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Abstract

Sparse representation has achieved great successes in various machine learning and image
processing tasks. For image processing, typical patch-based sparse representation (PSR)
models usually tend to generate undesirable visual artifacts, while group-based sparse rep-
resentation (GSR) models produce over-smooth phenomena. In this paper, we propose
a new sparse representation model, termed joint patch-group based sparse representation
(JPG-SR). Compared with existing sparse representation models, the proposed JPG-SR
provides a powerful mechanism to integrate the local sparsity and nonlocal self-similarity
of images. We then apply the proposed JPG-SR model to a low-level vision problem,
namely, image inpainting. To make the proposed scheme tractable and robust, an iterative
algorithm based on the alternating direction method of multipliers (ADMM) framework is
developed to solve the proposed JPG-SR model. Experimental results demonstrate that
the proposed model is efficient and outperforms several state-of-the-art methods in both
objective and perceptual quality.

Keywords: Sparse representation, joint patch-group based sparse representation, nonlocal
self-similarity, image inpainting, ADMM.

1. Introduction

As a very popular technique in image processing, sparse representation has attracted signifi-
cant interests (Elad and Aharon, 2006; Aharon et al., 2006; Caiafa et al., 2017; Mairal et al.,
2009; Dong et al., 2011; Zhang et al., 2014a; Liu and Tsang, 2017). Generally speaking,
methods of sparse representation can be classified into two categories: patch-based sparse
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representation (PSR) and group-based sparse representation (GSR). PSR assumes that each
patch of an image can be perfectly modeled by a sparse linear combination of learnable basis
elements. These elements, called atoms, compose a dictionary (Aharon et al., 2006). The
dictionary is usually learned from a natural image dataset. Compared with the traditionally
analytic dictionaries, such as DCT and wavelet, dictionaries learned directly from images
are superior to be adapted to image local structures, and thus could improve the sparsity
which results in better performance. For instance, the seminal work of KSVD dictionary
learning method proposed by Aharon et al. (2006) has not only achieved promising denois-
ing results, but also been extended to various image processing and computer vision tasks
(Zhang and Li, 2010; Lun et al., 2016). However, it has been shown that the PSR with
an over-complete dictionary is usually unstable and tends to generate undesirable visual
artifacts (Elad and Yavneh, 2009). Moreover, it is computationally expensive to learn an
off-the-shelf dictionary, and the PSR model usually ignores the correlation among similar
patches (Mairal et al., 2009; Zhang et al., 2014a; Zha et al., 2017).

Inspired by the success of the nonlocal self-similarity (NSS) prior in images (Buades
et al., 2005; Dabov et al., 2007; Li et al., 2016), instead of using a single patch as the
basic unit in sparse representation, recent advances in GSR considers similar patch group
as the basic unit, while similar to PSR, it can be sparsely represented by a set of sparse
codes in the group domain, i.e., each group can also be precisely represented by a sparse
linear combination of basis elements of the dictionary Mairal et al. (2009). The GSR have
demonstrated great potential in various image processing tasks (Mairal et al., 2009; Zhang
et al., 2014a; Dabov et al., 2007). For example, Dabov et al. (2007) proposed the BM3D
method to combine NSS prior with transform domain filtering, which is still one of the
state-of-the-art denoising methods. Mairal et al. (2009) proposed the learned simultaneous
sparse coding (LSSC) to improve denoising performance of KSVD Aharon et al. (2006) via
GSR. Zhang et al. (2014a) proposed a group-based sparse representation model for image
restoration. Though GSR models have shown great successes in various image processing
tasks, they may suffer over-smooth effect in the recovered image (Li et al., 2016).

Bearing the above concern in mind, we aim to address the following questions in this
paper.

1) Is it possible to mitigate the drawbacks of PSR and GSR models, respectively?

2) Is it possible to build a joint model to integrate the PSR and GSR models? If yes,
can we solve the model efficiently?

We answer these questions by developing a new sparse representation model, dubbed joint
patch-group based sparse representation (JPG-SR). Compared with previous sparse repre-
sentation models, the proposed JPG-SR is capable of integrating the local sparsity with
NSS of the image. To make the optimization tractable, we develop an iterative algorithm
based on the alternating direction method of multipliers (ADMM) framework to solve the
proposed model. Through applying the proposed JPG-SR model to a low-level vision task,
i.e., image inpainting, we demonstrate that the JPG-SR not only retains the advantages of
PSR and GSR, but also alleviates their drawbacks, respectively.

The flowchart of the proposed JPG-SR model for image inpainting is illustrated in
Fig. 1. Note that the PSR (the top row in Fig. 1) and the GSR (the bottom row in Fig. 1)
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are fed into an ADMM framework to recover the image (right part in Fig. 1) in one shot.
Experimental results demonstrate that the proposed model is efficient and outperforms
many state-of-the-art approaches.
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Figure 1: Flowchart of the proposed JPG-SR model for image inpainting. The corrupted
image (left) are fed into our JPG-SR model on two paths, i.e., PSR on top and
GSR in the bottom. These two paths are jointly optimized by the proposed
ADMM framework producing the finally recovered image (right).

