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Light-based diagnostics and therapy have become indispensable tools in the field of cancer
nanomedicine. Various optical imaging modalities with tomographic capability have been
developed to visualize cellular and organismic distributions of molecules. Microscopic
pharmacokinetics and the tumor-targeting efficacy of nanoscale effectors can now be pre-
cisely evaluated. Moreover, phototherapy using intense laser light has been widely used for
treating cancers. Using light-active nanoscale effectors, photothermal and photodynamic
therapies on superficial tumors can be achieved with low-illumination lasers.
Consequently, for the next generation of photo-medical techniques, the use of near infrared
(NIR) excitation sources on NIR-activatable nanoparticles may offer deeper light penetra-
tion owing to less extensive scattering and absorption by endogenous chromophores in
the NIR spectral region. Therefore, treatments and biodetection within higher tissue vol-
umes and with less side effects (e.g. overheating) may be successfully implemented. This
comprehensive review covers the state-of-the-art technologies on (a) advanced laser light
sources appropriate for deep tissue theranostics, (b) types of laser interactions with pure-
NIR and NIR-upconverting nanomaterials, (c) current development of NIR and multi-
photon nanoparticles, (d) application fields of NIR nanomaterials in cancer theranostics,
and (e) nanotoxicology of NIR nanoscale effectors for cancer treatment.
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1. Introduction

With the advance of cancer biology, the scientific community is gradually obtaining a better understanding of the hetero-
geneity of tumors, the pathophysiology of their growth, and the establishment and seeding of metastasis. New strategies
using targeting therapies have been developed for personalized and effective treatment of tumors [1,2]. In recent years, with
advances in nanotechnology, nanoparticles have been considered as effective vehicles for targeted drug delivery. With
appropriate designed [3] size, surface chemistry or coating polymers, and conjugated antibodies, these ‘‘nanomedicines”
can be engineered to circulate longer in blood, passively overcome biological barriers, actively target cancer cells, and pen-
etrate into tumor tissues with high specificity. After targeting, cancer tomographic visualization (single or combined lumi-
nescence/magnetic resonance imaging (MRI)/positron emission tomography (PET) contrast agents) can be employed as well,
and the release and penetration of drugs into tumors can be further triggered by the tumor chemical microenvironment (e.g.,
lower pH in tumors) or photon activation (e.g., photodynamic effects) of nanomaterials [4,5]. Moreover, photon- or magnetic
field-activated hyperthermia is of great interest for cancer theranostics [6–8]. Therefore, the application of nanomedicines
has become one of the clinically important and promising fields in cancer diagnosis and therapy. The National Cancer Institute
at the National Institute of Health have recognized this and thus documented that nanotechnology offers an amazing,
paradigm-shift opportunity to make significant advances in cancer diagnostics and therapy [9–11].

To evaluate the targeting efficacy, pharmacokinetics, and pharmacodynamics of nanomedicines in vivo, nanomaterials are
usually designed to provide contrasts in various modalities of molecular imaging [12,13], so that they can be visualized and
their time-course dynamics can be tracked on different scales. The location of multiple tumors can be identified and the
treatment response can thus be followed up. PET uses gamma photons emitted from tagged radioactive tracers to map
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nano-agents [14]. This whole body imaging modality has the best sensitivity and precision for mapping the bio-distribution
of nanomaterials. However, PET-based imaging does not yield information on the structure of tissues and organs. Besides, the
centimeter-scale spatial resolution is not sufficient for satisfactorily resolving sizes and precise locations. To put tumor imag-
ing in a meaningful context, PET is usually combined with X-ray computed tomography (CT) which provides millimeter-
scale resolution. Metallic nanoparticles can be used to enhance the contrast in CT imaging [15–17]. Using MRI, the resolution
can be further improved to 100 lm, which enables detecting earlier stage tumors. Nanomaterials with chelated metallic ions
[18], Gd3+ doped nanoparticles or superparamagnetic iron oxides [19] can enhance the T1 and T2 contrasts in MRI. Different
modalities of images can be registered and combined together by using the same contrast agents with multiple detection
mechanisms. One such proof of concept example is hexamodal porphyrin-phospholipid (PoP)-coated upconversion nanopar-
ticles (UCNPs), which demonstrate NIR fluorescence; can be used for up-conversion imaging, photoacoustic imaging, PET and
Cherenkov luminescence imaging with 64Cu isotopes; and provide possibilities of CT and MRI contrast [20].

For understanding the whole-body distribution and metabolism of nanomedicines, cellular level imaging is required to
monitor their pharmacokinetics and pharmacodynamics in detail. Compared with other molecular imaging modalities, opti-
cal imaging has the unique advantages of sub-cellular spatial resolution, high temporal resolution, the ability to employ ver-
satile labeling tools, and sensitive detection of molecules at low concentration levels. Researchers have used various optical
microscopy techniques to resolve the vascular permeation, diffusion, docking, and cellular internalization of nanomedicines
in vivo. Except for the targeting function, the temporal progression of treatment-induced changes in the tumor microenvi-
ronment, recruitment of immune cells, and removal of cancer cells can also be evaluated. Under this observation scheme,
nanomaterials need to be optically contrasting for being able to visualize their dynamics and cellular responses. Interest-
ingly, as the size of these nanomaterials decreases down to several nanometers, their unique physical properties can yield
prominent optical contrasting in a variety of optical microscopy modalities. Examples of these are surface plasmon reso-
nance (SPR) absorption in metal nanoparticles [21], quantum confined effects of exciton fluorescence in semiconducting
quantum dots [22], conductor to fluorescent semiconductor transition in gold nanodots [23–26], defect fluorescence in nan-
odiamonds [27,28], long living and anti-Stokes efficient up-converting nanoparticles, and surface-state luminescence of iron
oxides [29]. These sensitive optical contrasts can also depend on the chemical microenvironment to reflect the cell physio-
logical conditions such as pH values [30] and oxygen partial pressure pO2 [31–35]. Besides, strong SPR absorption of metal
nanoparticles can effectively convert light energy into heat and reactive oxygen species through photo-thermal and photo-
dynamic effects, respectively [36]. These photo-physical or photo-chemical functions of nanomaterials can be excited on
demand to damage cellular membranes or to locally increase the oxidative stress. The release and spread of therapeutic
agents can thus be controlled and intentionally promoted. As a result, except for the role of a drug carrier, nanomaterials
themselves can both serve as contrast agents in diagnostic molecular imaging and therapeutic means in photo-medicines
[37]. Such integrated function of nanomaterials, often termed theranostics [38], can be used to optimize the efficacy of ther-
apy to address patient-specific characteristics of cancer.

To achieve these merits of photo-nanomedicine for deep tissue diagnosis and treatment, NIR excitation sources for NIR-
to-NIR-activated nanomaterials are being actively studied; this technique allows excitation in the NIR spectral range where
light absorption and scattering from biological tissues are minimized, as well as an increased light penetration combined
with locally induced laser hyperthermia. Illuminated at the so-called ‘‘biological window” or ‘‘water window” (�700–
950 nm, 1000–1300 nm, and �1600–1850 nm, corresponding to the 1st, 2nd, and 3rd optical windows, respectively), the
NIR light minimally interacts with physiological constituents (i.e., pigments, proteins, coenzymes, water) and thus negli-
gently affects the wavefront propagation. Such synergy of laser engineering and material sciences has broadened the horizon
for the in vivo exploration of cancer biology, enabling deep tissue treatment of tumors. To achieve this goal, in the last decade
many research efforts have been devoted to obtain nanomaterials capable of absorbing in the NIR range, with numerous bio-
logical applications. Nevertheless, longer excitation wavelengths degrade the spatial resolution of in vivo imaging. Higher
excitation intensity may reshape the nanoparticles and degrade the NIR response properties [39]. Besides, for several func-
tional nanomaterials the efficient excitation bands are in the visible range only [21–28]. To expand the advantages of NIR
excitation of nanomaterials, these challenges need to be overcome with new chemical designs and chemical architectures
in combination with new excitation schemes and detection/treatment platforms.

With advances in nonlinear optics and introduction of new imaging methods, NIR light can now be used to excite various
optical contrasts of nano-agents to probe biological specimen both functionally and structurally with increasing spatial and
temporal resolution. The nonlinear optical contrasts can be generated at a least invasive wavelength and power level. Simul-
taneously, significant interest driven by the field of nano-toxicology has recently emerged to understand how biological
specimens respond to nano-engineered materials of various size and composition and with different surface properties.
Besides, the visible absorption band of most functional nanomaterials becomes NIR-excitable through multiphoton pro-
cesses allowing in vitro and in vivo multifunctional imaging and combined therapy using noble and magnetic nanoparticles
[29,40]. The multiphoton yield of NIR excitation can be enhanced through the structural plasmon resonance [40] or surface
modification [29]. Different NIR contrast mechanisms can thus be realized on single-type nanomaterials (e.g., gold, quantum
dots, Fe3O4, polymers, carbon-based nanoparticles) to produce multiphoton emission, photoacoustic responses, and local
hyperthermia. For example, NIR absorption and fluorescence were recently demonstrated for Fe3O4 nanoparticles [29], mak-
ing these a versatile platform for photo-thermal therapy and two-photon fluorescent bio-imaging. The development of flu-
orescent Fe3O4 nanoparticles enables whole-scale cancer theranostics, combining optical microscopy with well-established
MRI. Therefore, understanding the current development of these NIR-active nanoparticles combined with laser systems will



Fig. 1. Overview of NIR nanomaterials’ applications for IMAGING- as contrast agents for X-ray, PET, MRI, fluorescence, multicolor visible-to-NIR
luminescence, THERAPY by NIR-activated PDT therapy, chemo(drugs) release, hyperthermia combined with radionucleotide action, BIOSENSING, where
different factors (temperature, chemicals, pH, metal ions) modulate the lifetime and intensity ratio of luminescence, and TARGETING on desired tissue sites.
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inspire researchers to exploit ‘‘linear and nonlinear optical nanomaterials” beyond the conventional lanthanide-based up-
converting nanoparticles.

Indeed, development of NIR photo-functional nanoparticles has promised new strategies to visualize tumor microenvi-
ronments in vivo as well as the improvement of a remote triggering of photodynamic or photo-thermal therapy and
photo-induced chemical bond dissociation. For in vivo pre-clinical studies, these NIR multiphoton contrast agents provide
a better anatomical resolution and detection sensitivity than conventional clinical MRI or X-ray CT.

Consequently, the core focus of this review article is to provide a concise overview of newly developed NIR-to-NIR nano-
materials and their potential applications in cancer targeting and deep-tissue imaging. This review goes well beyond the
state-of-the-art technologies, by unifying the latest advances in designing smart NIR-to-NIR multiphoton nanotechnology
for cancer theranostics. These newly developed multifunctional NIR-to-NIR nanomaterials and unique optical imaging meth-
ods will certainly enhance the capabilities of tumor targeted imaging and hold promise in cancer diagnostics and therapeu-
tics, tackling crucial biomedical questions (Fig. 1).
2. Contrast mechanisms of NIR nanomaterials

Depending on the light-matter interaction pathways, the contrast characteristics of NIR optical imaging may arise from
linear or nonlinear optical processes. Linear optical processes include absorption, scattering, interference, fluorescence, phos-
phorescence, and Raman scattering (Fig. 2). Absorbed light may be further converted into heat or ballistic acoustic waves.

Nonlinear optical processes are important contrast mechanisms for realizing NIR imaging. These processes are excited/
activated by intense laser pulses and include multiphoton absorption and fluorescence, second harmonic generation
(SHG), third harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering
(SRS), and multiphoton up-conversion luminescence (Fig. 3). These contrasts either can yield morphological information
or report the molecular distribution to reveal the cancer biology and pharmacokinetics of nanomedicines in vivo. Different
contrasts have their own pros and cons in different contexts. In the following sections, we will introduce the major types of
linear and nonlinear optical contrasts of nanomaterials, and their corresponding imaging modalities.



Fig. 3. Schematic of the energy diagram of the absorption and emission features of nanomaterials based on the single-photon and multiphoton transitions.

Fig. 2. Types of single-photon contrast mechanisms.
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2.1. Single-photon transition for fluorescence contrast agents

Fluorescence processes involve only transitions of electrons within molecules, and their excitation and emission bands
are determined by molecular composition and structures. They can be single-photon excited at low intensities (Fig. 2). Light
excitation of the absorption band of fluorophores results in the excitation of ground-state electrons. Through a fast (�300 fs)
internal conversion or vibrational relaxation [41], thermalized electrons accumulate in quasi-steady states and then relax
back to their ground states by releasing photons. Typically, this fluorescence relaxation process occurs on the nanosecond
(singlet-singlet fluorescence) or micro to millisecond (triplet-singlet phosphorescence) scale. The red-shift of the emission
wavelength allows the suppression of excitation photons with filters and the enhancement of detection sensitivity with pho-
tomultiplier tubes. Therefore, among all optical contrast processes, fluorescence is the most sensitive and specific one (Fig. 3)
for biomedical imaging. To achieve NIR fluorescence in nanomaterials, a straightforward strategy is to cross-link or anchor
NIR dyes such as cyanine molecules with or to the surface of nanoparticles. To reduce the complexity of synthesis and to
avoid the concern of extra toxicity, inherent fluorescent contrast characteristics of nanoparticles may be exploited. For crys-
talized nanoparticles, direct-bandgap NIR fluorescence of semiconductor quantum dots (e.g., CdSe [22], Ag2S [42], CuInS2
[43]) or carbon nanotubes [44–46] has been developed. Exploiting type-II band-alignment between core-shell semiconduc-
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tors, NIR fluorescence can be further tuned to longer wavelengths [47]. For indirect bandgap materials such as silicon, their
nanometer sizes increase the momentum uncertainties of electrons and assists in the indirect relaxation of electrons. Silicon
nanocrystals exploit these properties to obtain more efficient NIR fluorescence [48,49]. Most of other luminescent nanoma-
terials rely on defect states or localized states to yield less efficient and relatively broad NIR emission bands. This lumines-
cence becomes prominent for nanomaterials with large surface-to-volume ratio, such as carbon nanodots [50–54],
nanodiamonds [27,28], and gold clusters [55]. Using these fluorescence labels, injected nanomedicines can be visualized
and tracked using a bright-field fluorescence imaging system. Nanomaterials may be illuminated at a specific excitation
wavelength and the diffused fluorescent photons collected and form a whole body image on a sensitive charge-coupled
device (CCD) camera. Such an in vivo imaging system can be used for evaluating the whole body circulation and the targeting
of nanomedicines. Just like a conventional camera system, the angular resolution of this imaging modality is typically deter-
mined by the emission color of labels, the aperture of cameras, and the pixel densities of CCD CMOS chips.

To take a closer look at microscopic scales in vivo, the use of laser scanned confocal microscopy techniques is required. At
each excitation point, the out-of-focus fluorescence will be rejected by a confocal pinhole before photomultiplier tubes and
the tomographic distribution of nanomedicines in vivo can be revealed in a three-dimensional (3D) image stack with sub-
micron resolution. In this case, the imaging depth will be limited by the scattering properties of tissues, and is typically
100–150 lm for turbid tissues such as skin.

In addition to the fluorescence intensity, the fluorescence lifetime is another contrast mechanism of fluorescence that is
often highly sensitive to the molecular microenvironment. Related imaging modalities include fluorescence resonant energy
transfer (FRET) microscopy, fluorescence lifetime imaging microscopy (FLIM), and time-gated fluorescence microscopy. The
FRET and FLIM modalities can be used to evaluate microscopic drug release from theranostic nanoparticles. Before drug
release, FRET events occur between the donor (nanoparticles) and acceptor (fluorescent drug). After release, the acceptor dif-
fuses away and only the donor fluorescence can be detected. This evaluation scheme has been realized for quantum dots
[56,57], polymer-based micelles [58], and mesoporous silica nanoparticles [59]. Differences in the fluorescence lifetimes
across molecules can be used to differentiate the targeted molecules from other molecules [60,61] (e.g., bound and unbound
reduced nicotinamide adenine dinucleotide (NADH) fluorescence) or from a non-specific background [62]. For instance, the
auto-fluorescence lifetime of endogenous chromophores is typically �1 ns. By employing nanomaterials with fluorescence
lifetimes on the order of several tens of nanoseconds (e.g., quantum dots (QDs) and nanodiamonds) or luminescence life-
times on the order of micro- to milliseconds (lanthanide doped nanoparticles), and by performing time-delayed and gated
integration of photons after the excitation pulse, it is possible to realize a background-free and thus possibly ultrasensitive
detection and fluorescence imaging of nanomaterials. This concept has been recently applied to fluorescent diamond
nanoparticles for tracking diamond labeled cells in an environment with large auto-fluorescence [62].
2.2. Single photon phosphorescence

For some photosensitizing molecules, such as porphyrins, photo-excited electrons can couple to triplet states through
intersystem crossing. Photon emission of phosphorescence occurs when triplet-state electrons relax back to singlet ground
states, whose wavelengths typically range from red to NIR (Fig. 3). In contrast to fluorescence, this forbidden transition pro-
cess of electrons results in a microsecond to millisecond lifetime after excitation. The lifetime is so long that phosphores-
cence could be quenched by collisions of triplet oxygens in water. This quenching is typically responsible for dimming the
phosphorescence intensity and shortening the phosphorescence lifetime. Exploiting this property, the pO2 levels in vascu-
lature and tissue can be quantitatively evaluated based on changes in the phosphorescence intensities or lifetimes. How-
ever, these photosensitizers are toxic to cells and not stable in biological environment. Nanomaterials, in this case, can
host these phosphorescent dyes and make them useful probes for measuring the level of pO2 [31–35]. Researchers have
used such phosphorescence probes to study pO2 in the eye retinae [63], in the cerebral vasculature and tissue [64], and
in the niche of hematopoietic stem cells [65]. Microscopic pO2 imaging can be performed with three-dimensional (3D)
sub-micron resolution, which is useful for investigating hypoxic microenvironments in wound healing, tumor growth,
and stem cell niches.
2.3. Single photon Raman scattering

Different from elastic scattering (Fig. 2), in the Raman scattering process, the incident light (photons) interacts with the
vibrations (phonons) of the target molecules and the scattered photons may have lower (the Stokes line) or higher (the anti-
Stokes line) energy. Each molecule, owing to its characteristic bonding structure and vibrational modes, has its own spon-
taneous Raman spectrum. Depending on the size of molecules and the strength of bonds, the vibration frequency of interest
can range from very low (5 cm�1) to 4000 cm�1. Strong Raman peaks can serve as contrasts for microscopic molecular imag-
ing. For biological samples, NIR-excited Raman spectra can reduce the interference from auto-fluorescence. However, the
Raman scattering intensity is proportional to 1/k4, which means that the signal is weakened by an order of magnitude for
wavelengths in the NIR range. Therefore, there is a trade-off on selecting a proper wavelength for excitations associated with
Raman scattering.
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2.4. Photoacoustic contrast

Traditionally, staining dyes have been used in bright-field microscopy for absorption contrast of cells. Cells with intrinsic
pigments, such as red blood cells, can be easily observed in vivo without any staining [66]. Using photoacoustic imaging, the
light absorption characteristics of materials can be exploited to convert light energy into acoustic waves for background-free
and deep-tissue tomography. The main advantage of the photoacoustic contrast method is its flexibility: it can either use
optical excitation or acoustic detection as the aperture function for determining the imaging resolution [67]. In the ballistic
excitation regime, where the imaging depth is smaller than the inverse of the photon scattering constant, a focused Gaussian
beam can still maintain a point spread function (PSF) of sufficient quality for the microscopic scale. Beyond the ballistic
regime, the optical wavefront gradually loses its coherence and the PSF can easily increase beyond 100 mm. In this case, less
divergent acoustic waves have better resolution using phase-array detection. This flexibility of photo-acoustic imaging
extends the microscopic scale imaging to a depth much deeper than what can be achieved using optical coherence tomog-
raphy (OCT). A widely exploited photo-acoustic contrast is the absorption of hemoglobin in red blood cells. Fine blood vas-
culature can be mapped in a larger field of view at a deeper imaging depth [67]. A functional photoacoustic microscope was
developed, which provides multi-wavelength imaging of optical absorption and allows high spatial resolution beyond this
depth limit with a ratio of maximal imaging depth to depth resolution greater than 100. This capability is useful for studying
angiogenesis in tumor microenvironments.

