the corresponding Z-tests. Figure 8

shows the scatter plots of (max{p∗a, p∗b , p∗d}, p∗c) and (ď, č) based on the 1,000

simulation datasets in a similar fashion as Figure 6 and Figure 7. We also

replaced the Gaussian errors in (1.1, 1.2) by Laplace errors and the figures

have the same pattern. Unfortunately, we find that some black circles (less

than 10%), which represent the datasets with ǎb̌ď > 0, spread over the

diagonal line this time, suggesting that there is no easy answer to the role

of total-effect test under the LAD-Z framework.
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Figure 8: Numerical exploration for the LAD-Z framework: black circles

represent datasets with ǎb̌ď > 0, and grey crossings represent datasets with

ǎb̌ď ≤ 0.

5. Real Data Applications

To illustrate our main thesis in actual context of real research, we re-

analyzed responses to a 1987 opinion survey, which asked 870 randomly

selected Beijing residents about their attitudes toward the economic reform

under debate (Zhao et al. (1994)). The dataset is of historical significance

since the survey is one of the first in China mainland based on probabil-

ity sampling, and it provides a rare view of the public opinion at the very

beginning of the reform, which in the following decades transformed one

of the poorest economies into the second largest in the world (Zhao et al.
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(1994); Zhao and Shen (1995); Chen et al. (2008)). Hereinafter, we refer to

this dataset as the Opinion-1987 Data.

Our reanalysis focuses on how the media affected Beijingers’ under-

standing of the reasons for the reform, and how the understanding in turn

affected Beijingers’ support for the reform, i.e., Use-Media→ Understand-

Reason→ Support-Reform. The data and the variables were described in

detail by Zhao et al. (1994). Below we highlight some information for this

reanalysis.

5.1 Variables in the data

Dependent variable: support for reform (Support-Reform). This is

a weighted average of the responses to three questions measuring respon-

dents’ attitude toward the government’s economic policy, originally on 5-

point Likert scales. For this reanalysis, the composite variable was linearly

transformed to a 0-1 scale where 1 represents the strongest support and 0

represents the strongest opposition (Zhao et al. (1994); Zhao and Zhang

(2014)).

Mediating variable: understanding reasons (Understand-Reason).

This is a weighted average of the responses to seven questions measuring

respondents’ acceptance of the reasons in support of the reform, originally
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also on 5-point Likert scales. For this reanalysis the composite variable was

also linearly transformed to 0-1 where 1 represents the strongest acceptance

and 0 represents the strongest rejection (Zhao et al. (1994); Zhao and Zhang

(2014)).

Independent variables: media exposure (Read-Paper, Listen-to-Radio,

Watch-TV and Use-Media). Three variables measured how often the re-

spondents read newspaper, listened to radio or watched television. A fourth

variable, Use-Media, was created by taking the average of the three. For

this reanalysis, each of the four was transformed to a 0-1 scale where 1

represents exposure every day, and 0 represents no exposure at all.

Univariate descriptions of all variables are in Table 2. The original

Opinion-1987 Data also contains seven control variables, including Age,

Education and so on. Here, we ignore these control variables to simplify

the analysis.

5.2 Mediation analysis under various models

By alternating the four independent variables while retaining the same

dependent and mediating variables, we constructed four models of potential

mediation. Table 3 summarizes the four models and results of correspond-

ing mediation analysis. From the table, we can see that complementary
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Table 2: Descriptive statistics of variables in the Opinion-1987 Data: the

sample size N , the original scale as data were collected and the 0-1 percent-

age scale as the data were linearly transformed into the interval [0, 1].

N
Original Scale 0-1 Percentage Scale

Min Max Mean Sd Min Max Mean Sd

Y Support Reform 847 1 5 4.28 0.79 0 1 .821 .196

M Understand Reason 846 1 5 3.84 0.88 0 1 .709 .220

X

Read Paper (days/10 days) 838 0 10 5.43 3.59 0 1 .543 .359

Listen to Radio (days/10 days) 842 0 10 5.45 3.64 0 1 .545 .364

Watch TV (days/10 days) 844 0 10 6.25 3.40 0 1 .625 .340

Use Media (days/10 days) 844 0 10 5.71 2.69 0 1 .571 .269



31

Table 3: Mediation analysis results of the Opinion-1987 Data. Columns

2-6: the independent variable name of each model; LSEs of the parameters;

whether the condition âb̂d̂ > 0 holds; p-values of testing each parameter

and mediation types of each model. The mediation type is determined by

fixing significant level α = 0.05.