The remainder of this paper is organized as follows. Section 2 introduces the related work
about sparse representation. Section 3 develops our new sparse representation model, i.e.,
the Joint Patch-Group Sparse Representation model. Section 4 develops an optimization
method to solve the proposed JPG-SR model for the image inpainting task. Section 5
presents the experimental results. Finally, several concluding remarks are given in Section 6.

2. Background

2.1. Patch-based Sparse Representation

Following the notations in Elad and Aharon (2006), the basic unit of sparse representation
for images is patch. Mathematically, for an (vectorized) image x ∈ RN , let x i = Rix , i =
1, 2, ...n, denotes an (vectorized) image patch of size

√
b ×
√
b extracted from location i.

Given a dictionary D ∈ Rb×M , b ≤ M , the sparse representation processing of each patch
x i is to find a sparse vector where most coefficients are zero. Specifically, each patch x i can
be sparsely represented as x i ≈ Dαi by solving the following `0 minimization problem,

α̂i = arg min
αi

(∑n

i=1

1

2
‖x i −Dαi‖22 + λ‖αi‖0

)
, (1)

where λ is a regularization parameter, and || ||0 signifies the `0-norm (quasi-norm), i.e.,
counting the nonzero entries in αi. Then the entire image x can be sparsely represented
by a set of sparse codes {αi}ni=1. Concatenating n patches, let X = [x1, . . . ,xn] ∈ Rb×n
denote all the patches extracted from the image. Since D is shared by these patches, we
have

α̂ = arg min
α

(
1

2
‖X−Dα‖2F + λ‖α‖0

)
, (2)

where || ||2F denotes the Frobenius norm, α ∈ RM×n is the coefficient matrix, and the
`0-norm is imposed on each column of α (corresponding to each patch).
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2.2. Group-based Sparse Representation

Instead of using a single patch as the basic unit in sparse representation, recent studies have
shown that GSR using patch groups can produce more promising results for various image
processing tasks than typical PSR models (Mairal et al., 2009; Zhang et al., 2014a; Dabov
et al., 2007; Li et al., 2016). Hereby, we briefly introduce the GSR model.

In particular, image x is firstly divided into n overlapped patches x i of size
√
b×
√
b, i =

1, 2, ..., n. Then, different from PSR, for each exemplar patch x i, its most similar m patches
(by KNN method (Keller et al., 1985)) are selected from a W×W sized searching window to
form a set SGi . Following this, all the patches in SGi are stacked into a matrix XGi ∈ Rb×m,
which contains every patch in SGi as its column, i.e., XGi = {x i,1,x i,2, ...,x i,m}. This
matrix XGi consisting of all the patches with similar structures is thus called a group,
where x i,j denotes the j-th patch (column) in the i-th group. Finally, similar to PSR, given
a dictionary DGi ∈ Rb×K , each group XGi can be sparsely represented and solved by

β̂Gi = arg min
βGi

(
1

2
‖XGi −DGiβGi‖2F + λ‖βGi‖0

)
. (3)

In order to put all groups in one shot, let Qi ∈ Rn×m denotes the searching and
extracting operations of the similar patches for the i-th patch, i.e., XGi = XQi. Con-
catenating n patch groups, we have XG = X[Q1, . . . ,Qn] = XQ ∈ Rb×mn. Due to
the fact that each group has its own dictionary and they are not necessarily shared, let
DG = [DG1 , . . . ,DGn ] ∈ Rb×(nK) and β̄G = [β̄G1 , . . . , β̄Gn ], where {β̄Gi}ni=1 ∈ RnK×m is an
extended (longer with more rows) version of βGi ∈ RK×m, with βGi in the corresponding
locations (from ((i−1)K+1)-th row to (iK)-th row) but zeros elsewhere, i.e., corresponding
to DGi in DG. The problem we are going to solve now becomes

ˆ̄βG = arg min
β̄G

(
1

2
‖XG −DGβ̄G‖2F + λ‖β̄G‖0

)
, (4)

where the `0-norm is again imposed on each column and this holds true for the following
derivations in this paper. It is worth noting that both X in PSR and XG in GSR are
constructed from the same image x.

3. Joint Patch-Group based Sparse Representation Model

The PSR model usually generates some undesirable visual artifacts, while GSR may lead to
over-smooth effect in various image processing tasks. To cope with these problems, instead
of using Eq. (2) or Eq. (4) individually, we propose the joint patch-group based sparse
representation (JPG-SR) model in this section.

Before doing this, we introduce some preliminary transformations to link the PSR model
in Eq. (2) with the GSR model in Eq. (4). Recall that each patch (column) in the patch
group XG is from X and it can be sparsely represented by Eq. (2). Therefore, in addition
to the sparse representation in Eq. (4), we can also have

XG = DαG, (5)
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where αG ∈ RM×(mn) is composed of the corresponding columns in α; in other words, αG
is an expanded version of α in Eq. (2), where each column is reproduced by m times
according to the patch searching in XG.