Among many nanomaterial systems, noble metal nanoparticles are ideal NIR photoacoustic contrast agents for in vivo
nanoscale molecular imaging. Recently, Bao et al. reported the use of gold nanoprisms as novel contrast agents for the hybrid
technique of optoacoustic imaging in mice gastrointestinal tumors [68,69]. They have demonstrated a huge absorption cross-
section of such nanoparticles owing to their free electrons. The SPR effect plays a major role in increasing the absorption
cross-section and manipulating peak absorption wavelengths.

2.5. Surface plasmon resonance effect

Surface plasmons are dipolar excitations related to the density waves of free electrons in metals. For isolated nanoparti-
cles, surface plasmon modes are standing waves with zero momentum and can thus easily interact with photons [21,70].
According to Mie theory, this dipolar absorption makes the dielectric constants of a metal negative in a certain range of
wavelengths, which can locally enhance the electric field on a spatial scale much smaller than that of the excitation wave-
length [71]. Typically, for spherical solid metal nanoparticles, the SPR wavelengths are in the visible range. To achieve SPR in
the NIR wavelength range, the geometry of metal nanoparticles needs to be tailored into nanorods, nano-shells, or triangular
nanoplates. Another strategy is to employ materials with lower free-carrier densities, such as conducting metal oxides or
doped semiconducting nanocrystals [72]. This SPR-enhanced electric field can significantly increase the yield of originally
weak signals such as those in Raman scattering [73], harmonic generation [40,74–76], and multiphoton fluorescence [40].
This signal enhancement feature of SPR can be employed for detecting trace amounts of molecules. The SPR effects can also
enhance the Raman scattering in nanomaterials, especially for the enhancement of NIR excited ones. For example, using
micro-Raman spectroscopy, the detection of individual molecular vibration signals became possible once the surface-
enhanced Raman scattering (SERS) (Fig. 2) was involved after combining long-range electromagnetic and short-range chem-
ical enhancements [73,77]. Currently, molecular tags on Au nanomaterials have become a powerful tool for developing suc-
cessful in vivo disease site tracking methods [78], sensing the intracellular pH environment [79], and screening circulating
tumor cells [80] by using NIR lasers.

2.6. Quantum confinement effects

In quantum mechanics, the particle-in-a-box model explains how free particles can occupy certain positive energy levels
when they are confined to a low-dimensional potential well. In a nanometer-scale semiconductor quantum well, there are
quantized eigenstates of electron wave functions in the conduction and valence bands. For narrower well widths, the tran-
sition bandgap is larger, yielding a fluorescence blue-shift. For low-dimensional nanomaterials, 3D confinement of electron
or exciton wave functions yields similar effects. For instance, smaller sizes of CdSe semiconductor quantum dots have shorter
exciton absorption peaks and emission wavelengths [81], which can be tuned from blue (�480 nm) to red (�650 nm). This
color tunability can be used for multiplexed optical coding of biomolecules [82]. For indirect-bandgap silicon nanocrystals,
this confinement will also increase the transition gaps of free excitons and localized states [83]. The tuning range is wider
from 400 nm to the NIR 750 nm wavelength. Another type of quantum confinement is defect-related localized states.
Depending on the domain environment and size, different transition sites may have different excitation and emission peaks.
Fluorescent carbon nanodots have this feature, and the emission wavelength can be tuned via excitation ranging from
400 nm to the 700-nm wavelength of NIR [50–54].

2.7. Rare-earth dopant based single photon up-converting process

Up-conversion of photons is a sequential absorption of two or more photons (typically NIR photons) by materials that
leads to the emission of light at a shorter wavelength than the excitation one (the so-called anti-Stokes emission) [84]. This
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phenomenon usually occurs in solid-state materials doped with d-block and f-block elements. The interaction between dop-
ing ions and lattices forms ladder-like arrangement of energy levels with similar spacing, and allows sequential excitation of
electrons to an even higher excited state. The up-conversion processes can roughly be divided into three categories: excited
state absorption (ESA), energy transfer up-conversion (ETU), and photo avalanche (PA). For example, Yb3+ sensitized Er3+ or
Tm3+ systems are usually co-doped in NaYF4 and yield an efficient ETU [85]. The Yb3+ sensitized Ho3+ co-doped oxyfluoride
glass ceramics yield a serial ESA and PA up-conversion [86]. These nonlinear optical processes should be distinguished from
coherent up-conversion processes such as multi-photon absorption and harmonic generation. The major difference is that
the photon up-conversion can be realized at low excitation intensities, while the coherent up-conversion cannot, which is
owing to the engagement of real or virtual energy levels, respectively. For biomedical imaging, this unique optical contrast-
ing mechanism has been used in rare-earth ion doped nanoparticles [85,87]. Multicolor and narrowband absorption/emis-
sion are achieved as well as color tunability [88] at the synthesis stage, perfect photo-stability of luminescence and both NIR-
to-vis and NIR-to-NIR emission can be obtained with these materials. However, for nanomaterials with a high surface-to-
volume ratio, the excited electron clouds may easily couple with surface states and severely quench the up-conversion pro-
cess. In this situation, an undoped shell coating on the up-converting core is required to keep the excited electrons away
from fast multiphotons and non-radiative quenching by the surface ligands and water molecules [87].

Compared with organic dyes and quantum dots, up-conversion luminescence of rare-earth doped nanoparticles allows
the up-conversion processes based on Yb3+ sensitized Er3+ or Tm3+ systems [85]. Owing to the common excitation at
980 nm, a NaYF4 host combined with Yb3+/Er3+/Tm3+ guests permits deep-tissue excitation and avoids the excitation of
auto-fluorescence owing to the tissue background, which is a severe drawback of most in vitro or in vivo optical Stokes
(kexc < kemi) microscopy systems. However, the up-conversion process decays in typically several tens of microseconds to
a millisecond [89], which sets a lower limit on the pixel dwell time and thus slows down the imaging speed of laser-
scanned confocal microscopy. For example, for a 512 � 512 pixels image, a pixel dwell time of 10 ls will result in the frame
time of 2.62 s, which is too slow for imaging some kinetic phenomena and characteristic of biological systems. Therefore, in
most cases, up-conversion contrast labels are applied to whole body wide field imaging and bright-field fluorescence micro-
scopy [90].

2.8. Multiphoton nonlinear optical processes

According to the electromagnetism theory, the polarization density P of a material can be induced by light illumination.
For low-intensity illuminations, the amplitude of P is linear in the applied electric field E. With the invention of ultrafast
lasers, coherent light energy can be instantaneously delivered using picosecond (10�12 s) or femtosecond (10�15 s) pulses;
as a result, the instantaneous intensity can reach unprecedented levels of 1012 W/cm2 even for low power. Such strong
coherent electric fields can drive electrons in materials away from atomic harmonic potentials, and anharmonic vibrations
induce nonlinear polarization in materials. From the viewpoint of light-matter interaction, this nonlinear polarization
involves multiphoton processes in which new photons with shorter wavelengths are generated. Because the signal yield
depends nonlinearly on the intensity of light excitation, detectable nonlinear optical signals can only be generated within
the confocal range around the focus. This feature of nonlinear optical signals defines a sectioning plane of images. Therefore,
without using confocal pinholes, these modalities have intrinsic capability of sectioning microscopy in vivo. Besides, the
effective PSF will be improved by 1/

p
N, where N is the order of nonlinearity [91].

The SHG is an energy-conserved coherent generation of photons with doubled light frequency. The generation of nonlin-
ear polarization does not require real electronic states. Therefore, NIR femtosecond lasers can generate SHG without any lim-
itation on the excitation wavelength. Nonlinear polarization occurs in materials with non-central symmetry. Typically,
homogeneous tissues or cells would not generate SHG signals. These signals can be generated by structured proteins such
as collagens and muscles [92–96], spindle fibers [92–95], micro-tubulins [92–95], fibrous astroglial filaments around axons
[97–99] and zona pellucida of mammalian oocytes [100]. The strong SHG of collagen has been used in optical virtual skin
biopsy [101,102], in the context of dermatitis [103], aging [104], and tumor diagnosis [105]. Since most nanoparticles have
a non-central symmetric crystal structure, they more or less carry permanent dipoles that can assist in the generation of
SHG. Even for central symmetric metal nanoparticles, quadrupolar SHG can still be generated at the surface where symmetry
breaks [106]. As the surface-to-volume ratio increases, non-symmetric shapes may also induce dipolar SHG [107]. Exploiting
the SPR effects or resonance enhancement effects, weak SHG in nanoparticles can further be enhanced [40]. These SHG
nanoprobes can be used as non-bleachable and non-blinking contrast agents for long-term cell tracking [108,109].

The frequency tripled THG process does not have symmetry restrictions. However, owing to the Gouy phase shift of
focused Gaussian beams, the generation of THG before focusing will be cancelled by the one that is generated after focusing.
This implies that homogeneous samples cannot generate THG. THG generation only occurs at interfaces between media with
significantly different refractive indices [110] or on nanoparticles with sizes much smaller than the focal volume [74,75].
Similar to the differential interference contrast microscopy, the THG contrast can yield the in vivo morphology with a 3D
submicron resolution. This contrast has been used for imaging cellular membranes, lipids [111,112], elastic fibers [113],
hemoglobin [114], melanin [105], and granules in leukocytes [115,116]. To obtain strong THG signals in the visible wave-
length (390–700 nm), where the microscope is designed to have high transmission, the excitation source must be an NIR
laser with the wavelength longer than 1170 nm [117]. This will require special gain media and design of laser sources.
For nanoparticles, the THG intensity will be proportional to their volumes [118,119]. Higher refractive index contrasts, such
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as Si nanowires [120], would result in a larger THG yield. Similar to SHG, the yield of THG can also be enhanced by SPR effects
[40,74–76].

Different from harmonic generation microscopy, Raman scattering-based CARS and SRS microscopy achieve contrast
throughmolecular vibrations and thus, have more molecular specificity. In CARS microscopy, two photons from a picosecond
pump (�850 nm) and one from the Stokes field (1.12–1.17 lm) in the infrared range can coherently generate the anti-Stokes
field in the red region (650–700 nm) [121,122]. This three-photon process involves a third-order nonlinear optical effect. To
remove the non-resonant background associated with four-wave mixing and to improve the spectral resolution, SRS micro-
scopy was developed [123]. Originally, only the C-H stretching mode and water were considered to exhibit sufficiently
strong CARS or SRS responses for quick imaging frame rates. At present, video-rate SRS microscopy has been realized by
improving the collection efficiency [124]. The commonly employed vibration modes of nanoparticles in CARS or SRS micro-
scopy are the C-H stretching modes of polystyrene beads [121,122]. Other vibrational modes and corresponding contrast
agents include the G mode vibration of carbon-nanotubes [125] and the C-C sp3 vibration of nanodiamonds [126]. These
CARS contrasts of nanoparticles allow label-free long-term cell tracking for in vitro or in vivo studies [127].

Among all nonlinear optical contrasts, multiphoton fluorescence is based on intra-molecular electronic transitions and
has the best molecular specificity. The CARS or SRS contrasts may yield information on molecular vibrations, but many vibra-
tion modes are commonly shared by different proteins or lipids. The theory of two photon fluorescence (TPF) was first pro-
posed by Maria Göppert-Mayer in 1931. After the invention of femtosecond lasers, the laser scanned TPF microscopy was
realized by Webb’s group in 1990 [128]. In the TPF process, the electrons can be excited with photon energy slightly above
half of the bandgap. Visible fluorescence can thus be instantaneously generated with infrared light sources. Just like SHG and
THG microscopies, the TPF microscopy has depth discrimination owing to the nonlinear dependence of yields on the exci-
tation intensity. Compared with single-photon fluorescence microscopy, this fluorescence excitation scheme has the benefit
of reduced out-of-focus photo-bleaching on dyes, deep tissue NIR excitation, resolution improvement through nonlinear
optical processes, and selective excitation of the dyes of interest. With the invention of genetic labeling with fluorescence
proteins, TPF microscopy has become widely used in longitudinal studies in molecular cell biology in vivo [129]. The TPF effi-
ciency of molecules or nanomaterials is evaluated by the two-photon action cross-section, which is the product of fluores-
cent quantum yield uF and the absolute two photon absorption cross-section r2p (GM). The TPF action cross-sections of
endogenous fluorophores such as NADH are fairly low (<10�4 GM) [129]. Most commonly used dyes and fluorescence pro-
teins have 1–300 GM action cross-sections [129]. Using CdSe-ZnS quantum dots, this action cross-section can be increased to
50,000 GM [129], which allows a lower excitation dosage of light or greater imaging depth.

3. Choice of light source and wavelength for NIR deep tissue theranostics

Considering in vivo deep tissue imaging, visible light excitation has poor PSF performance owing to severe Rayleigh and
Mie scattering from pigments and randomly oriented collagen networks. The absorption of melanin and hemoglobin (Hb) by
the vasculature can further attenuate the contrasts in the 400–800 nm range of wavelengths, and strong excitation may
induce photo-thermal damage. Two-photon excitation at wavelengths around or below 800 nm can also excite endogenous
photosensitizers, such as porphyrins, and can generate reactive oxygen species (ROS) [130]. On the other hand, for wave-
lengths longer than 1300 nm, water absorption becomes the major limiting factor. High illumination intensity for deep-
tissue imaging also induces photo-thermal damage. Therefore, for most biological tissues, the penetration window for optical
imaging is 800–1300 nm (Fig. 4A) [131,132]. The range of 1000–1300 nmwould yield a better performance of imaging depth
and less photo-damage associated with measurements. For tissues with weaker presence of pigments and collagen (e.g.,
brains), wavelengths in the 1600–1850 nm range can also be considered [133].

Considering the 1000–1300 nm penetration window of biological tissues, lanthanide ion doped up-conversion nanoma-
terials have become popular for use in NIR deep-tissue theranostics. The optical properties of lanthanide ions have been
known for many years, and lanthanide doped crystals, glasses, and fibers have been used as optically active materials for
compact solid state laser crystals [134–136], fiber lasers [137], TV/lamp phosphors [138], and IR quantum cutters [139].
The interest in lanthanide up-conversion has resulted in new discoveries, i.e., many up-conversion mechanisms have been
discovered in lanthanide ions, such as ESA, co-operative energy transfer (CET), PA, or most ETU [140]. These discoveries
opened up a new field for applications in volumetric displays [141], remote temperature fiber sensors [142], and up-
conversion lasers [143]. Recently, owing to chemical engineering of active-core-active-shell nanoparticles, novel routes of
ETU have been designed such as energy migration mediated energy up-conversion [144–146], which are of special impor-
tance for biomedical applications.

There are three types of transitions in lanthanides (Fig. 4B), which are of some importance for biomedical applications:

(i) Stokes visible emission under ultraviolet (UV) excitation (typically <400 nm excitation for Eu3+ (�630 nm), Tb3+

(540 nm), Sm3+ (650 nm), and Dy3+ (570 nm) complexes). The complexes of Eu3+ and Tb3+ ions have been often used
in bioassays or for bio-imaging, but require short-wavelength excitation. The spectral overlap of excitation bands or
emission bands of these compounds with respective absorption or emission of endogenous chromophores decreases
the sensitivity of bioassays or decreases the contrast of in vivo imaging. However, owing to the very long luminescence
lifetimes of Tb3+ and Eu3+ (millisecond scale), time-gated techniques are efficient in removing background signals as
well as for studying biochemical processes using the FRET technique [147].