Model X
Estimates

I(âb̂d̂ > 0)
p-values

Mediation Type
â b̂ d̂ ĉ pa pb pd pc

M1 Read Paper 0.229 0.239 0.048 0.102 Yes <2e-16 1.53e-13 1.46e-2 6.54e-8 Complementary

M2 Listen to Radio 0.155 0.242 0.059 0.096 Yes 4.65e-14 3.40e-15 1.23e-3 1.99e-7 Complementary

M3 Watch TV 0.025 0.265 0.034 0.041 Yes 0.271 <2e-16 7.44e-2 4.19e-2 Non-mediation

M4 Use Media 0.242 0.238 0.080 0.137 Yes <2e-16 1.88e-14 1.37e-3 3.94e-8 Complementary

mediation shows up in three of the four models, i.e., models M1,M2 and

M4 , while no mediation effect is found in modelM3, probably due to the

lack of popularity of TV in China at that time (a TV set was still too ex-

pensive for a typical Chinese family to afford in 1980s). It is easy to check

that Theorem 1 holds for all these real datasets, and the total-effect test is

indeed superfluous, as predicted by Theorem 1.
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6. Conclusion and Discussion

This article provides an explicit proof that the total effect always bears

the same sign as the direct effect and has to be statistically significant

when the mediated effect and the direct effect point to the same direction

and are both significant, as long as LSE and F -tests are used to establish

mediation, therefore is superfluous and unhelpful for establishing mediation

of this type in the classic mediation model. We also show by numerical study

and theoretical analysis that the similar result also holds for the LSE-Sobel

framework when sample size is large enough. Considering that it has been

widely accepted that total-effect test can erroneously reject competitive

mediation and indirect-only mediation, the other two types of mediation,

the finding in this work supports the growing consensus that the total-effect

test should be abolished for establishing any type of mediation.

The discussions in this study are limited to the classic mediation model

so far, where X and M influence Y and each other linearly. For the more

general cases where X and M influence Y in a non-linear way with inter-

actions, it becomes conceptually tricky and technically more challenging to

define, estimate, and test for mediation effects. See Robins and Greenland

(1992), Pearl (2001), Frangakis and Rubin (2002), Lindquist (2012) for dif-
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ferent extensions of the classic direct or indirect effect in a general setting,

and Pearl (2012), Daniels et al. (2012) for estimation methods. More efforts

are needed to study the role of total-effect test in the more general settings.

Supplementary Materials

Supplementary materials available online include the details for con-

structing the transformed data matrix D̃ and a detailed proof for Lemma 2.
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Appendix

A. Proof of Lemma 1

Apparently,

β̃ = (X̃′X̃)−1X̃′Ỹ = [(γΓX)′(γΓX)]−1(γΓX)′(γΓY) = (X′X)−1X′Y = β̂;
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and, Rj(α) = R̃j(α) for all j ∈ {0, . . . , p} and α ∈ (0, 1) as the F -statistics

is invariant under the transformation, i.e.,

F̃j =
||ỸX̃ − ỸX̃[−j]||/1

||Ỹ − ỸX̃||/(n− p− 1)
=

||YX −YX[−j]||/1
||Y −YX||/(n− p− 1)

= Fj, j ∈ {0, . . . , p}.

B. Proof of Lemma 2

Based on the transformed data matrix D̃, it is easy to see that

M̃1̃ = (m1, 0, . . . , 0), M̃1̃,X̃ = (m1,m2, 0, . . . , 0),

Ỹ1̃ = (y1, 0, . . . , 0), Ỹ1̃,X̃ = (y1, y2, 0, . . . , 0), Ỹ1̃,M̃,X̃ = (y1, y2, y3, 0, . . . , 0),

Ỹ1̃,M̃ =

(
y1,

m2y2 +m3y3
m2

2 +m2
3

×m2,
m2y2 +m3y3
m2

2 +m2
3

×m3, 0, . . . , 0

)
.