Following this, we propose the JPG-SR model by solving

Ĉ = arg min
C

1

2
‖XG −UC‖2F + λ‖αG‖0 + ρ‖β̄G‖0,

U = [D DG] , C =

[
αG
β̄G

]
,

(6)

where λ and ρ are regularization parameters, balancing the two sparsity inducing penalties
(‖αG‖0 and ‖β̄G‖0) and the fidelity term, i.e., 1

2‖XG −UC‖2F . ||αG||0 corresponds to the
patch sparsity prior to retain the image local consistency, reducing the over-smooth effect,
while ||β̄G||0 is associated with group sparsity prior to keep image nonlocal consistency,
suppressing undesirable visual artifacts. In this way, the proposed JPG-SR provides a good
way of integrating local sparsity and NSS of images1.

In Eq. (6), after C is estimated, we can obtain XG. Following this, the original image
x can be recovered by aggregating the patches. It is worth noting that the desired signal
XG is only updated when both the patch sparsity prior (αG) and the group sparsity prior
(β̄G) are available and therefore our model is a joint one.

4. Joint Patch-Group based Sparse Representation for Image Inpainting

We are now considering the proposed JPG-SR model to a low-level vision task, image
inpainting.

4.1. Image Inpainting

The goal of image inpainting is to reconstruct a high quality image x from its degraded
observation y , which is a typical ill-posed inverse problem and can be mathematically
expressed as

y = Hx +ϕ, (7)

where H is a diagonal matrix whose diagonal entries are either 1 or 0, keeping or killing
corresponding pixels. ϕ is usually assumed to be a zero-mean white Gaussian noise.

Given the degraded image y in Eq. (7) and leveraging the proposed JPG-SR in Eq. (6),
we aim to recover the original image x by solving the following minimization problem,

Ĉ = arg min
C

1

2
||YG −HGUC||2F + λ||αG||0 + ρ||βG||0, (8)

where YG is obtained from y in the same procedure of XG, and similarly for HG, which is
obtained from H.

1. Solving Eq. (6) appears to give the same results of Eq. (2) and Eq. (4) if the global minimum can be
found and the joint optimization is not necessary any more in such case. However, the proposed JPG-SR
model in Eq. (6) is non-convex, and therefore, this is different from the simple average of two results
using PSR and GSR independently. In our experiments, we notice that this joint estimation plays a
pivot role in the performance improvement and shows good convergence behavior.
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4.2. ADMM Based Algorithm to Solve the Proposed JPG-SR Model

Since Eq. (8) is a large-scale non-convex optimization problem, in order to make the opti-
mization tractable, we employ the alternating direction method of multipliers (ADMM) (He
et al., 2002; Boyd et al., 2011) framework, whose underlying principle is to split the uncon-
strained minimization problem into different constrained sub-problems. We first give a brief
introduction to the ADMM method by considering a constrained optimization problem,

min
Z∈RN ,C∈RM

f(Z) + g(C), s.t. Z = UC, (9)

where U ∈ RM×N and f : RN → R, g : RM → R. The basic ADMM regime is shown in
Algorithm 1, where t denotes the iteration number.

Algorithm 1 The ADMM Algorithm.

Require: C and Z.
1: Initial µ > 0, J
2: for t = 0 to Max-Iter do
3: Zt+1 = arg min

Z
f(Z) + µ

2 ||Z−UCt − Jt||22.

4: Ct+1 = arg min
C

g(C) + µ
2 ||Z

t+1 −UC− Jt||22.

5: Jt+1 = Jt − (Zt+1 −UCt+1).
6: end for

Now, let us come back to Eq. (8) and invoke ADMM to solve it. We first translate
Eq. (8) into an equivalent constrained form by introducing an auxiliary variable Z,

Ĉ = arg min
C,Z

1

2
||YG −HGZ||2F + λ||αG||0 + ρ||β̄G||0, s.t. Z = UC. (10)

Through defining f(Z) = 1
2 ||YG −HGZ||2F , g(C) = λ||αG||0 + ρ||β̄G||0, and employing

Line 3 in Algorithm 1, we have

Ẑt+1 = arg min
Z
f(Z) +

µ

2
||Z−UCt − Jt||2F

= arg min
Z

1

2
||YG −HGZ||2F +

µ

2

∣∣∣∣∣∣∣∣Z− [D DG]

[
αtG
β̄tG

]
− J

∣∣∣∣∣∣∣∣2
F

. (11)

By splitting the second term in Eq. (11), we have

Ẑt+1 = arg min
Z

1

2
‖YG −HGZ||2F +

µ1

2
||Z−DαtG − Jt1||2F+

µ2

2
||Z−DGβ̄

t
G − Jt2||2F , (12)

where µ1 and µ2 are small positive constants. Instead of µ, we introduce µ1 and µ2 to make
the solution of Eq. (12) more feasible.

Next, invoking Line 4 in Algorithm 1, we have

Ct+1 = arg min
C

g(C) +
µ

2
||Zt+1 −UC− Jt||2F

= arg min
αG,β̄G

λ||αG||0 + ρ||βG||0 +
µ1

2
||Zt+1 −DαtG − Jt1||2F +

µ2

2
||Zt+1 −DGβ̄

t
G − Jt2||2F .