Fig. 4. (A) Absorption (la) and reduced scattering (ls0) coefficients of major tissue components and representative tissues, Fluorescence spectra of major
tissue components [NADH, DNA, elastin, collagen, flavin adenine dinucleotide (FAD)] combined with representative fluorescence spectra of commercial
quantum dots and organic fluorophores, and reduced scattering coefficient of skin, brain and breast tissues (B), (stokes and anti-Stokes) luminescence
spectra of lanthanide doped nanoparticles (C), sensitivity of available photo-detectors (D) and available discreet (horizontal red lines) and tunable (vertical
lines indicate tuning range) state-of-the-art lasers. R5983, R928, and R3896 are part numbers of the Hamamatsu photomultiplier tubes.
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(ii) Stokes emission in NIR (k > 1 lm). Most lanthanides demonstrate Stokes emission with obviously higher quantum
efficiency than the up-conversion processes. Some of these ions can generate emission in the NIR I or NIR II optical
windows. The most prominent rare-earth ions for in vivo NIR imaging are Nd3+ (emission at 860 nm, 1060 nm, and
1330 nm), Er3+ (emission at 1530 nm) or Ho3+ (emission at 1450 nm) [148]. Most of the existing studies concentrated
on LaF3 [149,150], NdF3 [151], and Y2O3:Yb/Er [152], but the most promising material is NaYF4, e.g., NaGdF4:Nd3+@
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NaGdF4 and NaYF4:Yb/Er/Ho/Tm/Pr@NaYF4 core-shell down-converting nanoparticles [153,154]. Unlike LaF3, fluorides
of the NaYF4 type are synthesized in a more predictable manner, i.e., the synthesis protocols, mono-distribution of
size, bio-functionalization protocols, and ability to make core-shell designs are much better controlled and
reproducible.

(iii) Anti-Stokes (up-conversion) emission under NIR photoexcitation – typically 980 nm excitation for Yb3+ sensitizers
or 808 nm photoexcitation for Nd3+ sensitizers is used to achieve visible and multicolor emission from activators such
as Tm3+, Er3+, Ho3+, and Tb3+. No organic chromophores absorb at 980 nm (absorption of Yb sensitizers) or 800 nm
(absorption of Nd3+ sensitizers); thus, the signal to noise ratio is usually very high. Only water molecules exhibit an
absorption band at �980 nm, which under high photoexcitation densities may induce local overheating. These effects
can be however diminished by using Nd3+ primary sensitizers, whose absorption cross-section at 800 nm is �5 times
higher than that of Yb3+ at 980 nm; in contrast, the absorption coefficient of water at 800 nm is �20 times lower than
that at 980 nm [145]. Recently, new possibilities have been discovered by nano-engineering the host materials and by
developing core-multi-shell formations with independent doping of individual shells. These advances have opened
new possibilities in terms of increased light penetration depth, limited local overheating, and multicolor emission
capability [155].

However, most fluorescence dyes may not be single-photon excited at these wavelengths (Fig. 4B). They need to be two-
photon or three-photon [133] excited. Consequently, to realize deep-tissue molecular imaging, it is necessary to have ultra-
fast NIR excitation sources and nanomaterials suitable for generating contrast in the NIR range. Commonly used femtosec-
ond/picosecond Ti:sapphire lasers have bandwidths of 10 nm/1 nm at 800 nm and transform-limited pulse-widths of
94 fs/0.9 ps. Their operation wavelength is tunable in the NIR range (700–1000 nm) for the two-photon excitation of most
blue, green, and yellow fluorescence or phosphorescence dyes. The advantages of two-photon excitation in the NIR range
is reduced out-of-focus photo-degradation of fluorescent dyes during 3D-sectioned imaging. They also serve as pump waves
in CARS and SRS microscopy. Their application to different optical contrasts has been widely reported elsewhere. To excite
red fluorescence or realize deeper imaging depths, 1000–1300 nm ultrafast light sources would be highly desired. Some
researchers use Ti:sapphire lasers to pump an optical parametric oscillator (OPO) to obtain a tunable 1050–1300 nm fem-
tosecond source. Nevertheless, such a setup is usually expensive and the maintenance of this system is complex and time
consuming. In this section, we will review new advances in the 1000–1300 nm NIR laser sources for in vivo deep tissue
imaging.

3.1. Nd:YAG and Nd:YVO4 lasers

The neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is a four-level laser system operating at �1064 nm
using Nd3+ ions as gain centers. The upper state fluorescence lifetime is long (�230 ls) [156], so that a significant population
inversion can be maintained with a relatively low pump power. Therefore, it is usually operated as a Q-switched laser gen-
erating nanosecond pulses with a pulse energy on the order of tens of millijoules. Such a high pulse energy has been
employed for deep tissue NIR photoacoustic imaging [157]. With the help of OPO, the wavelength of a Nd:YAG laser can
be tuned to 1210 nm and 1700 nm for CH2 and CH3 bond-selective photoacoustic imaging, respectively [158]. With Nd3+ ions
doped into yttrium vanadate (YVO4), the gain bandwidth increases to 1 nm, which allows the generation of 2-ps-long laser
pulses [159]. Laser sources of this type can be used for generating Stokes waves in CARS microscopy. The 532 nm SHG output
of this laser can synchronously pump another OPO to generate tunable pump waves [160]. For CARS microscopy applica-
tions, picosecond lasers should have sufficiently strong nonlinearity for generating anti-Stokes signals. Femtosecond lasers
will increase the non-resonant background of four-wave mixing and reduce the CARS contrast.

3.2. Cr:forsterite lasers

Pumped by 1064 nm Nd:YVO4 or Yb:fiber lasers, the ultrafast Cr:forsterite laser can produce 1250 nm femtosecond-
duration pulses for minimally invasive SHG, THG, and TPF microscopy [92–95]. Compared with Ti:sapphire lasers, the oper-
ation wavelength is far from the two-photon excitation wavelengths of most endogenous pigments such as NADH or flavins
[161], which significantly reduces the on-focus damage and unwanted auto-fluorescence. This explains why Cr:forsterite
lasers can increase the excitation intensity for generating THG without incurring tissue damage. Owing to these least
invasive properties and highest penetration depth of wavelengths, Cr:forsterite lasers have been widely used in pre-
clinical [92–95,105] and clinical studies [104,111,112,116,162–164] in vivo. Liu and co-workers employed this laser to
develop a harmonic generation microscopy for the virtual optical biopsy of tumor microenvironments and tissue inflamma-
tion. The authors tracked collagen remodeling in melanoma microenvironment and extracted quantitative features for diag-
nostics [105].

3.3. Yb:fiber lasers

With a fiber amplifier, the ytterbium-doped fiber laser can produce 1030 nm pulses with a 300-fs pulse width and 40-nJ
pulse energy. Using fiber-based OPO, this light source can be used to perform TPF and CARS multimodal microscopy [165]. If
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the operating pulse energy of the Yb:fiber laser is reduced to the 1 nJ energy level (e.g., using dispersion compensation
instruments), the pulse width can be optimized to 30 fs and the laser can be used for TPF, SHG, and THG microscopy [166].

3.4. Soliton-self-frequency shifted Er:fiber lasers

Tunable ultrafast lasers such as Ti:sapphire can only operate around a single wavelength. For multiple label imaging,
researchers typically tune the wavelength for each label or choose a compromise wavelength that can excite them all. This
arrangement induces bleed-through problems and reduces the contrast of fluorescence microscopy. Besides, for fast biolog-
ical events such as neuronal action potentials or cellular circulation, multiple wavelength NIR femtosecond sources are
required. To resolve this problem, we used a 400-nJ-energy, 1550-nm-wavelength Er:fiber laser to excite a large mode-
area photonic crystal fiber and generate multiple solutions at 1900 nm and 1728 nm through a soliton-self-frequency-
shift (SSFS) mechanism. After SHG, we obtained 775 nm, 864 nm, and 950 nm femtosecond sources for multiple labeling
TPF imaging [167]. Using this SSFS mechanism, by choosing larger photonic crystal rods, the 1550 nm source can be effi-
ciently red-shifted to generate intense 1700 nm light sources and thus realize deep-brain three photon fluorescence micro-
scopy [133].

3.5. Laser diodes

Fig. 4D shows that many semiconductor-based materials can be used as light sources. Although the tunable range spans
630–900 nm (GaInAlP and GaAlAs), 710–850 nm (AlGaAs/GaAs), 900–1000 nm (InGaAs/GaAs), and 1000–1650 nm (InGaAsP/
InP), laser diodes, which are commercially available and sufficiently powerful (P � 1 W) for biomedical theranostics appli-
cations, are limited to several discrete wavelengths that fall in the optical windows of the skin [131,132]. Most frequently,
laser diodes operate in the 635–670 nm, 780–830 nm, 905–915 nm, 920–980 nm, 1064 nm, 1260 nm, and 1550 nm wave-
lengths, with an optical power above 1 W. Other wavelengths are not easily available, with a power of �100 mW.
4. Smart NIR linear and nonlinear optical nanomaterials

4.1. NIR linear optical nanoparticles

Using linear optical materials, fluorescent molecules in the visible range (�400–650 nm), such as fluorescein dyes,
rhodamine-related dyes and others [168] have been widely used in bio-sensing, immunoassays, Western blot detection
and high-throughput devices., but have been less utilized for in vivo measurements. However, indocyanine green (ICG)-
encapsulating polymers (e.g., polylactic-co-glycolic acid [169] and poly(allylamine hydrochloride) [170]), -micelle
[171,172], -lipid [173], -human serum albumin [174], -mesoporous silica [175,176], -silica/Au [177], silica-poly(e-caprolac
tone) [178] and -gold nanomaterial [179] composites are available for NIR brightened and robust bio-imaging detection
and for photo-thermal energy conversion. The stability of ICG dyes can be improved by embedding them into polymers
and inorganic nano-capsules. Another example is the IR-820 dye encapsulated in 1,2-Distearoyl-sn-glycero-3-
phosphoethanolamine (DSPE)-mPEG500 polymer nanoparticles through a hydrophobic-hydrophilic self-assembly interac-
tion method developed by Chu et al. [180]. These copolymer nanoparticles are much brighter than the aggregates of IR-
820 powder (aggregation-caused quenching). By using a red excitation light near the NIR-I window, blood vessels at the
depth of 500 lm could be visualized to obtain 3D reconstructed images of both the vasculature and brain signaling
in vivo. A new bis(propylthio)tetrathiafulvenyl[i]dipyrido-[3,2-a:20,3-c]phenazine (TTF-dppz) compound with kabs = 750 nm
and kem = 975, 986, 1009, and 1020 nm was developed by Lapadula et al. [181]. After conjugating the Yb(III) molecular com-
plex to the surface of silica nanoparticles (�100 nm), this silica-based fluorophore absorbed and emitted in the NIR region
(kabs = 750 nm, kem = 983 and 1050 nm).

Notably, fluorescent organic nanoparticles that consist of conjugated polymer dots [182,183], conjugated polyelectrolyte
dots [184–186], conjugated carbon nanodots [187], or polymer-encapsulated dye molecules [188–190] have attracted con-
siderable attention for bio-imaging applications, owing to their relatively high fluorescence emission quantum efficiency,
photo-stability, and low cytotoxicity. However, only a few reports have successfully demonstrated the emission of organic
nanodots that emit fluorescence in the NIR wavelength regions [191], which has limited their practical applications for bio-
imaging of deep tissue. The excitation and emission peaks within the far-red/NIR wavelengths are highly desirable and
match the tissue-transparency window for targeted in vivo fluorescence imaging and cancer diagnostics. Bioluminescence
does not require optical excitation [192], but its spatial resolution is poor owing to tissue scattering. Another strategy is
to employ the NIR absorption of conductive polymers in organic electronics and organic solar cells [193,194], such as poly-
pyrrole [195] or poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS). They provide strong photoa-
coustic contrast, achieve effective photo-thermal ablation [196], and have organic stealth for long-term circulation.

In addition to the aforementioned organic nanoparticles, yielding linear response functions in the NIR region, carbon nan-
otubes bear the promise for improving the efficacy of photo-thermal cancer therapy and the positional accuracy of treatment
under the guidance of optical imaging, owing to the unique electronic states assisting electronic transitions in the UV–
visible-NIR regions. The fluorescent contrast of dye label-free carbon nanotubes can be excited at 395 nm [197], 488 nm
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[198], and 660 nm [199]/808 nm [200], yielding emission bands at 485 nm, 530 nm, and 900–1400 nm, respectively. There-
fore, researchers have validated that laser light at 785–1100 nm can damage cancer cells after cellular uptake of single-
walled carbon nanotubes (SWNTs) [201–203]. However, two major drawbacks associated with the use of SWNTs are related
to their effects on the human body [204]. One issue is the toxicity of SWNTs with respect to cells and organs, which remains
controversial [205,206]. Another limitation is the water dispersion of SWNTs in physiological environments.

4.2. NIR nonlinear optical nanoparticles

In most cases, inorganic solid samples can promote THG owing to a large difference between the refractive indices of par-
ticles and media (e.g., air and liquid) [207–209]. Metal oxides are characterized by high refractive indices, compared with
both water and physiologically relevant media (n = 1.33). In addition to the intrinsic refractive index difference, the third-
order nonlinear optical properties of sol-gel-derived V2O5, Nb2O5, and Ta2O5 thin films are primarily dominated by the
lengths of metal–oxygen bonds. In fact, Tadanori et al. reported that transition metal oxides with the smallest lb exhibit
the highest third-order nonlinear susceptibility v(3). Conversely, non-transition metal oxides yield high v(3) as a result of
a large lb [208]. In THG microscopy coupled with nanoparticles, the THG signal under intense illumination converts three
photons into one photon with a wavelength equal to one-third of the incident wavelength, and decreases the background
owing to the cell auto-fluorescence.

Non-centrosymmetric metal oxides with harmonic generation properties have been extensively investigated [210]. ZnO
is an n-type semiconductor that has a band gap of �3.37 eV. The linear and nonlinear PL behaviors of ZnO nanoparticles are
related to the intrinsic direct band gap and oxygen-related defects associated with the surface trapping states [211,212].
Owing to its anisotropic crystal structure, ZnO has been used for frequency conversion in SHG microscopy with an amplified
Ti:sapphire laser at 800 nm (80 fs, 2.0 W, and 1 kHz) [207]. The enhancement of SHG signals is affected by the lattice atomic
structure [213] and polar orientation [214].

Various multiphoton nonlinear optical processes have been studied in Cd-based QDs [119,215]. However, relatively little
attention has been paid to the generated multiphoton fluorescence signals of graphitic carbon nanodots [216]. Eu-doped
TiO2 hollow nanoshells provide a new concept for two-photon fluorescence microscopy imaging of HeLa cervical cancer cells
using a Ti:sapphire laser at 705 nm (3 W and 120 fs) [217]. The energy relaxation from the two-photon excitation of TiO2 to
Eu3+ ions contributes to the red emission at 617 nm. In contrast, depositing Eu ions in the shells of KTiOPO4 single-crystal
nanoparticles yields a dual light-emission property. The emission bands of as-obtained core-shell nanoparticles can be easily
tuned to generate SHG from the KTiOPO4 core (femtosecond laser kex: 990 nm, pulse duration of 100 fs, repetition rate of
86 MHz, average power of 1 mW) and red photo luminescence (PL) from the shell [continuous wave (CW) laser kex:532 nm,
10 mW] [218].

Two-photon fluorescent probes comprised of a two-photon fluorophore 4-(bis(4-(4-(diphenylamino)styryl)-phenyl)ami
no) benzaldehyde [219], phenyl thiourea linker, and amino triphenylamine dendron chelated, exhibited efficient TPF detec-
tion of Hg2+ in a wide dynamic range of concentrations (5 nM to 1.0 lM) [220]. Organometallic compounds (e.g., cyclomet-
alated platinum (II) complexes) can be used for two-photon emission live-cell imaging [221,222]. Besides, Pt-based
molecules have been also established as anticancer drugs that work by intercalating DNA [223–225].

Regarding organic dyes, molecules such as 1,1,2,3,4,5-hexaphenylsilole (HPS) and bis(4-(N-(1-naphthyl)phenylamino)-
phenyl)fumaronitrile (NPAFN) can be loaded into polymeric micelles to form nanocarriers. These nanoconjugates exhibit
good protection of the hydrophobic dye and provide high fluorescence intensity for imaging live cells with a low toxic impact
[226]. The aggregation of aromatic dyes via the p-p interaction aids in the generation of a strong fluorescent intensity.

Ultra-bright organic dots, consisting of 4,7-bis[4-(1,2,2-triphenylvinyl)phenyl]benzo-2,1,3-thiadiazole (BTPEBT) aggre-
gates, exhibit an aggregation-induced evolution of TPF [227] (Fig. 5). By using a femtosecond Ti:sapphire laser with
kex = 800 nm, the aggregation-induced emission of BTPEBT can be applied to observe smaller capillaries in 3D imaging of
the brain, bone marrow, and ear skin.

Similar aggregation-induced two-photon emission was also observed in nanoparticles using 9,10-bis[40-(40 0-aminostyryl)
styryl]anthracene (BDSA) derivative [228,229], pyran derivative, distyrylanthracene derivative [230], perylene-3,4:9,10-tetra
carboxylic bisimide [231], and 2-(2,6-bis[(E)-4-(diphenylamino)styryl]-4H-pyran-4-ylidene)malononitrile [232]. These
organic dyes in silica composite produced nano-sized hybrids and allowed for cancer cell imaging combined with the indi-
rect excitation of a photosensitizer through two-photon excited energy transfer. Coating this NIR organic moiety on nano-
materials can improve the performance of multiphoton nonlinear optical processes. For example, the surface of Au nanorods
coated with NIR polypyrrole (PPY) allows the flux of hot electrons to PPY to perform intracellular TPF imaging. This nonlinear
process can be combined with two-photon excited photo-thermal therapy for treating HeLa cells using an 880-nm-
wavelength laser with the fluence of 0.86 J/cm2 [233].