Applying (3.7) and (3.8) to the transformed data, we can get the results.

The detailed calculation can be found in Supplementary Material.

C. Proof of Corollary 1

Lemma 2 implies that:

âb̂d̂ = m2y3(m3y2 −m2y3)/x
2
2m

2
3,

âb̂ĉ = m2y2y3/x
2
2m3.
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Considering that x2 > 0 and m3 > 0, we have:

âb̂d̂ > 0⇐⇒ m2m3y2y3 > m2
2y

2
3

=⇒


m2y2y3 > 0 ⇐⇒ âb̂ĉ > 0;

|m3y2| > |m2y3| ⇐⇒ q > rp.

Note that the condition âb̂ĉ > 0 impliesRd(α) = {|q−rp| > pn,α(r2+1)1/2}.

Furthermore, q > rp implies R−d (α) = ∅ and thus Rd(α) = R+
d (α) = {q >

rp+ pn,α(r2 + 1)1/2}.

D. Proof of Lemma 3

Let Wn follows F -distribution with the degree of freedom (1,n) and

Z0, Z1, . . . , Zm be a series of independent standard normal random variables,

based on the definition of λ1,n−2(α) and λ1,n−3(α), we have: for all λ > 0,

P

(
Wn−2

n− 2
≤ λ1,n−2(α)

n− 2

)
= 1− α = P

(
Wn−3

n− 3
≤ λ1,n−3(α)

n− 3

)
,

P

(
Wn−3

n− 3
≤ λ

)
= P

(
Z2

0∑n−3
i=1 Z

2
i

≤ λ

)

≤ P

(
Z2

0∑n−2
i=1 Z

2
i

≤ λ

)
= P

(
Wn−2

n− 2
≤ λ

)
.

As a consequence, we have

P

(
Wn−2

n− 2
≤ λ1,n−2(α)

n− 2

)
= P

(
Wn−3

n− 3
≤ λ1,n−3(α)

n− 3

)
≤ P

(
Wn−2

n− 2
≤ λ1,n−3(α)

n− 3

)
,
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and thus rn,α =

(
λ1,n−2(α)

n− 2

)1/2

≤
(
λ1,n−3(α)

n− 3

)1/2

= pn,α.

E. Proof of Theorem 2

Let Ta = â2/Var(â) and Tb = b̂2/Var(b̂) be the test statistics of F -tests

for a and b, respectively. Then the Sobel test statistic is S2 = 1/(1/Ta +

1/Tb). Let χ2
1 be a random variable of Chi-squared distribution with degree

of freedom 1 and F1,n be that of F -distribution with degree of freedom

(1, n). By definition, the p-value of Sobel test is pab = Pr(χ2
1 > S2) and

those of F -tests are pa = Pr(F1,n > Ta) and pb = Pr(F1,n > Tb).

To build the relationship between pab and {pa, pb}, we define p̃a =

Pr(χ2
1 > Ta) and p̃b = Pr(χ2

1 > Tb). Since S2 ≤ min{Ta, Tb}, we have:

pab = Pr(χ2
1 > S2) ≥ Pr(χ2

1 > min{Ta, Tb}) = max{p̃a, p̃b}.

Furthermore, F1,n converges to χ2
1 in distribution, implying that as n→∞,

we have uniformly convergence for all Ti that

pi = Pr(F1,n > Ti)→ Pr(χ2
1 > Ti) = p̃i, for i = a, b,

Therefore, for all ε > 0, there exists N > 0 such that for all n > N ,

pab ≥ max{p̃a, p̃b} ≥ max{pa, pb} − ε.
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F. Proof of Corollary 2

Theorem 2 tells us: for all ε > 0, there exists N > 0 such that for all

n > N , we have

max{pa, pb, pd} ≤ max{pab + ε, pd} ≤ max{pab, pd}+ ε.