(13)
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We now decouple the minimization problem of C in Eq. (13) with respect to αG and
β̄G, and solve them separately, i.e.,

αt+1
G = arg min

α
λ||αG||0 +

µ1

2
||Zt+1 −DαG − Jt1||2F , (14)

β̄t+1
G = arg min

β̄G

ρ||β̄G||0 +
µ2

2
||Zt+1 −DGβ̄G − Jt2||2F . (15)

Following this, we update Jt by invoking line 5 in Algorithm 1,

Jt+1
1 = Jt1 − (Zt+1 −Dαt+1

G ), (16)

Jt+1
2 = Jt2 − (Zt+1 −DGβ̄

t+1
G ). (17)

In summary, it can be seen that the minimization of Eq. (10) involves three minimization
sub-problems, i.e., Z, αG and β̄G sub-problems. Fortunately, there is an efficient solution to
each sub-problem, which will be discussed below. Furthermore, in image inpainting problem
considered in this work, each problem can be solved patch by patch. Take the i-th patch
xi as an example, yi = Hixi, where Hi denotes the masks to kill or keep pixels in the
i-th patch. In the PSR model, recall that αG is an expanded version of α and we have
xi = Dαi. After this, the αi is solved, we can straightforwardly obtain αG. In the GSR
model, let β̃i concatenate all the group coefficients including the i-th patch; we thus have
xi = DGβ̃i. In the following, we consider to solve the problem for each patch and the
superscript t is omitted for conciseness. More specifically, we translate the αG sub-problem
to {αi}ni=1 subproblem and translate the β̄G sub-problem to {βGi}ni=1 sub-problem and
translate the Z sub-problem to {zi}ni=1 sub-problem.

4.2.1. Z Sub-problem

Given αG and β̄G, Z sub-problem in Eq. (12) for each patch zi, becomes

min
zi

`1(zi) = min
zi

1

2
||yi −Hizi||22 +

µ1

2
||zi −Dαi − j1,i||22+

µ2

2
||zi −DGβ̃i − j2,i||22. (18)

This is a quadratic form and it has a closed-form solution,

ẑi = [HT
i Hi + (µ1 + µ2)I]−1[HT

i yi + µ1(Dαi + j1,i)+µ2(DGβ̃i + j2,i)], (19)

where I is an identity matrix with desired dimensions and {j1,i, j2,i} are the corresponding
elements from {J1,J2}, respectively.

Note that each zi is jointly estimated in Eq. (19) using both PSR (αG) and GSR (β̄G)
in one shot. This is different from the simple average of two results using PSR and GSR
independently. In our experiments, we notice that this joint estimation plays a pivot role
in the performance improvement of our proposed model.

4.2.2. αG Sub-problem

Recall that αG is an expanded version of α, and thus the αG can be solved by the α
problem. According to Eq. (14), for i-th patch, α sub-problem can be rewritten as

min
αi

`2(αi) = min
αi

(
1

2
||Dαi − ri||22 +

λ

µ1
||αi||0

)
, (20)
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where ri = zi − j1,i. This is a sparse representation problem, and we hereby directly solve
the constrained form,

min
αi

||αi||0 s.t. ||r i −Dαi||22 ≤ δ, (21)

where δ is a small constant, and apparently Eq. (21) can be efficiently solved by the orthog-
onal matching pursuit (OMP) algorithm (Tropp and Gilbert, 2007). Due to its effectiveness
and efficiency, the KSVD algorithm (Aharon et al., 2006) is employed to learn the dictio-
nary D. For a given problem, OMP constructs a sparse solution via iteratively building up
an approximation, rather than minimizing an objective function. The vector ri in Eq. (21)
is approximated as a linear combination of a few columns of D, where the active set of
columns to be used is built column by column, in a greedy fashion. At each iteration a new
column is added to the active set the column that best correlates with the current residual.
Although OMP is a heuristic method, in some cases it works marvelously (Donoho and
Tsaig, 2008).

Algorithm 2 Image Inpainting Using JPG-SR Model.

Require: The observed image y and measurement matrix H.
1: Initial t, Z, α, βG, J, b, m, W, µ1, µ2, ρ.
2: for t = 0 to Max-Iter do
3: Update Zt+1 by Eq. (19);
4: Rt+1 = Zt+1 − Jt1;
5: Construct dictionary D by Rt+1 with KSVD.
6: for Each patch ri do
7: Update αt+1

i by computing Eq. (21);
8: end for
9: Rt+1

G = Zt+1 − Jt2;
10: for Each group RGi do
11: Construct dictionary DGi from Rt+1

Gi
using PCA;

12: Update βt+1
Gi

by computing Eq. (27);
13: end for
14: Update αt+1 by concatenating all αi;
15: Update Dt+1

G by concatenating all DGi ;
16: Update βt+1

G by concatenating all βGi ;
17: Update Jt+1

1 by Eq. (16);
18: Update Jt+1

2 by Eq. (17);
19: end for
20: Output: The final restored image x̂ by aggregating patches in Z.

4.2.3. β̄G Sub-problem

Given Z, according to Eq. (15), β̄G sub-problem can be rewritten as

min
β̄G

`3(β̄G) = min
β̄G

1

2
||DGβ̄G −RG||2F +

ρ

µ2
||β̄G||0) (22)

where RG = Z− J2.
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Figure 2: Test images used in the experiment. Top row: from left to right, Cowboy, Light,
Mickey, House, Leaves, Peppers, Fence; bottom row: from left to right, Butterfly,
Lena, Corn, Zebra, Barbara, Starfish, Tower.