4.3. Multiphoton up-conversion of lanthanide nanoparticles

Another strong advantage of lanthanide nanoparticles is the nearly perfect photo-stability of lanthanide-doped bio-labels.
Neither photo-blinking nor photo-bleaching has been observed in these materials, which implies these can be used for long-
term observations, such as studying time-dependent processes or studying the ability to trace such bio-functionalized labels
circulating within living organisms.



Fig. 5. (A) Schematic of aggregation-induced emission (AIE) dot fabrication. (B) TEM image of AIE dots. (C) UV–visible absorption and PL spectra of AIE dot
suspension in water; kex = 425 nm. (D) Two-photon absorption spectra of AIE dots and QD655 in water and Evans Blue in saline with 0.175 mg/mL bovine
serum albumin (BSA). Data are presented as mean ± standard deviation (SD), (n = 3). (E and F) Wide-field (40 lm � 40 lm) luminescence images of single
AIE dots (E) and QD655 (F). (G) Representative luminescence intensity time-traces for AIE dots and QD655. kex = 488 nm for (E, F, and G). (B) Intra-vital TPF
imaging of AIE-dot-stained blood vessels in different organs. (A–C) A time-lapse image sequence of maximum intensity projection showing blood vessels in
the brain taken at 0 (A), 15 (B), and 30 (C) min post-injection of the AIE dots. (D–I) Images at various vertical depths of the brain. (J, K, P) 3D reconstructed
images showing blood vessels in the brain, bone marrow, and mouse ear skin. (L–O, Q–T) Images at various vertical depths of the bone marrow and ear skin.
Blue: second harmonic generation; collagen in dermis. Scale bar: 50 lm. kex = 800 nm. Signal collected at 542 ± 27 nm. Reproduced with permission [227].
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However, numerous additional features of these materials suggest interesting possibilities. First of all, lanthanide ions
exhibit narrow- and multi-band absorption and emission. As a consequence, they exhibit large Stokes shifts, which helps
to separate lanthanide emission from amuch stronger excitation laser line. In addition, the narrowband and multiband emis-
sion makes multiplexing feasible, because numerous spectral codes may be designed for labeling multiple biological targets
in the same samples, for example for marking a range of organelles in a single cell to unravel complex morphology, for simul-
taneously studying a few biological processes with, for example, a luminescence resonant energy transfer (LRET) technique,
or for enhancing high-throughput screening performance to detect multiple rare cells or disease markers in human samples.
The emission lines from Er, Tm, Ho, Sm, Tb, and Eu overlap partially, but spectral decomposition allows one to distinguish
between the different spectral codes (Fig. 6). Although the locations of absorption/emission bands do not vary in terms of the
wavelength, as can be found in quantum dots or organic dyes (only a relatively small variation in the spectral location and
subtle structure of bands is observed across different host matrices), the color variation of Ln3+-doped labels has been real-
ized by engineering energy transfer pathways either passively (by varying the size [234,235], shape, composition, morphol-
ogy [236,237], host matrix [238,239], surface ligands [240]; by admixing optically inactive ions such as K+, Li+ [241], Fe3+

[242]; or by substituting Gd3+ for Y3+ in NaYF4 [243]) or actively (by varying the relative concentration of Ln3+ dopants
[244–246], adding spectrally active ions such as Mn2+ [247,248] or Ce3+ [249,250]). Hierarchical layer-by-layer nano-
structuring has been also demonstrated to yield a simple cascade multicolor emission [251]. Alternatively, more flexibility
in designing optical codes can be achieved either by homogenous mixing of lanthanide complexes inside bar-codes (by mix-
ing defined different color UCNPs within single SiO2 or polyethylene glycol (PEG) beads [252]) or by doping lanthanides inde-
pendently into cores and shells in active-core-active-shell nanoparticles [88]). Interestingly, owing to the relatively long
luminescence lifetimes of lanthanides, the ability to intentionally design optical codes in the time domain has been previ-
ously predicted [253] and demonstrated [254,255].

The features of lanthanides become even more interesting when it comes to biosensing, and owing to multiple up-
conversion emission spectra spanning the visible and NIR spectral regions, ratiometric biodetection becomes possible at
increased depths; one of the emission bands serves as a reference, while the other is modulated proportionally to the con-
centration of the analytes. For example, LRET biosensors have been demonstrated, such as DNA hybridization or enzyme
activity biosensors. In addition, pH- or [Hg]-sensitive probes were designed based on such ratiometric detection. This tech-
nique relies on the donor’s emission quenching (DQ), non-radiative LRET, or inner filter effect (IFE), where only one of many
Ln3+ up-converted emission bands (e.g., the one at 470 nm of Tm3+ emission) overlaps with the absorption of an acceptor
(DQ, LRET) or sensitive chromophores (IFE), while the other emission bands (at 650 nm or 800 nm of Tm3+ emission) remain
unaffected. Since the chromophores used in such bio-sensors are capable of enabling biological recognition (DQ, LRET) or
responding to changes in the local chemical environment (e.g., changes in ionic concentrations) by changing the absorption
Fig. 6. Multicolor emission of (a) NaGdF4:Yb,0.5%Tm, x Er@NaGdF4:Yb@NaNdF4:Yb, (b) NaGdF4:Yb,0.5%Tm, xEr@NaGdF4:Yb,15% Eu@NaNdF4:Yb and (c)
NaGdF4:Yb,0.5%Tm@NaGdF4:Yb, xEu@NaNdF4:Yb colloidal solution of up-converting active-core-active-shell lanthanide doped nanoparticles [88]. (d and
e) show illustrations of up-conversion and the corresponding Commission Internationale de l’Eclairage (CIE) coordinates, obtained for colloidal solutions of
active-core-active-shell UCNPs. Reproduced with permission [88].
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spectra (IFE), only one emission band is modulated, while the other serves as a reference for quantitative measurements.
Examples of such ratiometric biosensors include pH [256], carbon dioxide [257], ammonia [258], mercury [259], glucose
[260], cyanide anions [261], hydroxyl radicals [262], and oxygen [263] sensing. A similar idea was employed by Kang
et al. to study the release characteristics of the ibuprofen drug. The up-conversion emission quantum yield was proportional
to the amount of released ibuprofen [264], generating a platform for drug delivery and drug release monitoring.

The most severe drawback of Ln nanoparticles is a relatively low quantum efficiency owing to their low absorption and
emission cross-sections, which result from a forbidden f-f optical transition. The efficiency, althoughmuch lower than that of
organic dyes or quantum dots, is not prohibitive for bio-applications, and ultrasensitive immunoassays and detection of a
few cancer cells have been successfully demonstrated. This low efficiency is also the outcome of a large surface to volume
ratio of nanomaterials. A substantial number of doping ions are located close to the NC surface and their excited states are
thus susceptible to chemical microenvironment, nanocrystal defects, ligands and solvents, which have been recognized as
quenching mechanisms. However, these side effects may be relatively easily reduced using core-shell lanthanide-doped
nanoparticle architectures. It has been shown, that �4-nm-thick passive (un-doped) shells are suitable for complete surface
passivation and for reducing the susceptibility to the nanoparticles’ surface chemistry or to solvents [265]. A number of
methods have been sought for improving the up-conversion emission intensity in nanoparticles. Basically, (i) surface passi-
vation [266], (ii) passive (K+, Li+)/active ion (Nd3+, Mn2+) co-doping [247,248,267,268], (iii) plasmonics [269], (iv) increasing
the concentration of the sensitizer (Yb3+) [270], (v) host selection [271], and recent smart active-core-active-shell nanopar-
ticle designs [272–274] are used to achieve this goal, with different outcomes. The photo-physical properties of lanthanide-
doped nanomaterials have been extensively reviewed [275–278]. In addition, the biomedical properties and applications
have been discussed in a growing number of excellent review articles [90,275,279–288].

Owing to the numerous photo-physical advantages of UCNPs that were briefly reviewed above, lanthanide-doped
nanoparticles have been used in (i) passive, (ii) modulating, and (iii) active biomedical applications (Fig. 7) [288]. Passive
applications include the use of the nanoparticles as contrast agents in fluorescence microscopy, MRI (owing to the accumu-
lation of Gd3+ ions, e.g., NaGdF4 matrix [289–292]), X-ray imaging, or PET imaging (owing to the F18 isotopes attached to the
nanoparticles’ surface [293,294]). Often, these imaging modalities can be combined in pairs [292,295–298] or triplets [299].
Recently, hexamodal imaging has been demonstrated with PoP-coated UCNPs, which combined CT, PET, up-conversion,
Cherenkov luminescence, photoacoustics, and FL [20]. The fluorescence contrasts of UCNP labels were so sensitive that as
few as 10 stem cells could be detected in vivo [300] for at least one week after delivery [301].

Active applications include methods in which UCNPs affect biological tissue; examples include the possibility of hyper-
thermia (local overheating of cancerous tissue) with UCNPS directly [302,303] or with UCNPs bound to Au/Fe2O3 nanopar-
ticles [304–306], (chemo-, geno-) therapeutic drug delivery [307], or up-converted photodynamic therapy [308–313]. UCNPs
Fig. 7. State-of-the-art biomedical applications of lanthanide-doped (up-converting) nanoparticles. Active, passive, and modulation applications of UCNPs,
which respectively relate to the direct impact of UCNPs on surrounding tissue (through temperature or PDT activation), lantern type contrast agents (PET,
MRI, fluorescence), and modulation of spectral properties of UCNPs by either environment (e.g., CO2, pH; (a)) responsive bio-molecules (hybrid sensors),
FRET-based (quenching (b), nucleic acids hybridization (c), enzymatic (d)) sensors, or analytes (direct analyte sensors, e.g., temperature (g), drug (e), H2O2

(f)) [288].
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are not very efficient in causing hyperthermia owing to a relatively weak absorption of light by lanthanides and thus, a rel-
atively low heating efficiency. UCNPs are also not very well suited as drug delivery agents, because a crystal (and thus solid
and firm) matrix is necessary to host lanthanides for making them luminescent. For this reason, there is no way to introduce
external compounds into a system containing UCNPs. UCNPs can, however, be covered with mesoporous SiO2 or polymeric
shells, which may carry and release drugs. Prolonged and controlled release of drugs may be of high importance. LaF3:Yb3+,
Er3+/nSiO2/mSiO2 microspheres [314] and NaYF4:Yb3+,Er3+/nSiO2/mSiO2 [264] microspheres were demonstrated to sustain
and control the release of ibuprofen that was loaded into mesoporous shells of UCNPs.

The most spectacular and promising example of using UCNPs in theranostics is NIR-initiated photodynamic therapy, also
termed up-conversion photodynamic therapy. Such hybrid up-conversion-PDT nanoparticles include UCNPs as luminescent
bio-probes in the core, and simultaneously photosensitizing molecules (e.g., chlorin e6) are either covalently attached to the
surface of nanoparticles or embedded in mesoporous SiO2/PEG shells. In most of these applications, UCNPs act as light trans-
ducers, converting light from NIR to visible or NIR spectral region, which basically increases the penetration depth of the
excitation light and thus enables photo-biosensing [315,316] and phototherapy [305,317–319] of heterogeneous tissues.
Moreover, UCNPs are well suited for theranostic applications [320,321], because it is relatively easy to combine several func-
tional features within individual nanoparticles.
5. Application fields of NIR nanomaterials in cancer theranostics

Conventional cancer treatment modalities, such as surgery, radiation therapy, and chemotherapy, all result in serious side
effects and in many cases (especially for rapidly developing cancers or tumors within delicate tissues in the head and neck),
do not achieve complete removal of the cancer cells. For this reason, a single underlying biological process that could allow
for selective targeting and destruction of diseased cells while preserving their healthy functional neighbors is highly desir-
able. However, the problem of successful cancer treatment originates from the complex nature of cancer development. Can-
cer cells originate from the host, exhibit un-regulated proliferation, and are often found to migrate [322]. Moreover,
individual tumors display heterogeneous properties in terms of structure, biochemical behavior, nature of the surrounding
microenvironment, and susceptibility to their biochemical environment and susceptibility to treatments. Despite the con-
ceptually interesting idea of using antibodies to target drugs to cancerous tissues and cells [323–326], very few significant
successful attempts have been made to date. This is largely for the following reasons [327]:

(1) Difficulties in achieving tumor-specific antibodies that also display high affinity.
(2) High biochemical (i.e. antigen) heterogeneity of tumors throughout their mass.
(3) At the organ scale, the antibodies either do not reach the tumor site or do not easily penetrate the tumor, and therefore

remain in the tumor vasculature.
(4) At the cellular scale, the antibodies are generally not designed to penetrate the tumor cells and thus the cytotoxic

agents may not reach the most sensitive intracellular sites (such as the mitochondria).

To investigate and understand these problems in the microenvironment of a specific biomedical context in an in vivo set-
ting, one needs molecular probes with NIR optical contrasts. One also needs to design an appropriate imaging method for NIR
excitation and detection. Once this is achieved, cancer cell distribution, the microscopic pharmacokinetics of nanomedicines,
delivery of therapeutics, cell responses, and cell-cell interactions can be visualized and analyzed. This integration of NIR
nanomaterials (i.e., ICG-encapsulating polymer [169–174], conjugated polymer dots [182–186], luminescent carbon nano-
materials [201–206], biocompatible Ag2S nanoparticles [42,328], aggregated induced emission (AIE) dots and nano-oxides
[211–214,216,217], dyes [219–227], plasmonic nanoparticles [329–338], upconverting lanthanide nanoparticles [234–
240,242–255], and upconverting lanthanide nanocomposites [289–314]) with the NIR imaging system provides a proof-
of-concept platform and visual evidence critical for the success of translational cancer nanomedicines.
5.1. Biosensing assays

Understanding the physical and chemical features of the tumor microenvironment provides an insight for the design of
nanomedicines with better targeting and delivery efficiencies. The physiological parameters of interests include the partial
oxygen pressure pO2, pH value, and glucose level, permeability of the blood vessels and ROS levels. To visualize the condi-
tions and dynamic processes in vivo, conjugated polymer and silicate nanoparticles have been developed as important
molecular probes with NIR optical contrasts. For example, phosphorescence probes that can detect pO2 [31–35] are useful
in understanding the correlation between a hypoxic environment and the angiogenesis process [339,340]. In the material
chemistry of organic light-emitting diodes, transition-metal based phosphors and molecular complexes have been developed
as efficient phosphorescence chemicals [341,342]. Their strong spin-orbital coupling allows for efficient phosphorescence,
which allows them to serve as sensors of pO2 [343]. Among them, metalloporphyrin complexes [339,340,344], Ruthenium
(II) complexes [345] and Iridium(III) complexes [346] have been designed for pO2 sensing and imaging. For deep tissue
pO2 measurement, additional dyes like coumarin-343 have also been incorporated as two-photon antenna to raise the phos-
phorescence quantum yield [347].
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Surface passivation is critical for these phosphorescence probes in order to avoid self-aggregation or adsorption to bio-
macromolecules [33], although this may alter their oxygen sensitivity and result in erroneous measurements. Regarding
the hypoxic condition in the tumor microenvironment, it is well known that this physiological property can change the glu-
cose metabolism of cells from oxidative phosphorylation towards lactic acid fermentation, a less efficient way for cell to
obtain energy currency, namely adenosine triphosphate (ATP). In this case, cells will take up more glucose to produce the
same amount of ATPs and therefore becomemore acidic. This shift in acidity can be quantified using pH-sensitive fluorescent
dyes [348]. Carried by pH-low insertion peptides, pH-sensitive fluorescent peptide probes can specifically measure the pH
value at the cell surface [349]. Using dextran loading, Cong et al. have also developed a pH-activated NIR fluorescent probe
(polylysine-liked rhodamine/IR783/PEG/In3+-DOTA/dextran). These designs show that peptides or dextran could serve as tar-
geting carriers for the sensing of ions around tumor cells [350].

The hypoxic tumor can further induce angiogenesis, producing a vasculature with an abnormal network. The endothelial
surface of the vasculature is often fenestrated with gaps between endothelial cells, due to a decrease in the number or adhe-
siveness of pericytes [351]. These gaps can however enhance the permeation and accumulation of nanomedicines in circu-
lation. To evaluate the particle size that results in maximal accumulation, researchers have commonly used fluorescent
dextrans with molecular weights ranging from 20 to 2000 kDa [352,353]. To achieve deep tissue analysis of vessel perme-
ation, NIR macromolecular dye-tagged dextrans therefore hold great promise.

Many proof-of-concept biosensors have been developed using UCNPs combined with bio-responsive molecules. While
the UCNPs are not susceptible to changes in the chemical or bio-environment, they may be excited at much greater depths
within the tissue mass. Due to multi-band emission and the overlap of lanthanide ion emission with the environment-
sensitive molecules anchored at the surface of the UCNPs, ratio-metric bio-sensing using IFE can be achieved and sensitivity
can be enhanced. Such types of biosensors have been shown to be effective in studying immunochromatographic assay (e.g.
E. coli [354] and human chorionic gonadotropin [355] detection), DNA-hybridization [356,357], enzyme activity [358], pH
value [256], carbon dioxide [257], ammonia [258], mercury [259], glucose [260], cyanide anions [261] or oxygen [263] con-
centrations. These sensors expand the well-known properties of some organic dyes with the ability to read the biosensor
response at NIR photoexcitation wavelengths.

