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This paper presents a novel approach for sparse regularization of low-rank quaternion matrix optimization 
problems. Quaternion matrices, which extend the concept of complex numbers to four dimensions, have shown 
promising applications in various fields. In this work, we exploit the inherent sparsity present in different signal 
types, such as audio formats and images, when represented in their respective bases. By introducing a sparse 
regularization term in the optimization objective. We propose a regularization technique that promotes sparsity 
in the Quaternion Discrete Cosine Transform (QDCT) domain for efficient and accurate solutions. By combining 
low-rank restriction with sparsity, the optimized model is updated using a two-step Alternating Direction Method 
of Multipliers (ADMM) algorithm. Experimental results on color images demonstrate the effectiveness of the 
proposed method, which outperforms existing relative methods. This superior performance underscores its 
potential for applications in computer vision and related fields.
1. Introduction

Color image completion aims to recover missing pixels using the lim-

ited known pixels in an image. Many matrix-based completion (MC) 
approaches have been designed for this purpose. Typically, a color im-

age is processed by separating the red, green, and blue (RGB) channels 
into three matrices, and prior knowledge about the desired model is 
used for inpainting [1]. An effective and widely used prior knowledge 
is low-rankness. However, such MC approaches involve dimension re-

duction, which can destroy the structure of the color image. To avoid 
this, quaternion-based approaches have gradually become more com-

monly used in image processing, as these allow the values of one pixel 
in the color image to be put in three imaginary parts of one quaternion 
to form a more reliable quaternion matrix [2,3].

For color image completion in the quaternion domain, the typical 
prior knowledge is the low-rankness, analogous to the prior matrix-

based cases. The authors in [4] proposed a low-rank quaternion ap-

proximation model based on modified quaternion nuclear norm (QNN). 
However, calculating these norms need to operate the computation-

ally complex quaternion singular value decomposition (QSVD). To im-

prove the time-consuming process, researchers in [5] developed low-

rank quaternion matrix factorization approach by factorizing the target 
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quaternion matrix into the product of two smaller quaternion factor ma-

trices. Thus, the low-rank estimation process is more efficient because it 
only requires optimizing two smaller quaternion matrices. Still, similar 
to matrix-based cases, this factorization method may encounter difficul-

ties in finding the global minimum and instead get stuck in local minima 
[6,7].

Based on low-rankness, the previously developed quaternion-based 
methods can thus process color images overall to obtain better recovery 
results; however, they ignore other important properties such as spar-

sity. The direct motivation to reconsider this can be derived from the 
fact that various kinds of signals, including audio and images, have nat-

urally sparse structures, with regard to given bases such as Fourier and 
wavelet [8–10]. This fact has inspired new approaches in signal pro-

cessing, and especially for vision tasks, such as face recognition [11,12], 
image recovery [13–16], and similar tasks. In terms of image comple-

tion, as highlighted in [17], sparsity is also an important property that 
can be used in MC.

In spite of the successes of these algorithms being encouraging, most 
of them are optimized only in the real domain. When images are op-

timized in the quaternion domain, the main direction is sparse repre-

sentation (SR) [18,19], and, in terms of image completion, the results 
as seen in [20] are not very satisfactory. Hence, to develop more accu-
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rate reconstructions, sparsity as an additional information is considered 
in this paper to facilitate color image completion in the quaternion do-

main. This sparsity is depicted by QDCT, with low-rankness depicted 
using the quaternion truncated nuclear norm (QTNN). The novel model 
is named the Low-rank Quaternion Recovery with Sparse Regularization 
(LRQR-SR) model.

The main contributions of this work are as follows: This research fo-

cuses on quaternion MC by integrating low-rankness and sparsity. The 
key idea is that the quaternion-based method can maintain the structure 
of the color image, enabling sparsity to be expressed as an 𝑙1 norm regu-

larizer in the transformed domain. Additionally, a closed-form solution 
for the model, which combines the Frobenius norm and the 𝑙1 norm, is 
proposed and backed by theoretical analysis. Extensive experimental re-

sults on real color images demonstrate the competitive performance of 
the proposed method compared to several state-of-the-art and compara-

ble methods.