Recalling the relationship of β̄G, β̃ and β, for each patch, we can get the other two after
solving any one of them. Now, instead of considering each patch as in the α sub-problem,
we consider each patch group here. For i-th patch group, we aim to solve

β̂Gi = arg min
βGi

(
1

2
||RGi −DGiβGi ||2F +

ρ

µ2
||βGi ||0

)
. (23)

One important issue of solving sub-problem βG is the selection of the dictionary. To
adapt to the local image structures, instead of learning an over-complete dictionary for each
group as in Mairal et al. (2009), we learn the principle component analysis (PCA) based
dictionary (Dong et al., 2011) for each group. Due to the orthogonality of the dictionary
DGi and based on the orthogonal invariance, Eq. (23) can be rewritten as

β̂Gi = min
βGi

(
1

2
||γGi − βGi ||2F +

ρ

µ2
||βGi ||0

)
= min

βi

(
1

2
||γi − βi||22 +

ρ

µ2
||βi||0

)
,

(24)

where RGi = DGiγGi , and {γi,βi} denote the vectorization form of the matrix {γGi ,βGi},
respectively.

In order to obtain the solution of Eq. (24) effectively, we have the following Lemma.

Lemma 1 The minimization problem

x̂ = arg min
x

(
1

2
||x− a||22 + τ ||x||0

)
(25)

has a closed-form solution

x̂ = hard(a,
√

2τ) = a� 1(abs(a)−
√

2τ), (26)

where � denotes the element-wise (Hadamard) product, abs( ) calculates the absolute value

of each entry (element-wise), and 1(·) denotes indicator function, i.e., 1(x) =

{
1, if x > 0
0, otherwise

.
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(b) 80% missing (c) SALSA (d) BPFA (e) IPPO

(g) Aloha (h) BKSVD (i) NGS (j) JPG-SR

(a) Original Image

(f) JSM

(b) 80% missing (c) SALSA(24.46dB) (d) BPFA(24.53dB) (e) IPPO(26.33dB)

(g) Aloha(25.33dB) (h) BKSVD(23.72dB) (i) NGS(24.50dB) (j) JPG-SR(26.80dB)

(a) Original Image

(f) JSM(26.09dB)

(b) 80% missing (c) SALSA (d) BPFA (e) IPPO

(g) Aloha (h) BKSVD (i) NGS (j) JPG-SR

(a) Original Image

(f) JSM

Figure 3: Visual comparison of Mickey by image inpainting with 80% missing pixels. (a)
Original image; (b) Degraded image with 80% pixels missing; (c) SALSA (PSNR=
24.46dB); (d) BPFA (PSNR= 24.53dB); (e) IPPO (PSNR= 26.33dB); (f) JSM
(PSNR= 26.09dB); (g) Aloha (PSNR=25.33dB); (h) BKSVD (PSNR= 23.72dB);
(i) NGS (PSNR= 24.50dB); (j) JPG-SR (PSNR= 26.80dB).

Proof See Afonso et al. (2010).

Therefore, based on Lemma 1, the closed-form solution of Eq. (24) is

β̂i = hard(γi,
√

2ρ/µ2) = γi � 1(abs(γi)−
√

2ρ/µ2). (27)

This process is performed across all n patch groups to achieve βG, which is the final
solution for β̄G sub-problem in Eq. (15).

After solving the above three sub-problems, we summarize the overall algorithm to solve
Eq. (8) in Algorithm 2.

5. Experimental Results

In order to demonstrate the effectiveness of the proposed JPG-SR, we report the perfor-
mance of JPG-SR for image inpainting and compare it with several state-of-the-art methods,
including SALSA (Afonso et al., 2011), BPFA (Zhou et al., 2012), IPPO (Ram et al., 2013),
JSM (Zhang et al., 2014b), Aloha (Jin and Ye, 2015), BKSVD (Serra et al., 2017) and NGS
(Liu et al., 2017) methods. Note that the BKSVD method is the classical patch-based sparse
representation method and JSM method is based on group sparse representation method.
The experimental images are shown in Fig. 2. Throughout the numerical experiments, we
choose the following stoping criterion of iteration for the proposed inpainting algorithm,
i.e.,

||x̂ t − x̂ t−1||22
||x̂ t−1||22

< ε, (28)

where ε is a small constant. The source code of the proposed JPG-SR for image inpainting
can be downloaded at: https://drive.google.com/open?id=1Bj-UHVCQWMmJUw4NnV1hp11_
IDFh5Og3.
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(b) 80% missing (c) SALSA (d) BPFA (e) IPPO

(g) Aloha (h) BKSVD (i) NGS (j) JPG-SR

(a) Original Image

(f) JSM

(b) 80% missing (c) SALSA(22.03dB) (d) BPFA(23.78dB) (e) IPPO(25.56dB)

(g) Aloha(25.90dB) (h) BKSVD(22.05dB) (i) NGS(23.87dB) (j) JPG-SR(27.38dB)