In the context of photodynamic therapy, it is of utmost importance to understand whether ROS are actually released
around tumors. The use of organically modified silicate (ORMOSIL) to load ROS sensitive dyes and a reference dye to perform
ratiometric fluorescence measurements is common [359–362]. The polymer matrices used can inhibit interaction of the dye
with intracellular proteins, protect the dye from degradation, and inhibit undesired sequestration into subcellular compart-
ments. A common strategy is to design systems where the fluorescence quenching mechanism occurs on the surface of
metallic nanoparticles [363,364]. As long as the ROS interact on the surface-coating of ligands on metallic nanoparticles,
the fluorescence will be quenched. Therefore, these types of nanoprobe can be used to sense ROS level in cells with excellent
spatio-temporal resolution.
5.2. NIR imaging methods

Optical imaging relies on the illumination of light waves on a subject, the generation of contrast by molecules within, and
the mapping of responses by an optical system and cameras. Therefore, the best-achievable resolution and imaging depth of
an optical imaging system will be determined by the illumination and collection methods. Depending on the desired depth
and the scattering properties of tissues, the types of optical imaging system can be divided into either diffusive or ballistic.
For large-scale and whole-body imaging, nanomedicines usually reside in tissues at a depth several times the scattering
lengths of light. The signal photons can be scattered multiple times, causing a loss of coherence of the wave-front before they
leave the turbid tissue environment. In this case, the typical resolution of diffused photon imaging will be on the order of a
centimeter. For in vivo microscopy of complicated tumor microenvironments, a ballistic imaging system with sectioning
capability should be adopted. In this case, nanomedicines are illuminated by a focused laser beam and the imaging depth
will be well-within the scattering length of light. For the NIR light source, the ballistic length is 300–500 lm for skin
[131] and 1.5 mm for embryos [365]. The sectioning capability can be achieved using either a confocal imaging method,
laser-scanned nonlinear optical microscopy, or light-sheet illumination. The resolution of a ballistic imaging system is typ-
ically sub-micron, so it can reveal the structural and sub-cellular details of the tumor microenvironment. For imaging of
tumor vasculatures, the imaging depth should be deeper than the scattering lengths. To obtain a sufficiently high spatial res-
olution for vasculature imaging, the photoacoustic contrast should be considered. Since acoustic waves have less attenuation
and less diffraction than optical light, the lateral resolution of photoacoustic imaging is typically 40 lm at 3-mm imaging
depth. This resolution is much better than that of diffused optical imaging and can easily map tumor vasculatures.

To achieve low energy loss (i.e. prevent absorption and scattering at short wavelengths) and deposition in biological tis-
sues, anisotropic Au particle [366], Ag2S dots [42,328], CNT, dye-loaded composites [169–174], and nonlinear nanomaterials
[211–214,216,217], upconverting lanthanide nanoparticles [234–240,242–255,289–314] have proven to be satisfactory
choices of contrast agents for providing emission in the long wavelength region after long wavelength excitation in deep
tissues.



T.-M. Liu et al. / Progress in Materials Science 88 (2017) 89–135 107
5.3. NIR fluorescence for image-guided surgery

Various radiological imaging modalities (CT/MRI/PET) are used as a preoperative assessment for surgery guidance. During
surgery, NIR contrast agents may be administered intravenously or intraperitoneally and visualized using an NIR fluores-
cence imaging systemwith adequate NIR excitation light, collection optics, filters, and a camera sensitive to NIR fluorescence
emission light [367] (Fig. 8). For higher resolution diagnostics or intra-operative navigation, a microscopy imaging modality
is required. For example, the biopsy of sentinel lymph nodes (SLN) around tumors is a critical diagnostic procedure used for
the typing and staging of tumors. The administration of NIR fluorescence agents in situ combined with large-scale fluores-
cence imaging can help doctors visualize SLN [368]. In clinical practice, the Food and Drug Administration-approved ICG
has been used off-label for the tracing of SLN. ICG excitation and fluorescence wavelengths are 780 and 822 nm, respectively,
which is beneficial for deep-tissue real-time imaging. To increase solubility and fluorescence yield, a common strategy relies
on the adsorption of ICG with human serum albumin. However, compared with ICG, type II semiconductor QDs can provide
brighter 850 nm fluorescence for SLN imaging in vivo [369]. To provide favorable accumulation and longer retention of the
NIR contrast agent in the draining SLN, the appropriate particle must be selected (20–50 nm) [370]. For deeper SLN imaging,
several photoacoustic contrast agents have been developed. Perfluorocarbon nanoparticles loaded with NIR fluorescence
dyes can achieve simultaneous NIR optical and photoacoustic imaging of SLN in vivo [371]. Whole-body lymph nodes have
been visualized using a combination of NIR excited photoacoustic imaging and semiconducting polymer nanoparticles [372].

In the surgical resection of tumors, clinicians commonly used larger boundaries around the major nodule to maximize the
clearance of cancer cells. But for organs like the brain, extra resections may result in a loss of psychological and motor func-
tions. Besides this, for cancers with irregular or dendritic shapes, cancerous tissues may be present at the boundary of the
excised lesions. Therefore, the residual cancer cells may result in recurrence and affect the prognosis after surgery. Thus,
to identify tumor cells from adjacent non-tumor cells and critical structures like neurons intra-operatively, a common strat-
egy is the development of contrast enhancement methods or fluorescence probes to augment the visual differences between
normal and cancer cells.

Compared to 10–100-nm sized crystals, a contrast agent designed on a molecular scale (<10 nm) has the benefit of better
penetration and uniform distribution at specific sites of the body. Therefore, several extrinsic fluorescence contrast enhan-
cers have been developed for guided surgery [373]. These fluorescence probes can either target the metabolic features, or the
hallmarks of specific cancer types. For example, the use of 5-aminolevulinic acid results in the accumulation of protopor-
phyrin IX in glioblastomas [374]. This porphyrin can be effectively excited at the Soret band (an intense peak in the blue
wavelength region of the visible spectrum) and imaged at 600–750 nm NIR wavelengths. Another efficient approach is to
use protease-sensitive probes, where the red fluorescence of cell-penetrating peptides can report the presence of tumor-
associated matrix metalloproteinases (MMPs) [375] and thus the presence of residual tumors. To avoid damage to peripheral
nerves during surgery, fluorescent peptides specifically bound to neural cells have been developed for systemic administra-
tion [376].
Fig. 8. NIR fluorescence for image-guided surgery. When performing surgery, an NIR contrast agent may be injected and monitored using an NIR
fluorescence imaging system, with appropriate NIR excitation laser light and a camera sensitive to NIR fluorescence emission light in order to capture the
signals and project them on a standard computer monitor or wall projector. Usually, targets up to 5–8 mm deep can be detected using NIR fluorescence
imaging whereas a target deeper than 25 mm would not be detected.
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5.4. NIR photo-triggered drug release

For better absorption or therapeutic efficacy, the time and place of drug release needs to be precisely controlled. For
example, some pills or capsules carrying drugs have pH-sensitive coatings to avoid digestion in the stomach or intestine,
in order to achieve specific colonic drug delivery [377]. To actively control the release of drugs from carriers, excitation using
optical [4,455–341], acoustic [378,379] or magnetic [380] energy is required. These methods allow multiple dosages of drug
to be achieved from a single administration with precise control of the timing, duration and magnitude. For light-activated
drug release, the depth of action can be increased by illumination with NIR light [381]. For example, by exploiting the NIR
absorption of ICG [382], the membrane of doxorubicin-loaded red blood cells can be thermally destroyed in order to achieve
efficient and specific drug release. The SPR absorption of gold nanostructures can also enhance the local electric field and
achieve NIR-triggered drug release [4]. For non-thermal release, a photo-labile linker that covalently bound a drug to den-
drimers or dendrons has been developed [383]. To cleave a linker using NIR light, upconverting nanomaterials or two-photon
excitation processes [384] can also be used. Changing the physical properties of loading matrices can also achieve controlled
release. Successful processes include photo isomerization [385], photo-induced gel swelling [386], photo-reactive molecular
valve [387], or the photo-decompression of particle sizes [388].

5.5. Photo-thermal therapy

Dark colored materials can absorb light and convert photo-energy into heat. This approach can be adopted for nanopar-
ticles as means to treat tumors. As the nanoparticles absorb light energy, excited carriers will release their energy either
through the emission of photons or through the generation of photons and heat. If the nanomaterial (i.e., Au [366,389], car-
bon [390,391], oxides [337,338,392–394], or dyes [174,180,382]) lack an efficient photon emission route, by using CW lasers
as light sources, then most of the absorbed light energy will be converted into heat. In photo-thermal therapy (PTT), when
the temperature of particles rises above 40 �C, adjacent cells will be abruptly damaged through pore formation, or will
undergo apoptosis due to heat-shock [395].

Thermal therapies have been used since the 1980s for enhancing human metabolism and treating diseases (e.g. tumors in
cancer therapy) [396,397]. In fact, the different thermal gradient readily changes tissue elasticity and blood flow rate
[398,399], as well as inducing cell death pathways [400,401]. However, the thermal effect on cells in a changing microenvi-
ronment remains unclear because of the systemic host effects [402]. To avoid this uncertainty, controlled and localized heat-
ing is required for cancer treatment. For example, a carbon nanotube has been reported as an NIR-II light-to-heat converter
for PTT of malignant cells [390,391]. The design of a multi-branched Au structure (�350 nm) resulted in a broadened absorp-
tion band extending to NIR wavelength [389]. Using a 1064 nm CW laser, both photo-thermal and photo-dynamic therapies
have been achieved at a very low power intensity of 130 mW/cm2. By special design, luminescent, lanthanide-doped,
nanoparticles can serve as hyperthermia agents. For example, heavily doped Nd3+ can be used as nano-heater [303], imaging
agent, and nano-thermometer [403], for remote tracing of temperature during hyperthermia. In addition to common plas-
monic metal nanoparticles, a recent review manuscript has revisited the classification of NIR-absorbing non-metal nanoma-
terials for photo-thermal applications in vitro and in vivo [404].

5.6. Upconversion induced photodynamic therapy

Photodynamic therapy (PDT) was introduced 100 years ago [405]. This technique was used to treat various cancers, age-
related macular degeneration, and actinic keratosis [406]. The activation of PDT requires spatial co-localization of three ele-
ments: light, a photosensitizer (PS), and oxygen. For a photosensitizer molecule such as porphyrin, part of the excited elec-
trons may couple to triplet states through intersystem crossing. These long-lived triplet electrons may further produce ROS
like singlet oxygen or free radicals. These ROS can destroy tumor cells directly, damage the tumor-associated vasculature, or
activate an immune response against tumor cells [405]. Individual elements of the PDT procedure themselves are harmless
and non-destructive, but as soon as they co localize, the singlet oxygen produced during PDT can oxidize critical cellular
macromolecules such as lipids, nucleic acids, and amino acids, thereby inducing alterations in cellular permeability, damage
to the plasma membrane, mitochondria and lysosomes [407,408] which in turn lead to cell death by necrosis or apoptosis
[409].

Owing to the PS’s preferential accumulation in cancerous tissues and cells, these cells are killed with higher spatial selec-
tivity than chemotherapy or radiotherapy, and thus the secondary effects to patients may be considered as negligible. Cur-
rently, PDT treatment of numerous cancerous diseases (e.g. early lung cancer [410,411], Barrett’s esophagus [412–414],
bladder cancer [415,416], head and neck cancers [417], and skin cancers [418–420]) and non-cancerous diseases (e.g. age
related macular degeneration [421], bacteria eradication [422]) have been approved.

Despite numerous successes in PDT treatment and numerous approvals for medical use, there are still many issues to be
solved. Most of the PSs used to date display only a slight preference for malignant cells, often leading to significant skin pho-
tosensitivity and high uptake by healthy cells and tissues. The low uptake contrast between abnormal and normal tissues has
stimulated biochemists to design third-generation PSs that are actively targeted towards diseased tissue. Unfortunately, PSs
used for PDT have a tendency to aggregate owing to their planar aromatic ring systems, which also allows non-specific bind-
ing to bio-molecules (e.g. serum proteins such as albumins, lipoproteins, and high-density lipoprotein) [327]. This may lead
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to difficulties in quantifying the biological activity and cytotoxicity of such conjugated and un-conjugated PS molecules,
because the photo-physical and photo-chemical properties of such PS variants may differ significantly. In addition, such
PS bio-conjugation, or PS-PS interaction, may decrease the PS’s absorption coefficient, singlet state lifetimes, and triplet state
yields, as well as the PS’s excited state lifetimes. This in turn may affect the production of ROS during illumination and thus
decrease the photo-cytotoxicity of the dye conjugates. Furthermore, as has been mentioned above, it is necessary not only to
consider delivery of the PS to the target cell but also to get efficient accumulation of the PS at susceptible sub cellular
locations.

Another severe drawback of conventional PDT treatment that hinders its broad adoption for solid high-volume tumors,
and limits its use to only superficial carcinomas in epithelial tissues, is the low penetration depth of light suitable to photo-
excite conventional photo-sensitizers. The approved photosensitizers usually absorb below 700 nm, but short-wavelength
light undergoes significant scattering and absorption by tissue chromophores. Typically, porphyrin-based photosensitizers
[Protoporphyrin (PpIX), Fotofrin, etc.] have a Soret band around 400 nm and a series of Q-bands at the green/red spectral
regions [423,424]. Unfortunately, as described in previous sections, light in the 300–650 nm range will be strongly absorbed
and scattered by pigments and heterogeneous structures in tissues. The effective region of conventional PDT is therefore
rather limited. One approach to solving this issue has been through the use of light diffusers that can be inserted into the
tissue to increase the effective volume of PDT treatment. The obvious disadvantage of such an approach is its invasive nature.

In order to overcome these drawbacks, an interesting idea has been proposed to combine photodynamic therapy with up-
converting nanoparticles. Under NIR light, these up-converting nanoparticles demonstrate a relatively efficient up-
conversion to the visible range and may trigger conventional photo-sensitizers (Fig. 9). Such an approach demonstrates some
significant advantages over conventional approaches:
Fig. 9. Comparison of conventional photodynamic therapy (PDT) (left) and up-conversion PDT (right hand side) in terms of penetration depth and
mechanism. Owing to the short wavelength of light typically required for photosensitizers, the penetration depth and PDT efficiency is usually limited to
shallow skin layers. This is as a result of light scattering and absorption by skin/blood components (e.g. collagen, elastin, hemoglobin, etc.). Opposite to PDT,
UC-PDT exploits NIR photoexcitation, which penetrates deeper into the skin layers and enables cancer treatment of larger masses. Conventional PDT, occurs
by absorption, singlet? triplet inter system crossing, followed by free-radical (H2O2, OH� or 1O2) production, whereas UC-PDT occurs by the up-conversion
process and indirect energy transfer to PS. While UC-PDT is less efficient in quantum terms than PDT, the use of NIR enables deeper light penetration and
ultimately a more effective treatment.
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1. Photosensitizer compounds encapsulated in mesoporous silica are protected from degradation in the complex biological
environment. In addition, self-aggregation and conjugation to other bio-molecules (such as albumin) does not occur and
consequently the PS photochemical properties are preserved. In addition, encapsulation limits their photo-bleaching and
biochemical inactivation, thereby maintaining efficient ROS production during illumination leading to efficient photo-
induced cytotoxicity.

2. Most of the current photo-sensitizers are hydrophobic, thus either polymer [425,426] or silica-based [309,427] shells will
enable solubilization of these PSs [as UCNP@shell(PS)] in aqueous buffers.

3. The hybrid UCNPs@Shell(PS) NPs, upon bio-functionalization may offer the ability to target the PS to the desired cells.
Chatterjee et al. were the first to demonstrate folate receptor targeting using UCNP-PS nanoparticles [428].

4. NIR radiation is used to initiate PDT, which offers an increased light penetration depth and suitability to treat larger tissue
volumes. A new up-converting nanoparticle design has recently been demonstrated showing novel advancements using
an active-core-active-shell design. By using Nd3+ primary up-conversion sensitizers, instead of the typical Yb3+ sensitiz-
ers, excitation light penetration depth was significantly improved. This is possibly a result of the significant reduction
(around 25 times) in the absorption coefficient of water at 800 nm for Nd3+ vs 980 nm for Yb3+. The overheating problem
was also simultaneously diminished compared to conventional Yb3+-RE3+ up-conversion pairs [145,429].

5. These advanced hybrid NPs may be designed to release their cargo (e.g. doxorubicin chemotherapeutic agents [307])
upon encountering the decreased pH levels often found in cancer tissues.

6. Numerous imaging modalities are also offered by UCNPs@shell(PS), such as up-converted multicolor (and thus multi-
plexed) luminescence in the visible and NIR spectral region, or MRI imaging (through the use of Gd3+ ions within the
UCNPs). Additionally, the UCNPs do not photo-blink, and are not susceptible to photo-bleaching, thus allowing for pro-
longed visualization.

7. The shell may be intentionally designed to ensure a sufficiently long circulation time in the blood stream in order to tar-
get tissues with a desired antigen profile via a receptor-mediated delivery systems or via an EPR mechanism [317,318].

The majority of the studies reported so far demonstrate a proof-of-concept for UC-PDT experiments. However, further
research is required to (i) improve the efficiencies of every single step in the NIR light? visible light? PS? ROS path
[430], (ii) design multimodal (PDT, drug delivery, fluorescence/luminescence/PET/MRI imaging) nanoparticles (iii) design
smart NPs (e.g. that can release cargo upon an Ab-Ag interaction or upon pH lowering), (iv) bio-functionalize the NPs to
achieve long circulation times and allow for highly selective targeting to the tumor sites. Due to the very low quantum effi-
ciency of up-conversion (typically less than 1%) and strong power dependence, further research must be devoted to optimize
the photo-physical properties of nanoparticles. One of the most important issues, is the development of methods for char-
acterization that are capable of quantitatively comparing different approaches and that would then allow for optimization of
theranostic agents in absolute terms.