The remainder of this paper consists of four additional sections. 
Section 2 provides an overview of the relevant notations and basic 
knowledge about quaternions. In section 3, we introduce the model of 
low-rank quaternion recovery with sparse regularization. Section 5 com-

pares the numerical experiment with other related methods. Finally, the 
conclusion is presented in Section 6.

2. Notations and preliminaries

2.1. Notations

In the real domain ℝ, we denote scalar, vector, and matrix as a, 
𝐚, and 𝐀, respectively. In the quaternion domain ℍ, we denote scalar, 
vector, and matrix as �̇�, �̇�, and �̇�, respectively. Besides, we denote the 
complex space as ℂ. For a quaternion �̇�, we denote the real part and 
imaginary part as R(�̇�) and I(�̇�). We denote transpose, conjugate trans-

pose, and inverse as (⋅)𝑇 , (⋅)𝐻 , and (⋅)−1, respectively. We use ‖ ⋅ ‖𝐹
and ‖ ⋅‖∗ to represent the Frobenius norm and nuclear norm. We define 
the inner product of ∗1 and ∗2 as ⟨∗1 ⋅ ∗2⟩ ≜ tr(∗𝐻1 ∗2), where 𝑡𝑟(⋅) is the 
trace function. Both I𝑟×𝑟 and I𝑟 denote the 𝑟 × 𝑟 identity matrix.

2.2. Preliminaries

Quaternions are proposed by Hamilton in 1843 [21]. A quaternion 
number �̇� ∈ ℍ is combined by a real part and three imagery parts, and 
can be written as following form:

�̇� = 𝑞0 + 𝑞1i + 𝑞2j + 𝑞3k, (1)

where 𝑞𝑛 ∈ℝ (𝑛 = 0, 1, 2, 3), and i, j, k are three imaginary number units 
which have the following relationships:

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i,ki = −ik = j. (2)

R(�̇�) ≜ 𝑞0 is the real part of �̇�. I(�̇�) ≜ 𝑞1i + 𝑞2j + 𝑞3k is the imaginary 
part of �̇�. Hence �̇� = R(�̇�) + I(�̇�). Besides, when real part 𝑞0 = 0, �̇� is 
a pure quaternion. The conjugate and the modulus of �̇� are defined as: 
�̇�∗ ≜ 𝑞0 − 𝑞1i − 𝑞2j − 𝑞3k and |�̇�| ≜√

�̇��̇�∗ =
√
𝑞20 + 𝑞

2
1 + 𝑞

2
2 + 𝑞

2
3 . It is im-

portant to note that the multiplication in the quaternion domain is not 
commutative �̇��̇� ≠ �̇��̇�.

For quaternion matrix �̇� = (�̇�𝑖𝑗 ) ∈ ℍ𝑀×𝑁 , where �̇� = 𝐐0 + 𝐐1i +
𝐐2j+𝐐3k and 𝐐𝑛 ∈ℝ𝑀×𝑁 (𝑛 = 0, 1, 2, 3) are real matrices. When 𝐐0 =
𝟎, �̇� is a pure quaternion matrix. The Frobenius norm is defined as: 
∥ �̇� ∥𝐹=

√∑𝑀

𝑖=1
∑𝑁

𝑗=1 |�̇�𝑖𝑗 |2 =√
𝑡𝑟(�̇�𝐻 �̇�).