(a) Original Image

(f) JSM(26.18dB)

(b) 80% missing (c) SALSA (d) BPFA (e) IPPO

(g) Aloha (h) BKSVD (i) NGS (j) JPG-SR

(a) Original Image

(f) JSM

Figure 4: Visual comparison of Leaves by image inpainting with 80% missing pixels. (a)
Original image; (b) Degraded image with 80% pixels missing; (c) SALSA (PSNR=
22.03dB); (d) BPFA (PSNR= 23.78dB); (e) IPPO (PSNR= 25.56dB); (f) JSM
(PSNR= 26.18dB); (g) Aloha (PSNR=25.90dB); (h) BKSVD (PSNR= 22.05dB);
(i) NGS (PSNR= 23.87dB); (j) JPG-SR (PSNR= 27.38dB).

5.1. Comparison with State-of-the-art Methods

In this subsection, two interesting examples of image inpainting with different masks are
conducted, i.e., partial random samples and text inlayed samples. The parameters are set
as follows. The size of each patch

√
b×
√
b is set to be 8× 8. The size of searching window

W ×W is set to 25 × 25 and the matched patch number in each group m = 60. (µ1, µ2,
ε) are set to ( 0.003, 0.07, 0.0011), (0.005, 0.1, 0.00092), (0.01, 0.09, 0.0011), (0.03, 0.09,
0.0014) and (0.005, 0.1, 0.0005) when 80%, 70%, 60%, 50% pixels missing, and text inlayed,
respectively.

Table 1 lists the PSNR comparison results for the 14 color images using all competing
methods. It can be seen that the proposed JPG-SR consistently outperforms other com-
peting methods in terms of PSNR metric (the only exception is the image House with 50%
pixels missing for which JSM and Aloha slightly outperform JPG-SR by below 0.1dB). The
average gains of the proposed JPG-SR over SALSA, BPFA, IPPO, JSM, Aloha, BKSVD
and NGS methods are as much as 4.73dB, 2.36dB, 0.95dB, 1.04dB, 1.34dB, 3.31dB and
3.15dB, respectively.

The visual comparisons of images Mickey, Leaves, Zebra, Tower and Light with 80%
pixels missing are shown in Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7, respectively. Obviously,
it can be seen that SALSA and BKSVD could not reconstruct sharp edges and fine details.
The BPFA, IPPO, JSM, Aloha and NGS methods produce images with a much better
visual quality than SALSA and BKSVD, but still suffer from some undesirable artifacts,
such as the ringing effects. Note that BKSVD produces the obvious undesirable visual
artifacts since it is a PSR method. Although JSM method can obtain more visual results
than BKSVD, it often generates over-smooth phenomena. By contrast, the proposed JPG-
SR not only preserves sharp edges and fine details, but also eliminates the ringing effects.
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(b) 80% missing (c) SALSA(19.68dB) (d) BPFA(20.90dB) (e) IPPO(22.71dB)

(g) Aloha(22.72dB) (h) BKSVD(19.37dB) (i) NGS(20.49dB) (j) JPG-SR(23.09dB)

(a) Original Image

(f) JSM(21.88dB)

(b) 80% missing (c) SALSA(19.68dB) (d) BPFA(20.90dB) (e) IPPO(22.71dB)

(g) Aloha(22.72dB) (h) BKSVD(19.37dB) (i) NGS(20.49dB) (j) JPG-SR(23.09dB)

(a) Original Image

(f) JSM(21.88dB)

(b) 80% missing (c) SALSA (d) BPFA (e) IPPO

(g) Aloha (h) BKSVD (i) NGS (j) JPG-SR

(a) Original Image

(f) JSM

Figure 5: Visual comparison of Zebra by image inpainting with 80% missing pixels. (a)
Original image; (b) Degraded image with 80% pixels missing; (c) SALSA (PSNR=
19.68dB); (d) BPFA (PSNR= 20.90dB); (e) IPPO (PSNR= 22.71dB); (f) JSM
(PSNR= 21.88dB); (g) Aloha (PSNR=22.72dB); (h) BKSVD (PSNR= 19.37dB);
(i) NGS (PSNR= 20.49dB); (j) JPG-SR (PSNR= 23.09dB).

Therefore, these experimental findings clearly demonstrate that the effectiveness of the
proposed JPG-SR model.

(b) 80% missing (c) SALSA(22.85dB) (d) BPFA(23.94dB) (e) IPPO(24.50dB)

(g) Aloha(23.88dB) (h) BKSVD(22.92dB) (i) NGS(23.47dB) (j) JPG-SR(24.87dB)

(a) Original Image

(f) JSM(24.59dB)

(b) 80% missing (c) SALSA(22.85dB) (d) BPFA(23.94dB) (e) IPPO(24.50dB)

(g) Aloha(23.88dB) (h) BKSVD(22.92dB) (i) NGS(23.47dB) (j) JPG-SR(24.87dB)

(a) Original Image

(f) JSM(24.59dB)

(b) 80% missing (c) SALSA (d) BPFA (e) IPPO

(g) Aloha (h) BKSVD (i) NGS (j) JPG-SR

(a) Original Image

(f) JSM

Figure 6: Visual comparison of Tower by image inpainting with 80% missing pixels. (a)
Original image; (b) Degraded image with 80% pixels missing; (c) SALSA (PSNR=
22.85dB); (d) BPFA (PSNR= 23.94dB); (e) IPPO (PSNR= 24.50dB); (f) JSM
(PSNR= 24.59dB); (g) Aloha (PSNR=23.88dB); (h) BKSVD (PSNR= 22.92dB);
(i) NGS (PSNR= 23.47dB); (j) JPG-SR (PSNR= 24.87dB).
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Table 1: PSNR (dB) comparison of SALSA, BPFA, IPPO, JSM, ALoha, BKSVD, NGS
and JPG-SR for image inpainting.