5.7. Photo-dynamic therapy and photo-thermal ablation combined with NIR detection

The remarkably synergy between PDT and PTT has led to its development as a combination therapy that has achieved
impressive results compared to the use of PDT or PTT alone. Several groups have demonstrated that complete tumor ablation
can be achieved using a PDT/PTT combined therapeutic method [431]. The incorporation of photosensitizers onto the surface
of a photo-thermal nanomaterial to produce a single particle composite [76,431–439] is the most common strategy used to
achieve a photo-thermal/photo-dynamic combination therapy. Since NIR-based nanoparticles can be engineered to effi-
ciently interact with NIR radiation, tracking and detecting these agents during therapeutic treatments is possible at a deep
tissue level. This optical imaging-guided approach and the combination of PDT and PTT phototherapy has gained substantial
attention and has become a prosperous field for meeting clinical needs without the need for adverse surgery, chemotherapy,
or radiation treatment.

Wang et al. have designed a new nanohybrid of rose-bengal (RB)-conjugated Au nanorods for use as an efficient in vivo
photo-dynamic and photo-thermal treatment for oral cancer [440]. Although rose bengal (RB) is a well-known photosensi-
tizer that generates singlet oxygen species with a high quantum yield (�76%), the excitation wavelength is limited to 532-
nm light irradiation and fails to produce NIR fluorescence [441,442]. However in 2013, Tae and co-workers synthesized NIR
nanogels embedded with Au nanorods (GNRs) and Chlorin e6 (Ce6) for in vitro and in vivo photo-toxicity applications [431]
(Fig. 10A and B). Before photon treatment, effective tumor accumulation in vivo was detectable using the red-NIR fluores-
cence arising from the Ce6 lumiphore within the nanogel. Compared to that of independent treatments with PDT or PTT
alone, a better anti-neoplastic effect was observed with PDT followed by PTT. A similar study on a hybrid of iron oxide@Au
and methylene blue (MB) was performed by Ray and co-workers [432], where the fluorescence imaging could be captured
using the MB molecule (with excitation at 650 nm and fluorescence signal detection between 680 and 720 nm). Photo-
ablation of HaCaT cancer cells has also been achieved through a synergistic combination of photo-thermal and photo-
dynamic treatments. Using an alternative method, where Au vesicles are used to gel-encapsulate Ce6 PS, the SPR coupling
effect in the Au nanoparticle monolayer resulted in NIR absorption peaks and thus enhanced the NIR PDT and photo-thermal
tumor treatment (671 nm and 808 nm laser at 2.0 W/cm2) (Fig. 10C). The accumulation within the tumor can also be tracked
using a photoacoustic modality [443]. Simple assembly of the poly (dopamine) (PDA) nanoparticle followed by conjugation
with Ce6 produced an excellent phototoxic PTT-PDT effect, with a combination laser irradiation of 670 and 808 nm and an



Fig. 10. Design of NIR excited PDT/PTT agents. (A) Scheme illustrating the procedure for loading the photo-agents (Ce6 and GNRs) into a Pluronic nanogel.
(B) In vivo NIR fluorescence images of nude mice bearing SCC7 tumors after i.v. injection of photo-agents [431]. (C) Photosensitizer (Ce6)-loaded plasmonic
gold vesicles (GVs) with trimodal (fluorescence/thermal/photoacoustic) imaging for use in photothermal/photodynamic cancer therapy [443]. (D)
Schematic view of the preparation of PDA-Ce6 nanospheres for PDT and PTT treatments of HepG2 tumor-bearing nude mice. (E) In vivo NIR fluorescent
images of HepG2 tumor-bearing nude mice 24 h after injection. (F) thermo-graphic images and 3D temperature distribution in tumor-bearing nude mice
exposed to laser irradiation at 808 nm at different time points [433]. (G) A treatment scheme for the use of plasmonic copper sulfide (Cu2�xS) nanocrystals
(NCs) exhibiting both PTT and PDT capabilities [444]. Reproduced with permission [431,433,443,444].
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extremely low dark toxicity [433] (Fig. 10D and E). This combined photo-therapy had high therapeutic efficiency both in vitro
and in vivo compared with any single laser irradiation alone.

A non-invasive NIR therapeutic technique using combination therapy was also developed with graphene oxide as the PTT
substrate followed by absorption of methylene blue as a potential photosensitizer [445]. Conjugation of Cy5.5 on the surface
of the graphene oxide/MB was performed to track internalization of the particles under NIR imaging. By altering the PTT
nanocore or the PS load, the following could be fabricated: gold-nanorod-PS layer-by-layer [446], sinoporphyrin sodium
loaded graphene oxide [434,435], a pH-sensitive peptide inserting gold nanorod-photosensitizer conjugate [436], self-
aggregation of Ce6 photo-sensitizers and gold nanorods [431,447], WS2@BSA/MB nanosheets [437], and a ZnPc photosensi-
tizer in a liposomal membrane decorated with a gold nanofilm [438]. Fluorescence, the PA technology, and an IR thermal
camera with NIR light excitation, have been used for acquisition of both in vitro and in vivo images.

In a different approach, Vijayaraghavan et al. developed a new gold nanoechinus structure that was capable of NIR light-
activated dual modal photodynamic (NIR-I and NIR-II biological window) and photo-thermal therapy (808 nm) [389]. Inter-
estingly, the photon energy can also be converted to emit excitation wavelength-dependent fluorescence for quantification
of cellular uptake, as well as quantification of cellular markers, in vivo. In this case, the Au nanoechinus acted as both the
photon-to-thermal converting agent and the photosensitizer without the need for addition of an organic dye to produce sin-
glet oxygen. In another enlightened study, Xu and co-workers reported the optical photon-physical and photon-chemical
properties of Au nanorods [448]. Au nanorods are among the most commonly studied photo-thermal therapeutic agents that
use NIR laser excitation [449]. The authors demonstrated that singlet oxygen from Au nanorods could be generated with one-
or two-photon excitation. The application of two-photon excitation at 808 nm resulted in a high quantum yield of singlet
oxygen, when compared with rose bengal and ICG [450,451] and this difference was ascribed to the large two-photon
absorption cross-section of the molecules in the Au nanorods.

Carbon nano-dots [452], quantum dots [453,454], silica/fluorescent donors [229] and Ln-based UCNPs [455] have also
been demonstrated to be excellent nano-converters for the two-photon excited energy transfer to PS on PDT treatment.
These results have been widely reviewed elsewhere [456].

The current discovery of total inorganic composite nanomaterials has allowed for the dual PDT/PTT capability to be
obtained with plasmonic copper sulfide (Cu2�xS) nanocrystals [444], WO3-x nanoparticles [457], Cd-based QDs [458–460],
grapheme QDs [461–463], and Au nanorods [448]. In contrast, there are several reports on the use of the PDT/PTT platform
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with organic nanocomposites, e.g., an NIR polymer and PS [433], IR825 and Ce6 in a nano-micelle [464], a human serum
albumin-ICG hybrid [174], and doxorubin/ICG loaded lipid polymer nanoparticles [173]. Both infrared thermographic and
NIR fluorescent maps are able to be captured and detected during the combined photo-therapeutic treatment in situ.
6. Nanotoxicology: concerns about the biosafety of NIR nanomaterials

The increasing number of studies and the production of numerous types of nanomaterials raises fundamental questions
on their safety for use in humans and also for the environment. While classical toxicology has developed well-established
tools and standards to assess the toxicity of various substances, their application to nanomaterial toxicity is problematic
because these a new class of materials. Perhaps one of the most important aspects that deserves consideration is that nano-
materials have completely different physicochemical properties compared to the bulk form of the same material. Conse-
quently, many aspects need to be taken into consideration when analyzing the impact of such materials on living
organisms e.g. the fact that nanoparticles of the same material, and having the same shape but with a slightly different size
may interact differently within a body thereby producing a different toxicity profile [465]. Parameters commonly accepted to
be important determinants of nanoparticles toxicity are: structure, chemical composition, shape, surface composition,
charge and area, redox properties, aggregation tendency, nature of the shell or coating material, chemical stability,
biodegradability, as well as others [466]. Despite the growing number of studies, the mechanistic understanding of nanopar-
ticles toxicity is still in its infancy.

With advances in the production of engineered nanomaterials and their broader applications in many aspects of life,
exposure to nanoparticles has become an increasingly growing concern. Nanoparticles are extensively used in manufactur-
ing; for example in new composite materials, protective coatings, inks, electronics, cleaning and disinfectant products,
medicines, cosmetics and many other products. As a consequence, the penetration of manmade nanoparticles into the envi-
ronment is inevitable.

Therefore, there is an urgent need for the introduction of reliable nanotoxicology methods that will allow for an assess-
ment of the impact of nanoparticles on life in broad terms, including, toxicity at all levels of complexity (single cell, tissues,
whole organisms), the impact on aquatic organisms, and the impact on various ecosystems. Exhaustive database on toxicol-
ogy are a key part for the proper life cycle assessment of nanoparticles as products to be manufactured and used in a massive
scale. This aspect, based on community expectations, should keep upwith the technological progress andmarket needs [467].

Living organisms have evolved a number of adaptations to nanoparticles that naturally occur in the environment, how-
ever newly-fabricated materials present unique properties to which organisms have yet to adapt, and therefore they may
become a serious health challenge.

Many studies have been conducted on the health effects of exposure to nanoparticles present as common pollutants,
including airborne pollutants arising from the burning of carbon fuels and natural materials.

Ongoing discussions raise questions concerning their associated health hazards, the balance between benefits and
threats, and on safe handling procedures. The Organization for Economic Cooperation and Development (OECD) has recently
suggested a critical revision of currently employed methods for analysis of materials safety to specifically address man-made
nanoparticles [468].

The implementation of new analytical methods may highlight so far undiscovered facts concerning the property of nano-
materials. For instance, some studies have shown that titanium dioxide and zinc oxide nanoparticles, although already rec-
ognized as safe, can under certain specific conditions be toxic to the human brain and lung cells [469–471].
6.1. Methods to analyze the toxicology of NIR nanomaterials

The number of available research models and methods for the nanotoxicity is constantly growing, enriching our database
on the impact of nanomaterials in living systems.

The most commonly applied approach for the initial estimation of potential nanoparticle toxicity is based on in vitro stud-
ies using various cell lines. Living cells in a cell culture are treated with test materials and after a certain time (usually from a
few to 24–48 h) their viability, morphology, ability to proliferate, as well as other parameters are analyzed. Viability and
morphology can be studied directly using microcopy, or can be estimated in a more quantitative way using one of the many
viability assays that are currently available on the market (MTT, MTS, XTT, WST-1, CCK-8, Resazurin viability assay, etc.). In
general, their principle mechanism of action is the formation of colored or fluorescent compounds in the presence of active
mitochondrial enzymes [472–474]. Other popular assays include, the lactate dehydrogenase (LDH) release assay, a test
indicative of an effect on cell membrane integrity associated with the release of the cytosolic enzyme LDH from cells
[475]; tests for ROS (reactive oxygen species) that allow analysis of the formation of ROS as a result of oxidative stress
[476]; measurement of apoptosis markers (for e.g. the Annexin V test) that are used to observe whether the tested material
has the ability to induce programmed cell death [477]. More complex studies can include immunohistochemistry or analysis
of inflammatory cytokines released by cells treated with substances having pro-inflammatory activities. These types of tests
involve ELISAs, quantitative real-time PCR, or flow cytometry [478].

The proliferation potential of cells can be easily estimated via thymidine incorporation assays (e.g. the older radionuclide
incorporation assay or modern methods developed for flow cytometers) [479].
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Information on the impact of nanomaterials on cellular genetic material (genotoxicity) can be gained using the simple and
sensitive Comet Assay. In this assay DNA obtained from lysed cells embedded in agarose is subjected to electrophoresis at
high pH resulting in structures resembling a comet when observed under a fluorescent microscope. The extent of the ‘‘comet
tail” reflects the number of DNA breaks. This method allows for analysis of DNA breakage at a single cell level [480].

In vitro techniques are usually the methods of choice for most researchers during ‘‘proof of concept” or initial toxicology
studies, and they can provide valuable data with relatively low cost and effort, and the necessary resources are usually avail-
able in standard research laboratories.

However, it must be considered that the data obtained from in vitro studies carries a significant level of uncertainty due to
many constraints. First of all, most studies are performed on models, specifically cell lines, that are generally transformed,
immortalized cells, and thus their function and responses to compounds may differ to some extent from normal cells. Nor-
mal cells have for example limited proliferative potential in comparison to cell lines. Cells in culture dishes function in an
isolated surrounding; all of the complexity of interactions between cells in tissues, organs, and the whole body are missed
from this analysis meaning that the results obtained may differ significantly from the real-life situation. To support this
notion, one example can be given: it is well know that bacterial endotoxin (LPS) exerts it full toxic potential at the whole
body level whereas at the cellular level cytotoxicity is lower and is restricted to certain cell types [481,482].

The potency of LPS relates to its ability to strongly stimulate the release of inflammatory cytokines by immune cells, over-
stimulation leads to the damage of vital organs and death, therefore an indirect mechanism is responsible for the toxic effect
of LPS at the whole body level. Similarly, a lack of noticeable cytotoxicity of a nanomaterial in in vitro studies may not nec-
essarily reflect the same at the whole organism level. On the other hand, it is much more probable that a compound demon-
strating toxic effects in in vitro models will be toxic when applied to a body than vice versa.

New models for in vitro studies are continually being sought, e.g. pluripotent stem cells [483], in order to improve the
predictive value of the data obtained.

Other difficulties noticed by many researchers are that interactions of certain new nanomaterials with components of
assays can significantly affect measured values, as has been specifically noted for carbon-based nanomaterials [206]. The
use of novel instrumentation that utilize microelectronic sensing devices capable of assessing cell viability and as well as
other cell parameters may help to resolve the issue [484].

Toxicity studies conducted in models with higher levels of complexity, typically in vivo models, will cover many other
parameters and can examine the effects of mutual complex interactions between diverse types of cells, tissues and organs
within a body. The models provide more comprehensive toxicological data, but at significantly higher costs, and the techni-
cal complexity of the research, including ethical issues that are associated with animal studies are an additional burden.

Although there are several toxicology models based on invertebrate organisms, including Caenorhabditis elegans, Droso-
phila melanogaster [485] and others, the most popular models remain laboratory rodents (mice, rats, rabbits). Study on these
common laboratory animals allow the investigation of more aspects of toxicity including bio-distribution, accumulation,
excretion, and metabolisms following changes in dose and routes of administration.

Recent reports have also proposed the use of zebrafish as a versatile animal model to assess nanoparticle toxicity in a
broad range of aspects including: acute toxicity, immunotoxicity, genotoxicity and gene expression, neurotoxicity, impact
on fertility, etc. Significant advantages of this model include ease of handling, small size, high reproducibility, fast develop-
ment and transparency of the embryo.

Different research methodologies are used to study toxicity in animal models. Following administration of a test sub-
stance, animals are monitored for symptoms of toxicity and adverse effects including death, diarrhea, lethargy, depression,
suppression of movement, skin and eye irritation, swelling, depressed water and food uptake, and behavioral changes [486].

Depending on the study design, many biochemical and physical parameter can be tested using blood, urine, and feces
sampling. Commonly, these biochemical markers, as well as hematological blood parameters (e.g. WBC – white blood cells
count) are used as markers of health status. Furthermore, liver and kidney function can be monitored indirectly, as those
organs play key roles in detoxification, excretion, and accumulation of foreign materials. In the case of an end point study,
animals are euthanized and subjected to histological analysis of tissues and organs. Studies examining the effects of chronic
exposure at low doses, impacts on genetic material, and fertility impact usually require long-term experiments and careful
experimental design.

Recent reports have presented new interesting ideas to study nanotoxicity that may open new possibilities for the field.
For example, Ivask et al. demonstrated a genomic approach to assess the different toxicities of different forms of a nanoma-
terial [487].

There have also been attempts to develop computational methodologies for the analysis of quantitative structure-activity
relationships (QSARs). This technique might help to predict toxicity of nanoparticles based on correlation with specific
parameters like size, shapes, coating, and porosity [488].
6.2. Toxicity of NIR nanomaterials

Several comprehensive review articles discussing the toxicity of engineered nanoparticles have been recently published,
where quantum dots, gold, iron oxide nanoparticles [489], or lanthanide doped nanoparticles [490] were compared, and the
influences of nanoparticle shape, size, and surface functionalization on cellular uptake were described [491,492].
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Data on the toxicity of NIR materials are still scarce because these materials are relatively new to the field so there has
been insufficient time to obtain enough data for conclusions to be drawn. Certainly, a long-term and systematic study is
needed to draw reliable conclusions concerning the safety of these materials. So far, some features can be anticipated, based
on comparison to known characteristics of other nanoparticles formed from analogous bulk materials.

An important notion is that most elements or materials employed for the formation of NIR nanoparticles (see Table 1) are
not toxic in the bulk form, therefore eventual toxicity may be attributed to the nanoparticle form. Apparent toxicity applies
to such elements like cadmium ions (in Cd based QDs), silver, other noble metals, and fluoride ions (in UCNPs).

NIR materials based on Au are probably the best characterized in terms of physical properties and biocompatibility
[5,493]. In general, most spherical forms of AuNPs show little or no toxicity apart from particles with some specific sizes
e.g. a nanoparticle with diameter of 1.4 nm that fits into the DNA major groove had increased toxicity [494]. It should be
remembered that the surface coating strongly affects the properties of AuNPs including their bio-distribution and toxicity.
Gold-based NIR materials are mainly represented by: nanorods, nanoshells and nanocages. Gold nanorods exert slightly
higher toxicity than spherical particles; but this can be reduced by replacing hexadecyltrimethylammonium bromide (CTAB),
a surfactant necessary for the synthesis of nanorods, with phosphatidylcholine, for example [495]. Gold nanoshells and
nanocages, have been studied less extensively but so far no serious toxicity problems have been observed [331,496].