Definition 1 (The Cayley-Dickson form [22]). The Cayley-Dickson form 
of quaternion matrix �̇� =𝐐0+𝐐1i+𝐐2j+𝐐3k ∈ℍ𝑀×𝑁 is �̇� =𝐐𝑝+𝐐𝑞 j, 
where 𝐐𝑝 =𝐐0 +𝐐1i and 𝐐𝑞 =𝐐2 +𝐐3i ∈ℂ𝑀×𝑁 . Then the isomorphic 
complex matrix representation of quaternion matrix �̇� can be denoted 
2

as 𝐐𝑐 ∈ℂ2𝑀×2𝑁 :
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𝐐𝑐 =
(

𝐐𝑝 𝐐𝑞

−𝐐∗
𝑞

𝐐∗
𝑝

)
2𝑀×2𝑁

.

Definition 2 (The rank of quaternion matrix [23]). The rank of quater-

nion matrix �̇� = (�̇�𝑖𝑗 ) ∈ ℍ𝑀×𝑁 is defined as the maximum number of 
right (left) linearly independent columns (rows) of �̇�.

Theorem 1 (QSVD [23]). Given a quaternion matrix �̇�∈ℍ𝑀×𝑁 be of rank 
𝑟. There are two unitary quaternion matrices �̇� ∈ ℍ𝑀×𝑀 and �̇� ∈ ℍ𝑁×𝑁

such that

�̇� = �̇�
(
𝚺𝑟 𝟎
𝟎 𝟎

)
�̇�𝐻 = �̇�𝚲�̇�𝐻, (3)

where 𝚺𝑟 = 𝑑𝑖𝑎𝑔(𝜎1,⋯ , 𝜎𝑟) ∈ ℝ𝑟×𝑟, and all singular values 𝜎𝑖 > 0, 𝑖 =
1, ⋯ , 𝑟.

Definition 3 (QNN [4,24]). The nuclear norm of the quaternion matrix 
�̇� ∈ℍ𝑀×𝑁 is defined as ∥ �̇� ∥∗=

∑min(𝑀,𝑁)
𝑖=1 𝜎𝑖(�̇�), where 𝜎𝑖 is singular 

value that can be obtained from the QSVD of �̇�.

As observed in [25], the bigger singular values would maintain more 
information on the color image than smaller singular values. Moreover, 
the first few largest singular values do not change the rank. Hence, the 
quaternion-based truncated nuclear norm (QTNN) is developed as fol-

lows.

Definition 4 (QTNN [26]). The sum of min(𝑀, 𝑁) − 𝑟 minimum singu-

lar values is the quaternion truncated nuclear norm of the quaternion 
matrix �̇� ∈ℍ𝑀×𝑁 , i.e., ∥ �̇� ∥𝑟=

∑min(𝑀,𝑁)
𝑖=𝑟+1 𝜎𝑖(�̇�).

Theorem 2 ([26]). For any quaternion matrix �̇� ∈ ℍ𝑀×𝑁 , and any ma-

trices �̇� ∈ ℍ𝑟×𝑀 and �̇� ∈ ℍ𝑟×𝑁 that are satisfied with �̇��̇�𝐻 = 𝐈𝑟×𝑟 and 
�̇��̇�𝐻 = 𝐈𝑟×𝑟. 𝑟 is any positive integer (𝑟 ≤min(𝑀, 𝑁)), we have

∣ 𝑡𝑟(�̇��̇��̇�𝐻 ) ∣≤
𝑟∑
𝑖=1

𝜎𝑖(�̇�). (4)

Besides, max|𝑡𝑟(�̇��̇��̇�𝐻 )| =∑𝑟

𝑖=1 𝜎𝑖(�̇�).

3. Low-rank quaternion recovery with sparse regularization

3.1. Problem formulation

Let �̇� ∈ ℍ𝑀×𝑁 be the partial observed color image. The purpose is 
to recover �̇� ∈ℍ𝑀×𝑁 by improving QNN as the characterization of the 
low-rank property more accurately. The QNN model can be formulated 
as

min
�̇�

∥ �̇� ∥∗ s.t. 𝑃Ω(�̇�) = 𝑃Ω(�̇�), (5)

where Ω is the index set of the observed data, and the linear operation 
𝑃Ω(∗) is the operator that indicates that the elements in Ω are remain 
while other elements are zero.