Miss pixels Methods Barbara Butterfly Fence House Cowboy Light Mickey Leaves Lena Peppers Starfish Tower Corn Zebra Average

80%

SALSA 22.62 22.85 21.80 29.54 23.72 18.27 24.46 22.03 28.20 28.58 25.70 22.85 24.28 19.68 23.90
BPFA 25.11 24.04 26.24 30.80 24.93 19.23 24.53 23.78 29.50 29.58 26.79 23.94 25.54 20.90 25.35
IPPO 28.32 25.13 27.98 33.65 25.38 21.49 26.33 25.56 30.64 30.48 26.30 24.50 25.14 22.71 26.68
JSM 26.95 25.57 28.59 34.31 25.40 20.23 26.09 26.18 30.46 30.48 27.07 24.59 25.58 21.88 26.67
Aloha 29.59 24.88 28.88 33.79 25.06 21.50 25.33 25.90 30.89 29.95 26.33 23.88 25.60 22.72 26.73
BKSVD 25.21 22.00 24.20 28.15 24.12 18.77 23.72 22.05 28.16 27.75 25.36 22.92 23.69 19.37 23.96
NGS 23.88 23.85 25.26 31.34 24.21 18.52 24.50 23.87 28.87 29.35 26.17 23.47 24.74 20.49 24.89

JPG-SR 30.11 26.58 29.70 35.05 25.67 22.13 26.80 27.38 31.25 31.35 27.80 24.87 26.47 23.09 27.73

70%

SALSA 23.38 25.06 23.57 31.58 25.70 19.32 25.98 24.36 28.82 30.36 27.55 24.22 26.11 21.41 25.53
BPFA 28.32 26.68 28.87 33.75 26.76 21.58 26.16 26.98 31.62 31.74 28.93 25.66 27.82 22.78 27.69
IPPO 30.89 27.68 30.08 36.64 27.40 23.47 28.59 28.58 32.97 33.05 28.91 26.11 27.77 24.76 29.07
JSM 30.48 27.97 30.46 36.71 27.11 23.12 28.25 29.28 32.69 33.47 29.36 26.64 27.66 23.95 29.08
Aloha 32.40 27.29 30.57 36.68 27.24 23.17 27.11 29.04 32.80 32.76 28.22 25.77 27.95 24.55 28.97
BKSVD 27.58 25.00 28.35 32.93 25.99 20.85 26.17 25.29 30.96 30.96 27.79 25.07 25.83 23.06 26.85
NGS 26.11 26.36 27.32 33.91 26.19 20.78 26.68 26.44 30.77 31.59 28.35 25.22 26.77 22.71 27.09

JPG-SR 33.42 29.26 31.54 37.02 27.78 24.28 29.06 30.75 33.39 34.37 30.21 26.94 28.88 25.09 30.14

60%

SALSA 24.57 26.79 25.45 32.76 26.99 20.49 27.41 26.29 31.49 32.18 29.09 25.73 27.75 22.80 27.13
BPFA 31.06 28.88 30.79 36.40 28.42 23.65 27.83 29.83 33.54 34.20 30.98 27.28 30.07 24.53 29.82
IPPO 33.55 29.85 32.14 38.25 29.58 25.13 30.76 30.88 34.89 35.16 31.09 27.81 29.75 26.79 31.12
JSM 33.21 29.83 32.23 38.55 28.89 24.83 29.85 31.47 34.56 35.47 31.40 28.09 29.45 25.90 30.98
Aloha 35.13 29.16 32.33 38.68 28.92 24.47 28.59 31.41 34.72 35.00 30.19 27.16 29.83 26.24 30.85
BKSVD 29.86 27.70 30.72 33.48 28.14 23.00 28.53 28.61 33.48 33.44 29.99 26.68 28.35 25.27 29.09
NGS 28.24 28.37 30.11 36.29 27.78 22.78 28.09 28.87 32.81 33.59 30.26 27.04 28.55 24.39 29.08