Noble metal NIR materials such as Pd nanosheets (<10 nm diameter), when formulated with glutathione, showed pro-
longed blood circulation, good accumulation in tumors, with no apparent toxicity in mice and were renally cleared [497].
Other recently developed materials such as WS2 nanosheets, MoS2 nanosheets also showed good stability and biocompati-
bility [498–500].

However, some intrinsic toxicity was observed for CuTe nanoparticles. However, further work using better encapsulation
or more strictly controlled administration were suggested as being effective at addressing this problem [501].

Iron oxide nanoparticles possesses unique and useful properties and have been widely used in the biomedical field, as
they are considered as safe and biocompatible [502]. Polypyrrole (PPY) NPs are another recently developed material with
very promising features including photostability and a low synthesis cost. They have been studied for suitability as a
photo-thermal cancer therapy with outstanding results both in vitro and in vivo [503,504].

Carbon-based nanomaterials have recently gained significant interest due to their spectacular properties and potential
application in many fields. As of now, they will certainly take a leading position among the nanomaterials produced in high
quantity. However, possible environment release and chronic exposure create safety concerns. A constantly growing number
of reports predict that their application in nanomedicine will also be substantial. Studies in vitro and in vivo models have
shown that some forms of graphene family nanoparticles showed toxic properties that were strongly dependent on dose,
size, surface shape, chemistry, etc.; these reports are extensively discussed elsewhere [505].

Given that production and application of nanomaterials is a relatively recent achievement, nanotoxicology is therefore an
emerging field and will have to solve problems that so far have not been encountered in classical toxicology. Nanoparticles
have may complex features including size, shape, charge, coating and changes in these features may produce very different
toxic effects. In addition, route of administration and factors such nanoparticle degradation, metabolism, adsorption to other
molecules, and adsorption to tissues may all affect their toxicity profile.

These factors therefore create an enormous number of variables that have to be considered and analyzed during toxicol-
ogy studies. The question that is raised is how to establish reliable standardized protocols for such studies. Although this
question remains to be answered, it is widely recognized across the scientific community.

The evaluation of the safety of nanoparticle-based drugs or medical products also has the problem of extrapolating from
in vitro and in vivo studies to the real-world clinical situation. For example, the doses used in toxicity studies are usually
much higher than those generally required in routine clinical use as diagnostics or treatments, so the available data may
not be relevant. Another problem is that most data is generated using short-term exposure experiments whereas long-
term studies are necessary to really assess the effect of chronic exposure to NPs, including the effects of NPs that have accu-
mulated in organs over time.

In conclusion, the existing data allow us to propose several new NIR materials, with no apparent toxicity, as candidates for
medical applications. However, a final conclusion on biosafety will be possible only after thorough, detailed, studies (includ-
ing clinical stage) have been conducted, and these data will have to apply to a particular product than a class of
nanomaterials.

6.3. Regulatory issues on nanomaterials

Despite the fact that nanoparticle properties are rarely seen in their bulk counterparts and show promise in many alter-
native and new bio-medical applications, such as bio-sensing and bio-imaging, the toxic effect is very difficult to predict
based solely on chemical composition. This issue originates from a number of factors, including surface chemistry (mostly
related to charge) and surface to volume ratio, nanoparticle size, the nanoparticle’s shape anisotropy, chemical composition,
and susceptibility to dissolution in organic media, which all have been shown to affect their cytotoxicity to some degree. In
general, nanomaterials are more chemically active and behave in different ways compared to their bulk component chem-
icals. They are also more likely to be taken up by humans and animals, through the skin, and lungs, and through food inges-
tion [490] and may then accumulate in different organs (liver, spleen, lungs, etc.). Moreover, the quantification of
nanotoxicity at the cellular level in vitro, is not relevant for extrapolation of in vivo nanotoxicity. A simple example, which



Table 1
Overview of the toxicity aspects associated with NIR nanomaterials.

Material Coating Size Research model Dose/concentration Treatment
time

Results Ref.

Metallic and metallic compound-based nanoparticles
Au nanorods Chitosan

oligosaccharide
lactate/chitosan anti
anti-EGFR Ab

47 ± 3 nm/11 ± 1.8 nm Oral adenosquamous
carcinoma cell line CAL 27

1–200 lg/mL 72 h Viability: 90–100% [329]

Male 6-week-old BALB/c
nude mice

100 lg/i.v. injection 7 days No significant changes in histology,
hematological, and clinical
biochemistry parameters apart from
slight reduction of RBC count

Au nanorods PEG 65 ± 5 nm/11 ± 1 nm HeLa cells 0.5 mM/Au atom 24 h Viability: 90% [330]
Silica core Au

nanoshells
SH-PEG 55-nm core radius and

a 10-nm-thick
Human breast epithelial
carcinoma SK-BR-3 cells

4.4 � 109 particles per mL 3 h No cell death (microscopy
observation)

[331]

Porous hollow Au
nanoparticles

Bare or SH-PEG
coated

150 nm Prostate cancer cell line (PC-
3), human breast carcinoma
cell line (MDA-MB-231),
lung-metastasized prostate
cancer cells (PC-3ML)

0.8, 4, 20, and 100 lM 24 and 72 h Both types non-toxic in all
concentrations, observed some
growth inhibition of PC-3, PNT1A,
and MDAMB231 cells at higher
concentrations, and growth
enhancement in PC3-ML cells after
72 h

[332]

Silica core Au
nanoshells

– 30 nm core/shell
thickness of 5–10 nm

Prostate cancer cell lines,
LNCaP and PC3

4 � 1012 particles/mL 24 h No toxicity detected (MTT assay) [333]

Silica core Au
nanoshells

Anti-HER2 or a
nonspecific antibody
(anti-IgG)

120 nm core/10 nm
shell

SKBr3 breast
adenocarcinoma cells

3 � 109 nanoshells/mL From 1 h No toxicity detected (calcein
fluorescence)

[334]

Au nanocages PEG-anti-EGFR Ab or
PEG

50 ± 3 nm and wall
thickness of 5 ± 1.2 nm

U87MGwtEGFR cells 0.02 nM Up to 24 h No toxicity observed (microscopy) [335]

Au nanocages Peg 5000 33 nm in edge length Mice bearing EMT-6 tumors 1.7 � 1012 particle/mouse 1, 6, and 24 h No signs of toxicity observed
(behavioral observations)

[336]

Pd nanosheets Reduced glutathione
(GSH)

4.4 nm Mice 400 lg/mouse 40 days No sign of toxic side effects within
40 days. Neither death nor significant
body weight drop. No noticeable
signal of organ damage

[497]

Pd nanosheets Doxorubicne/
reduced glutathione

4.4 nm Mice 300 lg/mouse 40 days No changes in major organs
(histological examinations)

[337]

Pd nanosheets No coating 16 nm Immunodeficient nude mice 160 lg/mouse 7 days No changes in histological image of
major organs

[338]

WS2 nanosheets PEG coated and no
coated

1.1 nm thickness/50–
100 nm diameter

Murine breast cancer cells
(4T1), HeLa, human embryo
kidney cells (293T)

0.1 mg/mL 24 h No toxicity detected (MTT assay) for
PEGylated particles, non-PEGylated
were toxic at high conc.

[498]

WS2 nanosheets BSA Average thickness
1.6 nm/diameters of
20–100 nm

HeLa Up to 0.2 mg/mL 24 h Viability: >80% [437]

MoS2 nanosheets PEG, loaded with
chlorin e6 (Ce6)

Thickness �1 nm Mice bearing 4T1 tumors 6.85 mg/kg 20 days No significant side effects in major
organs (histological study)

[499]

MoS2 nanosheets PEG Thickness 0.29 nm/80
diameter; thickness
0.39 nm/103 nm
dimeter

4T1 cells
L929 cells

200 lg/mL 24 h No significant cytotoxicity was
observed (CCK-8 assay, morphology)

[500]

BALB/c nude mice 200 lg/mouse Up to 40 days No changes observed in major organs

(continued on next page)
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Table 1 (continued)

Material Coating Size Research model Dose/concentration Treatment
time

Results Ref.

(histological examination)
CuS PEG 11 nm U87 glioblastoma cells 500 lM 26 h No apparent change in cell viability

(microscopy)
[506]

Graphene oxide/CuS
nanocomposite

PEG 13 nm HeLa cells 500 lg/mL 24 h Viability >90% (MTT assay) [507]

FeS nanoplates PEG 32–36 nm BALB/c mice 100 mg/kg 1, 7 and
50 days

No changes in biochemical
parameters of blood, kidney, liver, no
changes observed in major organs
(histological examination)

[508]

Ag2S QDs PEG 5.4 nm BALB/c mice 15 and 30 mg/kg Up to 60 days No interference on the mice growth,
blood biochemistry not changed after
60 days, transiently elevated AST
value, drop in platelet and WBC
counts at the first few days (normal
level after 14 days)

[328]

ZnS:Mn/ZnS core/shell
nanoparticles

Mercaptopropionic
acid/folic acid

8.0 nm HeLa cells 0–400 mg/mL 6 h or 24 h Viability: about 90% at highest dose [509]

CuTe NP Poly(isobutylene-
alt-maleic
anhydride)

10–20 nm 3T3 embryonic fibroblasts 75 nM 3 h Certain toxicity was visible (DAPI
labeling)

[501]

CsxWO3 nanorod PEG Diameter �11 nm,
length �50 nm

HeLa 0.5 mg/mL 24 h Viability >90% [392]

Tungsten oxide
nanorods

PEG Diameter of
4.4 ± 1.5 nm, length of
13.1 ± 3.6 nm

HeLa cells
L929 cells

Up to 1000 lg/mL 12 or 24 h Viability – 80% up to conc. 500 lg/mL,
decrease in viability at higher
concentrations

[400]

W18O49 nanowires PEG Length of 80–400 nm,
thickness 0.9 nm

HeLa cells 0.25–3.0 mg/mL 24 h No significant differences in the cell
proliferation, viability greater than
90% (MTT assay)

[393]

W18O49 nanoparticles Anti-HER-2
monoclonal
antibody

4.5 nm mean diameter Human alveolar basal
epithelial cell line A549

Up to 5 mg/mL 28 and 52 h Decrease 16.8% in viability for the
highest concentration 5 mg/mL

[394]

Na0.3WO3 nanorods PEG Diameter �5 nm,
length 39 nm

TC71 tumor cells Up to 1 mg/mL 24 h Viability 98.9% at 0.5 mg/mL and over
80% for 1.0 mg/mL

[510]

BaTiO3 nanoparticles Glycol-chitosan 285 nm Human neuroblastoma SH-
SY5Y cell line

0, 5, 10, 20, 50 and 100 lg/mL 48–52 h Viability 90% (MTT assay) no
membrane damage (live/dead
viability/cytotoxicity test), absence of
apoptosis (Annexin V test), not
detectible oxidative stress signs

[511]

KTiOPO4 nanocrystals Bare 80 nm Cortical neurons from
mouse embryonic brain

Not reported 30 min
exposure to
NP, 2–4 days
culture

Dendritic growth of cortical neurons
not affected

[512]

CdTe QDs
CdTe/CdS
CdTe/CdS/ZnS core–
shell–shell quantum
dots

Bare 2.15 ± 0.26 nm
3.01 ± 0.42 nm
4.22 ± 0.52 nm (core
sizes), 3.01 and 4.22 nm
for core/shell NPs

HeLa Up to 300 nM 24 h CdTe-cytotoxic (even at lower conc. –
75 nM), core-shell CdTe/CdS QDs less
toxic, viability �80% at conc. 300 nM,
lowest toxicity for CdTe/CdS/ZnS QDs
– �100% at conc. 300 nM

[513]

Carbon based nanomaterials
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Table 1 (continued)

Material Coating Size Research model Dose/concentration Treatment
time

Results Ref.

Nanodiamonds – 2–10 nm Kun Ming mice 0.8 mg/kg, 4 mg/kg, 20 mg/kg
body weight (intra-tracheal
instillation)

3 days Lung toxicity observed
(histopathological examination),
changes in biochemical parameters of
BAL fluid, kidney, liver and blood

[514]

CM-dextran or BSA �120 nm Caenorhabditis elegans 1 mg/mL 3 h up to a
few days

No change in longevity and
reproductive potential, no symptoms
of detectable stress to the organism

[515]

Single-walled carbon
nanotubes

Mouse (anti-human
CD22) IgG

Length 0.2–1.4 lm
(average of 0.59 lm)

Burkitt’s lymphoma cell line
(Daudi cells)

3.6 lg 24 h No toxicity observed ([3H]thymidine
incorporation assay)

[516]

Single-walled carbon
nanotubes

PEG (covalently
bound)

300 nm to a
micrometer

Male KM mice, BALB/c mice
bearing EMF6 tumor and
C57BL mice bearing Lewis
tumor

2.4 mg/kg body weight 1 h, 1 day,
3 days and
7 days

No signs of acute toxicological
responses or clinical abnormalities

[517]

Single-walled carbon
nanotubes

Bare Diameter of ca. 1.4 nm
and a mean length of
ca. 1 lm

Alveolar macrophages from
guinea pigs

1.41, 2.82, 5.65, 11.30, 28.20,
56.50, 113.00, and 226.00 lg/
cm2

6 h Significant, dose dependent toxicity [518]

Graphene QDs PEG 3–5 nm HeLa, A549 10, 20, 40, 80 and 160, 320,
and 640 lg/mL

24 h 95% viability at conc. 160 lg/mL, 85%
at 640 lg/mL, negligible apoptosis or
necrosis, no signs of oxidative stress
or membrane damage

[519]

BALB/c mice 20 mg/kg (7 injections) 40 days No difference in major organs in
comparison to controls,
hematological markers not changed
apart lower WBC (however still
within a normal range), blood
biochemical markers not changed

Carbon nanodots Bare
PEI
PEG

4–7 nm NIH/3T3 5–400 lg/mL 24 h Dose and charge dependent toxicity,
negatively charged (PEI) highest tox.
IC50 � 5 lg/mL low tox. for PEG
coated CDs

[520]

Carbon nanodots – 2–6 nm CHHO-K1
COS-7
HeLa

0–10 mg/mL 24 h No apparent toxicity at dose up to
5 mg/mL, dose dependent, low tox. at
higher conc.

[521]

Carbon nanodots – 2–6 nm HepG2 cells 0.1–1 mg/mL 24 h Cell viability 90–100% (MTT assay) [522]
Graphene oxide

nanosheets and
reduced graphene
oxide nanosheets

PEG Mean of �18.8 nm U87MG, MCF-7 human
epithelial breast cancer cells

Up to 1 mg/mL 48 h Dose dependent toxicity observed:
IC50 of �80 lg/mL (nano-rGO) and
IC50 of �99 lg/mL for nano-GO

[523]

Graphene nanoplates
intercalated with
manganese

– Diameter – 200 nm and
3 nm thickness,

NIH3T3 mouse fibroblasts,
A498 (human kidney
epithelial cells)

1–500 lg/mL 24 and 48 h Dose dependent toxicity observed:
IC50 range 179–301 lg/ml (LDH and
calcein-AM assay)

[524]

Other materials
Mn-doped Si QDs Dextran or dextran

sulfate
4.3 ± 1.0 nm P388D1 cells, mouse

embryonic fibroblast NIH
3T3 cells

0.65, 1.31, 2.61, 5.22, and
10.45 mg/well and 0.64, 1.27,
2.55, 5.10, and 10.20 mg/well

24 h Resazurin viability assay viability –
90% (P388D1 cells) and 97% (NIH 3T3
cells)

[525]

Polypyrrole
nanoparticles

– Average size of
�50 ± 5 nm

BALB/c mice 10 mg/kg 60 days No changes observed in major organs
(histological examination)

[503]

Polypyrrole
nanoparticles

– 46 nm Hela cells 300 lg/mL 12 h Viability �90% [504]
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demonstrates the level of complexity in nanotoxicity studies relates to the definition of dose of nanoparticle-based com-
pounds. Should the mass of the NPs, their total number, or the surface area per unit volume be considered as the dose? These
issues and question are in stark contrast to definition of toxicity based purely on chemical composition, making nanotoxicity
studies using conventional methods unreliable and questionable. The European Commission’s Scientific Committee on
Emerging and Newly Identified Health Risks (SCENIHR) noted that ‘‘experts are of the unanimous opinion that the adverse
effects of nanoparticles cannot be predicted (or derived) from the known toxicity of material of macroscopic size, which obey
the laws of classical physics” (please refer to the European Commission’s Scientific Committee on Emerging and Newly Iden-
tified Health Risks (SCENIHR) for a more detailed discussion concerning the appropriateness of existing methodologies to
assess the potential risks associated with nanotechnologies). Similarly, the U.K. Royal Society and the Royal Academy of Engi-
neering emphasized, ‘‘Free particles in the nanometre size range do raise health, environmental, and safety concerns, and
their toxicology cannot be inferred from that of particles of the same chemical at a larger size” (please see the report from
Royal Society of Engineering on ‘Nanoscience and nanotechnologies: Opportunities and uncertainties’). Furthermore, the
Institute of Occupational Medicine notes, ‘‘Because of their size and the ways they are used, they have specific physical-
chemical properties and therefore may behave differently from their parent materials when released and interact differently
with living systems. It is accepted, therefore, that it is not possible to infer the safety of nanomaterials by using information
derived from the bulk parent material” [526].

There are some arguments against developing specialized regulations for nanotechnology products. This is because the
existing methods exploit the most advanced available scientific methodologies to assess risks and safety, and they have been
successful in identifying dangerous or unacceptable materials or products. Rather than creating a dedicated regulation based
on size, it is postulated to treat particle size as one of the several parameters which define a substance to be approved.
Another argument against global regulation originates from the fact that nanotechnology applications are often hypothetical
with the strongest impact far in the future, thus regulating such futuristic technologies is vague. At the same time, the nano-
materials and products based on them, are not much more challenging than any other new materials. Therefore, a minor
tuning to already existing regulatory schemes is faster and more feasible than introducing global regulations [527].