Considering that we already have sign(ĉ) = sign(d̂) and pc ≤ max{pa, pb, pd}

based on Theorem 1, it’s straightforward to see that the corollary holds.

References

Baron, R. M. and Kenny, D. A. (1986). The moderator-mediator variable distinction in social

psychological research: Conceptual, strategic, and statistical considerations. Journal of

personality and social psychology, 51(6):1173-1182.

Chen, Q., He, Y., Zhao, X. and Griffith, D. (2008). Sources of product information for chinese

rural consumers. International Journal of Advertising, 27(1):67-97.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd Edition. Lawrence

Erlbaum Associates, Mahwah, NJ.

Collins, L. M., Graham, J. J. and Flaherty, B. P. (1998). An alternative framework for defining

mediation. Multivariate Behavioral Research, 33(2):295-312.

Conger, A. J. (1974). A revised definition for suppressor variables: A guide to their identification

and interpretation. Educational and psychological measurement, 34(1):35-46.



38

Daniels, M. J., Roy, J. A., Kim, C., Hogan, J. W. and Perri, M. G. (2012). Bayesian inference

for the causal effect of mediation. Biometrics, 68:1028-1036.

Davis, J. A. (1985). Quantitative Applications in the Social Sciences: The logic of causal order.

SAGE Publications, Thousand Oaks, CA.

Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics,

58(1):21-29.

Hamilton, D. (1987). Sometimes r2 > r2yx1+r2yx2 : Correlated variables are not always redundant.

The American Statistician, 41(2):129-132.

Hayes, A. F. (2009). Beyond baron and kenny: Statistical mediation analysis in the new

millennium. Communication monographs, 76(4):408-420.

Judd, C. M. and Kenny, D. A. (1981). Process analysis: Estimating mediation in treatment

evaluations. Evaluation review, 5(5):602-619.

Kenny, D. A., Kashy, D. A. and Bolger, N. (1998). Data analysis in social psychology. The

handbook of social psychology, 1(4):233-265.

Li, Y., Baldassi, M., Johnson, E. J. and Weber, E. U. (2013). Complementary cognitive capa-

bilities, economic decision making, and aging. Psychology and Aging, 28(3):595-613.

Lindquist, M. A. (2012). Functional causal mediation analysis with an application to brain

connectivity. Journal of the American Statistical Association, 107(500):1297-1309.

Lord, F. M. and Novick, M. R. (2008). Statistical theories of mental test scores. Information



39

Age Publishing, Charlotte, NC.

MacKinnon, D. P. and Fairchild, A. J. (2009). Current directions in mediation analysis. Current

directions in psychological science, 18(1):16-20.

MacKinnon, D. P., Krull, J. L. and Lockwood, C. M. (2000). Equivalence of the mediation,

confounding and suppression effect. Prevention science, 1(4):173-181.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G. and Sheets, V. (2002). A com-

parison of methods to test mediation and other intervening variable effects. Psychological

methods, 7(1):83-104.

MacKinnon, D. P., Warsi, G. and Dwyer, J. H. (1995). A simulation study of mediated effect

measures. Multivariate behavioral research, 30(1):41-62.

Mathieu, J. E. and Taylor, S. R. (2006). Clarifying conditions and decision points for medi-

ational type inferences in organizational behavior. Journal of Organizational Behavior:

The International Journal of Industrial, Occupational and Organizational Psychology and

Behavior, 27(8):1031-1056.

McFatter, R. M. (1979). The use of structural equation models in interpreting regression equa-

tions including suppressor and enhancer variables. Applied Psychological Measurement,

3(1):123-135.

Neter, J., Wasserman, W. and Kutner, M. H. (1989). Applied linear regression models. Irwin

Homewood, IL.



40

Pearl, J. (2001). Direct and indirect effects. Uncertainty in Artificial Intelligence, Proceedings

of the Seventeenth Conference, 411-420.

Pearl, J. (2012). The causal mediation formula-a guide to the assessment of pathways and

mechanisms. Prevention Science, 13(4):426-436.

Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric

Theory, 7(2):186-199.