JPG-SR 35.76 31.23 33.12 38.82 29.71 25.73 31.15 33.08 35.46 36.25 32.35 28.58 30.86 27.09 32.09

50%

SALSA 25.66 28.52 27.25 35.17 28.59 21.47 28.98 28.11 33.08 34.01 30.90 27.01 29.39 24.42 28.75
BPFA 34.01 30.98 32.82 39.24 30.21 25.71 29.43 32.79 35.61 36.44 33.13 28.83 32.10 26.37 31.98
IPPO 35.91 31.69 33.95 40.02 31.30 26.70 32.74 33.32 36.50 36.91 33.10 29.57 31.76 28.42 32.99
JSM 35.87 31.47 33.75 40.53 30.75 26.48 31.96 33.78 36.39 37.35 33.24 29.48 31.33 27.77 32.87
Aloha 37.46 30.78 33.79 40.58 30.46 25.84 30.33 34.01 36.41 36.88 31.85 28.71 31.89 27.67 32.62
BKSVD 33.58 29.64 32.44 36.50 29.75 24.68 29.95 31.25 35.44 35.87 31.99 28.27 30.28 26.97 31.19
NGS 30.93 30.28 32.00 38.85 29.32 24.62 29.75 31.23 34.56 35.59 32.10 28.53 30.31 26.03 31.01

JPG-SR 37.76 32.89 34.63 40.51 31.85 27.51 33.39 35.48 37.19 37.87 34.29 30.15 33.00 29.10 33.97

Inlay text

SALSA 29.18 29.81 26.77 36.70 30.17 24.94 30.67 29.03 33.84 36.16 32.60 28.75 30.96 25.19 30.34
BPFA 34.27 31.71 32.23 39.24 31.13 28.60 31.70 31.78 35.27 37.50 33.88 30.94 32.16 27.04 32.68
IPPO 37.65 33.98 35.10 41.06 32.61 29.92 34.04 35.26 37.29 39.42 35.35 31.91 32.48 29.99 34.72
JSM 37.79 33.19 35.41 41.21 32.42 29.65 32.99 35.40 36.98 39.27 35.17 32.48 32.26 29.11 34.52
Aloha 39.16 31.58 34.94 41.37 30.94 28.38 30.49 34.74 36.03 37.40 32.06 30.34 32.04 28.87 33.45
BKSVD 35.16 29.09 31.69 37.06 31.20 27.77 31.43 29.74 34.66 34.90 32.83 30.35 29.70 27.91 31.68
NGS 33.57 31.78 28.73 35.95 30.80 27.26 31.10 30.05 34.71 35.61 33.02 30.21 31.65 26.24 31.48

JPG-SR 39.28 34.56 36.61 41.56 33.06 30.31 34.66 36.32 37.36 39.71 36.03 32.98 32.87 30.20 35.39

(b) 80% missing (c) SALSA(22.85dB) (d) BPFA(23.94dB) (e) IPPO(24.50dB)

(g) Aloha(23.88dB) (h) BKSVD(22.92dB) (i) NGS(23.47dB) (j) JPG-SR(24.87dB)

(a) Original Image

(f) JSM(24.59dB)

(b) 80% missing (c) SALSA(22.85dB) (d) BPFA(23.94dB) (e) IPPO(24.50dB)

(g) Aloha(23.88dB) (h) BKSVD(22.92dB) (i) NGS(23.47dB) (j) JPG-SR(24.87dB)

(a) Original Image

(f) JSM(24.59dB)

(b) 80% missing (c) SALSA (d) BPFA (e) IPPO

(g) Aloha (h) BKSVD (i) NGS (j) JPG-SR

(a) Original Image

(f) JSM

(b) 80% missing (c) SALSA (d) BPFA (e) IPPO

(g) Aloha (h) BKSVD (i) NGS (j) JPG-SR

(a) Original Image

(f) JSM

Figure 7: Visual comparison of Light by image inpainting with 80% missing pixels. (a)
Original image; (b) Degraded image with 80% pixels missing; (c) SALSA (PSNR=
18.27dB); (d) BPFA (PSNR= 19.23dB); (e) IPPO (PSNR= 21.49dB); (f) JSM
(PSNR= 20.23dB); (g) Aloha (PSNR= 21.50dB); (h) BKSVD (PSNR= 18.77dB);
(i) NGS (PSNR= 18.52dB); (j) JPG-SR (PSNR= 22.13dB).
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(a) (b)(a) (b)
Figure 8: Convergence analysis. (a) PSNR results versus iteration number for image in-

painting with 80% pixels missing. (b) PSNR results versus iteration number for
image inpainting with text inlayed.

5.2. Convergence

Since the proposed model is non-convex, it is difficult to give its theoretical proof for global
convergence. Hereby, we provide the empirical evidence to illustrate the good convergence
behavior of our proposed model. Fig. 8 illustrates the convergence performance of the
proposed scheme. It shows the curves of the PSNR values versus the iteration numbers
for image inpainting with 80% pixels missing and text inlayed, respectively. It can be seen
that with the increase of iteration number, the PSNR curves of the reconstructed images
gradually increase and eventually become flat and stable. Obviously, the proposed scheme
enjoys a good convergence performance.

6. Conclusion

A new sparse representation model, called joint patch-group based sparse representation
(JPG-SR) has been proposed in this paper. Compared with existing sparse representation
models, the proposed JPG-SR integrates both local sparsity and nonlocal self-similarity of
the image. We have developed an iterative algorithm based on the ADMM framework to
solve the proposed model for image inpainting. Experimental results have demonstrated
that the proposed model is efficient and outperforms many state-of-the-art methods both
quantitatively and qualitatively.
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