The regulatory agencies of the European Union, the United States and Australia agree on the accurateness of existing reg-
ulations with respect to nanotoxicity, however numerous initiatives are being considered at the national and international
level to decide whether additional studies are necessary. Some preliminary approaches to understand the role, and potential
pitfalls of nanotechnology, were initiated in Europe in 2004, when a warning about the necessity of addressing any potential
negative impacts of nanoparticles on public health, safety, and the environment were articulated (please see the report from
the Commission of the European Communities, Communication from The Commission, Towards a European strategy for
Nanotechnology, 2004). The expected future impact of nanotechnology on the quality of life, materials sciences, healthcare,
information technology, and the environment has been acknowledged much earlier by many countries including the USA,
Japan, Europe, China, and Russia. At that early time, the potential advantages of nanotechnology dominated the potential
risks associated with the extensive production and use of nanomaterials. Eight years later, in 2011, the European Commis-
sion announced and adopted a definition of nanomaterials [528]. Existing knowledge concerning nanomaterials was summa-
rized in 2012 in the Commission Communication on the Second Regulatory Review. At that time, carbon black and
amorphous silica were the most predominant nanomaterials in the market-place but new nanomaterials, such as nano-
titanium dioxide, nano-zinc oxide, fullerenes, carbon nanotubes, and nanosilver were fast gaining interest for use in new
applications such as in catalysts, electronics, solar panels, batteries and in the biomedical field. The communication con-
cluded (please see communication from the Commission to The European Parliament, The Council And The European Eco-
nomic And Social Committee, Second Regulatory Review on Nanomaterials, 2012), that although nanomaterials ‘‘are
similar to normal chemicals/substances in that, some may be toxic and some may not”, possible risks are actually related
to a given nanomaterial for a specific application, therefore the risk assessment shall be examined on a case-by-case basis.
Despite the fact that current toxicity assessment methods have been found applicable to nanomaterials, continuing work on
particular aspects of risk assessment was expected and the EU Commission advised modification of the Registration, Eval-
uation, Authorisation and restriction of CHemicals (REACH) Annexes and further development of guidance for registration
of new (nanotechnology based) chemicals after 2013. Similar to REACH, the Scientific Committee on Emerging and Newly
Identified Health Risks (SCENIHR) stated that while the existing toxicological and eco-toxicological methods are applicable
to quantify and estimate many of the threats linked to the production and exploitation of nanoparticles, these methods may
not be sufficient to address all of the hazards (please see Scientific Committee on Emerging And Newly Identified Health
Risks (SCENIHR), Opinion on The appropriateness of existing methodologies to assess the potential risks associated with
engineered and adventitious products of nanotechnologies, 2005). It should be noted, that many European countries (the
German Federal Institute for Risk Assessment; the Department for Environment, Food and Rural Affairs (DEFRA) in the Uni-
ted Kingdom; the French Ministry of Ecology, Sustainable Development and Energy; the Danish Consumer Council and the
Danish Ecological Council in cooperation with Technical University of Demark; the Netherlands National Institute for Public
Health and the Environment-RIVM, as well as others) have developed their own regulations and guidelines, which more pre-
cisely described how approvals, labeling, reporting, or communication with REACH shall be performed when it comes to new
products which involve nanomaterials [529].

In the USA, the advantages and industrial applications of nanomaterials have also been exploited before risk assessment
methods had been developed and nanotoxity had been understood. In 2007, the United States Food and Drug administration
stated that it does not see the need to develop any regulatory definition of nanomaterials and nanotoxicology (please see the
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Nanotechnology Task Force Report). However, in response to growing interest and commercial exploitation of nanomaterial
products on the market, FDA decided to issue preliminary guidelines in 2011 (please see draft guidance: Considering
Whether an FDA-Regulated Product Involves the Application of Nanotechnology) to indicate whether a product, which is
a subject to FDA approval, contains any nanomaterials or involves nanotechnology products. The following year, more details
were provided with respect to the food and cosmetic industries, which involved the use of nanomaterials (please see FDA
Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes, including Emerging Tech-
nologies, on the Safety and Regulatory Status of Food Ingredients and Food Contact Substances, Including Food Ingredients
that are Color Additives). Unlike in Europe, the FDA concluded in 2012, that safety assessment methods existing in the USA,
are satisfactory for a variety of materials including nanomaterials. In 2001 a National Nanotechnology Initiative (NNI,
www.nano.gov) was established as a response to the natural shift from the fundamental studies on the synthesis and char-
acterization of nanomaterials towards exploiting nanotechnology-enabled products (e.g. in electronics, clean energy tech-
nologies, clothing and fabrics, car industry, the biomedical and drug market, etc.). Between 2009 and 2016, the US
revenue from the sale of nanotechnology-based products increased over sixfold to reach ca. 500 billion US dollars. The most
recent NNI Strategic Plan was issued in October 2016. The document discusses: (i) advancing a world-class nanotechnology
R&D program, (ii) fostering the transfer of new nano-technologies into products for commercial and public products, (iii)
developing and sustaining educational resources to advance nanotechnology and (iv) support responsible development of
nanotechnologies. In the mean-time the US Environment Protection Agency (EPA) released numerous nanotechnology white
papers (like EPA 100/B-07/001, February 2007), underlining the necessity to control and monitor the production of nan-
otechnology containing products. Recently the EPA has issued a final version of its rules, which oblige manufacturers to
report manufactured or processed nanoparticles, which, as defined in Section 3 of Toxic Substances Control Act (TSCA),
are solids at 25 �C and standard atmospheric pressure; are manufactured or processed in a form where any particles, includ-
ing aggregates and agglomerates, are in the size range of 1–100 nm (nm) in at least one dimension; and are manufactured or
processed to exhibit one or more unique and novel properties. This ‘definition’ of nanomaterial differs from the EU definition,
which states that nanomaterial ‘means a natural, incidental, or manufactured material containing particles, in an unbound
state, or as an aggregate or as an agglomerate, where, for 50% or more of the particles in the size number distribution, one or
more of the external dimensions is in the size range of 1–100 nm. The EPA rule does not apply to chemical substances man-
ufactured or processed in forms that contain less than 1% by weight of any particles, including aggregates and agglomerates,
in the size range of 1–100 nm. It is important to mention that according to the EPA, ‘unique and novel properties’ means the
reportable chemical substances are not just compounds containing nanoparticles (size 1–100 nm), but they must also
demonstrate a size-dependent property different from the properties of the material at sizes greater than 100 nm, which
is actually the purpose that the chemical was manufactured or processed to have that form or size.

The situation in Australia is similar to that in the USA. A National Nanotechnology Strategy has been developed (please
see the report from Australian Government, Approach to the Responsible Management of Nanotechnology). A 2008 review of
Australia’s regulatory framework (see a Review of Possible Impacts of Nanotechnology on Australia’s Regulatory Framework
Final Report September 2007) concluded that there were significant regulatory legal gaps that should be addressed. Even
though it was obvious nanomaterials behave differently to bulk forms of the substance, most regulators (National Industrial
Chemicals Notification and Assessment Scheme, Department of Environment or Therapeutic Goods Association) do not
require a separate risk assessment of nanoforms of existing substances.
7. Current challenges and future perspectives

7.1. Sensitivity and background interference

The decreased light absorption of water, pigments, and fluorescent proteins provides an optimal signal-to-background
ratio for NIR optical imaging, which makes it easy to capture/generate images and thermal signals up to a distance of a
few millimeters [530]. However, non-negligible red to NIR auto-fluorescence from hemoglobin, melanin, lipids, and other
endogenous fluorophores, may still be multi-photon excited by NIR femtosecond lasers [531]. Auto-fluorescence in the vis-
ible wavelengths is an important issue because it interferes with signal detection in vivo [532]. These auto-fluorescence sig-
nals will mask the desired signal and severely limit the target-to-background ratios [533]. For example, the commercially
available Cy5.5 molecule has excitation/emission at 675 nm/694 nm which can be applied for molecular imaging in tracing.
To avoid the absorption and scattering at short wavelengths and the elevated water absorption over 950 nm, imaging based
on an NIR multi-photon process can yield the deepest tissue penetration, with improved resolution, the highest sensitivity,
and with minimal photodamage/photobleaching (Fig. 11) [534]. Although NIR excitation can greatly suppress auto-
fluorescence, it still has a major limitation in the lack of a suitable scale-up synthesis method for the production of biocom-
patible, large absorption cross-sections, high quantum efficiency, multiphoton, imaging nanoprobes.

Another strategy for improving sensitivity is by designing target-specific substances conjugated to NIR materials. The sur-
face groups would help find the disease tissue and/or sense the targeting area. The substantial accumulation and internal-
ization of desired particles would therefore be expected to locally increase signal generation. Additionally, in order to be an
effective treatment at focused sites in solid tumors, the accumulation of the treatment in a very small area will prevent

http://www.nano.gov


Fig. 11. (A) Tissue auto-fluorescence is much lower at NIR wavelengths. An untreated nude mouse was imaged with visible (532 nm) and NIR (700 nm or
800 nm) light. Auto-fluorescence at 532 nm (the Cy3 channel) was very high [532]. (B) A schematic showing how a tumor can be imaged directly through
the skin in a live animal. The optical imaging modality (that is, one- or three-photon) and properties of the probes will determine the imaging penetration
depth and resolution. If multiple tissue components are labeled with different color dyes, it is possible to image them simultaneously [534]. Reproduced
with permission [532,534].
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injury to the surrounding tissue. Indeed, targeting substances using a small peptide, DNA or an antibody can increase the
binding selectivity in many pre-clinical and clinical studies [535,536].

Current studies have moved to further understand the molecular mechanisms for the motion, apoptosis, and necrosis of
living cells in response to light [401,537–539]. In addition to the effect on cell migration, these reports also describe a pro-
inflammatory response whereby pro-inflammatory cytokines are released into the extracellular milieu. These results have
educated researchers and doctors to be more careful, by using the appropriate laser wavelengths, power density, and drug
doses, in procedures aimed at disease healing, restoration and ablation.
7.2. Technical hurdles and potential solutions

In the clinic, therapeutic and surgical lasers commonly use He-Ne, Nd:YAG, and CO2 lasers in the red-to-IR wavelengths.
These laser systems traditionally require high-cost pump lasers. However, the laser power supply pumps even more energy
in a very short time into the living system, which results in the generation of hot plasma and evaporation and damages the
healthy tissue in addition to the tissue of interest. Therefore, the operation power needs to be lower than 250–670 mW/cm2

to avoid a thermal effect that would otherwise damage the tissues [540].
Among the f-block, d-block, defect-related nanoparticles and organic dye donor–acceptor pair hybrid, lanthanide-doped

UCNPs are a major focus of current research aimed at achieving better spatial and higher resolution optical imaging. Their
advantage is the utility of low power (�10�1 W/cm2) and the use of low cost CW laser diodes to generate upconverted
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photons, which is in contrast with the high power density excitation (106 W/cm2) needed with an expensive NIR ultrafast
pulsed laser in nonlinear optical processes [140]. Early work focused on broad applications in biomedicine using different
single solid nanocores and core-shell nanostrucutures with specific surface properties [84,140,321,541–543].

Size-dependent QDs have a multicolor tracking capacity and have been used to monitor multiple antibody labeling of
cells in vitro and nanomedicine distribution in vivo. However, they suffer from toxicity to tissues in vivo. Therefore, there
is an urgent need to replace the traditional toxic QD with new optical nano-reagents. A series of UCNPs with different Ln
dopants had NIR-to-visible emission compatible with use as optical bio-probes. With adjustments in the Y/Yb/Er ratio,
Ln-doped NaYF4 UCNPs were created that exhibited different color emission peaks of blue, green, and red, as reported by
Liu and co-workers [544]. These molecules provided a new insight into the multicolor tracking required for lymph node
mapping. Compared to conventional QDs [82], they are less toxic to tissues. In addition, by tuning the ratio of the Ln dopants,
and excitation with different laser wavelengths, a shift in the color of Ln-based UCNPs was observed. Yao and co-workers
have reported a new polymer nanocomposites that consisted of poly-trimethylolpropane trimethacrylate as a polymer
matrix and lanthanide orthophosphate:Tb NPs as the non-linear chromophore [545]. By adjusting the ratio of centrosym-
metric LaPO4 to non-centrosymmetric TbPO4-based hydrate, the LaPO4:Tb nanomaterials were demonstrated to have SHG
properties due to symmetry breaking. These polymer-inorganic nanocomposites have wide spectral tunability from
375 nm to 425 nm for SHG peaks, with an excitation range of 750–850 nm. They also found that the SHG intensity was
related to the refractive indices of the materials and was suggested to vary with the frequency of the fundamental wave
[546,547]. In the future, controlling the atom number in the formation of the Au nanocluster might offer an alternative solu-
tion, in place of Ln-based nanoparticles, for obtaining color-tunable nanoreagents.

Considering that laser operation in photomedicine is required to be user friendly, a single CW laser irradiation that can
perform simultaneous PDT/PPT treatments offers a new attractive method to overcome the intrinsic limitations of PDT or
PTT alone. PPT alone is of particular benefit to large-area ablation of tumor cancer cells because the heating area is extended.
However, the temperature at the periphery of the tumor tissue is less than at the central site and thus unaffected cancer cells
can re-grow and migrate to affect healthy tissue nearby. Synchronous PDT treatment could be developed to assist clean-up of
the residual cancer cells. On the other hand, the PDT process is oxygen-independent and has limited efficacy in the hypoxia
environment. In that situation, the PTT can still do the job well (oxygen unnecessary). Based on this complementary advan-
tage, a new NIR nanoparticle-platform consisting of a Au nanoreagent and a Ce6 photosensitizer was developed, which
exhibited single wavelength stimulation of PTT/PDTon cancer cells at 671 nm (1–2 W/cm2) [548]. An ICG-loaded human
serum albumin composite (�75 nm), developed by Sheng et al. [174], can simultaneously convert the absorbed light energy
to singlet oxygen species and heat upon an excitation at 808 nm laser for 5 min (0.8 W/cm2) thus providing for synergistic
PDT/PTT treatment. The combination of PDT and PTT had a higher anticancer efficacy than either single PDT or PTT in an
animal study.

In recent years, low-level laser therapy (LLLT) with an NIR laser device has become an increasingly mainstream modality
for curing disease [549]. This LLLT system can promote tissue regeneration, reduce inflammation and relieve pain through
non-thermal mechanisms [538,550–552]. The most common LLLT management approach includes laser radiation, such as
ruby (694 nm), argon (488 and 514 nm), helium-neon (632.8 nm), krypton (521, 530, 568, 647 nm), gallium-aluminum-As
(805 or 650 nm), and gallium-AS (904 nm). The proposed LLLT system requires the following [552]:

(a) A power laser with 0.001–0.1 W of output.
(b) A wavelength in the range 300–10,600 nm.
(c) A pulse rate from 0, which is continuous to 5000 Hz (cycles per second).
(d) Intensity doses of 0.01–10W/cm2 and 0.01–100 J/cm2.

However, for most nanoparticle-mediated tumor depletion, the commonly required power density for photo-thermal
therapy is 1–6W/cm2, despite the high penetration of NIR light [457,553]. In contrast to high-energy photothermal ablation,
the PDT treatment requires a lower power density of incident light. Although this advantage is addressed, most photosen-
sitizers [405] (e.g. phthalocyanine-based derivatives [554,555], porphyrin-based compounds [556,557] and phenothiazine
structured dyes [76,558,559]) can only be activated upon exposure to visible wavelengths. To overcome the limitation of
the light absorption by tissues, upconversion nanoparticles can convert NIR light into visible light, and the neighboring PS
can also be excited through FRET [560]. The ideal design is to overlap the emission spectra of UCNPs in some visible regions
with photosensitizer loading. This idea was first presented and explored by Prasad and co-workers [561,562]. Since then,
many groups have used UCNPs to convert the deeply penetrating near-infrared light into visible wavelengths for the
photo-excitation of photosensitizers and then the production of cytotoxic 1O2, resulting in cancer cell damage via apoptotic
and necrotic pathways [458,563].
8. Concluding remarks

The engineered nanoparticles discussed here offer improved, often exotic, physico-chemical properties, and thus nan-
otechnology will definitely gain by the development of such novel NIR-to-NIR materials. Nevertheless, these developments
in nanotechnology poses important questions regarding the impact of these new materials on living systems. Numerous
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studies have demonstrated the need for nanoparticle risk assessment in relation to a long list of parameters, such as surface
charge and (bio)chemistry, size, shape anisotropy, purity, stability, and many others. Such evaluations should contribute to
nano-safety considerations during their design and optimization. These existing results also highlight the need to character-
ize not only NPs, but also the ultimate properties of NPs in vitro and in vivo, starting from protein adsorption in biological
media, colloidal stability, cellular permeability and translocation within cell membranes and whole cells, up to in vivo cir-
culation, aggregation, barrier translocation, and finally clearance. This knowledge is important not only for risk assessment
of NPs, but also to understand their interaction with biological systems in order to intentionally design enhanced biomedical
applications, for use as biomedical imaging, diagnostic tools, and nanoparticle based drug delivery theranostic systems.
Moreover, during deep-tissue theranostics, the wavelength and intensity level of NIR excitation should be taken into consid-
eration to achieve the least invasiveness. At excitation wavelengths shorter than 800 nm, endogenous photosensitizers like
porphyrins can be excited by two photons, thus generating ROS in tissues. Even though the 1000–1300 nmwavelength range
has high penetration in biological tissues, water or pigment absorption induced photo-damage will not be negligible in pho-
toacoustic or high nonlinearity imaging like THG microscopy. A lower pulse excitation rate could help with the relaxation of
thermal energy. On the other hand, efficient and multimodal NIR nanomaterials are required to obtain good-enough contrast
at low excitation levels.
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