Robins, J. M. and Greenland, S. (1992). Identifiability and exchangeability for direct and

indirect effects. Epidemiology, 3(2):143-155.

Rose, B. M., Holmbeck, G. N., Coakley, R. M. and Franks, E. A. (2004). Mediator and moderator

effects in developmental and behavioral pediatric research. Journal of Developmental &

Behavioral Pediatrics, 25(1):58-67.

Rose, J. S., Chassin, L., Presson, C. C. and Sherman, S. J. (2000). Contrasts in multiple m edi-

ator models. In Multivariate Applications in Substance Use Research, 155-174. Psychology

Press.

Rucker, D. D., Preacher, K. J., Tormala, Z. L. and Petty, R. E. (2011). Mediation analysis in

social psychology: Current practices and new recommendations. Social and Personality

Psychology Compass, 5(6):359-371.

Shrout, P. E. and Bolger, N. (2002). Mediation in experimental and nonexperimental studies:

new procedures and recommendations. Psychological methods, 7(4):422-445.



41

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation

models. Sociological methodology, 13:290-312.

Tzelgov, J. and Henik, A. (1991). Suppression situations in psychological research: Definitions,

implications, and applications. Psychological Bulletin, 109(3):524-536.

Velicer, W. F. (1978). Suppressor variables and the semipartial correlation coefficient. Educa-

tional and Psychological Measurement, 38(4):953-958.

Wen, Z., Chang, L., Hau, K. T. and Liu, H. (2004). Testing and application of the mediating

effects. Acta Psychologica Sinica, 36(5):614-620.

Wen, Z. and Ye, B. (2014). Analyses of mediating effects: The development of methods and

models. Advances in Psychological Science, 22(5):731-745.

Zhao, X. (1997). Clutter and serial order redefined and retested. Journal of Advertising Re-

search, 37(5):57-74.

Zhao, X., Chen, Q. and Tong, B. (2011). Does c’test help, anytime? on communication fallacy

of effect to mediate. In annual meeting of the Association for Education in Journalism and

Mass Communication, Renaissance Grand & Suites Hotel, St. Louis.

Zhao, X., Lynch Jr, J. G. and Chen, Q. (2010). Reconsidering baron and kenny: Myths and

truths about mediation analysis. Journal of consumer research, 37(2):197-206.

Zhao, X. and Shen, F. (1995). Audience reaction to commercial advertising in china in the

1980s. International Journal of Advertising, 14(4):374-390.



42

Zhao, X. and Zhang, X. (2014). Emerging methodological issues in quantitative communication

research. New trends in communication studies, II, 953-978.

Zhao, X., Zhu, J. H., Li, H. and Bleske, G. L. (1994). Media effects under a monopoly: The

case of beijing in economic reform. International Journal of Public Opinion Research,

6(2):95-117.

Yau Mathematical Sciences Center & Department of Mathematical Sciences, Tsinghua Univer-

sity, Haidian, Beijing, China.

E-mail: ykjiang15@gmail.com

Department of Communication, Faculty of Social Sciences, University of Macau, Macau, China

& School of Media and Journalism, University of North Carolina, Chapel Hill, North Carolina,

USA.

E-mail: xszhao@um.edu.mo

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

E-mail: lzhu@hkbu.edu.hk

Department of Statistics, Harvard University, Cambridge, Massachusetts, USA.

E-mail: jliu@stat.harvard.edu

Center for Statistical Science & Department of Industry Engineering, Tsinghua University,

Haidian, Beijing, China.

E-mail: kdeng@tsinghua.edu.cn


	Introduction
	Frameworks to Establish Complementary Mediation 
	Main Results
	The major theorem
	Simplifying the problem via orthogonal data transformation
	Geometric analysis for complementary mediation
	Impact to the analysis of complementary mediation
	Extension to mediation of other types

	Simulation Studies
	Numerical validation of Theorem 1
	Exploratory analysis for other frameworks

	Real Data Applications
	Variables in the data
	Mediation analysis under various models

	Conclusion and Discussion
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Corollary 1
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Corollary 2