While being low rank is a feasible condition for MC, it is often insuffi-

cient on its own [17]. Building upon this observation and the successful 
utilization of sparsity in MC [27,14,28], this paper introduces the LRQR-

SR model. The LRQR-SR model incorporates both a low-rank constraint 
and sparsity in the quaternion domain. Specifically, the low-rank con-

straint is represented using QTNN, while sparsity is achieved through 
the use of the 𝑙1 norm. By simultaneously considering both low-rank and 
sparsity, the LRQR-SR model enhances the effectiveness of quaternion-

based matrix completion tasks.

As the several largest singular values will not influence the rank, the 
QTNN model is proposed, and the estimation of low-rankness should 
thus be more accurate. Based on model (5) and Definition 4, this model 

is formulated as
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Fig. 1. The comparison of energy accumulation under different transformations.
min
�̇�

∥ �̇� ∥𝑟 s.t. 𝑃Ω(�̇�− �̇�) = 0, (6)

where ‖�̇�‖𝑟 =
∑min(𝑚,𝑛)
𝑖=𝑟+1 𝜎𝑖(�̇�) =

∑min(𝑚,𝑛)
𝑖=1 𝜎𝑖(�̇�) −

∑min(𝑚,𝑛)
𝑖=𝑟 𝜎𝑖(�̇�) =∥

�̇� ∥∗ − 
∑min(𝑚,𝑛)
𝑖=𝑟 𝜎𝑖(�̇�).

As in the previously mentioned strategies, the quaternion matrix is 
assumed to be sparse in a certain transformed domain. Hence, the re-

sulting model can be formulated as

min
�̇�

∥ �̇� ∥∗ −
min(𝑚,𝑛)∑
𝑖=𝑟

𝜎𝑖(�̇�) + 𝜆 ∥ �̇� ∥1 s.t. 𝑃Ω(�̇�− �̇�) = 0, (�̇�) = �̇�,

(7)

where  (⋅) is the transform operator, �̇� is the transformed quaternion 
matrix, and 𝜆 is a positive number.

However, it is hard to solve problem (7) directly due to the fact that 
QTNN is nonconvex. To address this problem, Theorem 2 is applied such 
that problem (7) can be rewritten as

min
�̇�

∥ �̇� ∥∗ − max
�̇��̇�𝐻=𝐈,�̇��̇�𝐻=𝐈

|𝑡𝑟(�̇��̇��̇�𝐻 )|+ 𝜆 ∥ �̇� ∥1

s.t. 𝑃Ω(�̇�− �̇�) = 0  (�̇�) = �̇�,
(8)

where �̇� = (�̇�1, ⋯ �̇�𝑟)𝐻 and �̇� = (�̇�1, ⋯ �̇�𝑟)𝐻 . {�̇�1, ⋯ �̇�𝑟} and {�̇�1, ⋯ �̇�𝑟}
are the first r columns of �̇� and �̇�. �̇� and �̇� are left and right unitary 
quaternion matrices that are calculated by QSVD of �̇�.

In this way, the whole procedure of the method can be divided into 
two main steps: in the first step, the quaternion matrices are computed 
by QSVD, and then the main goal becomes to optimize problem (8). The 
overall procedure is summarized in Algorithm 1.

Algorithm 1 Low-rank Quaternion Recovery with Sparse Regulariza-

tion.

Input: the observed quaternion matrix �̇�∈ℍ𝑀×𝑁 , the position set of observed 
elements Ω, and the tolerance 𝜀0 .

1: Initial the initial number of iteration 𝑘 = 1, �̇�1 = �̇�.

2: Repeat

3: Step 1. Calculating the QSVD of the given �̇�𝑘

[�̇�𝑘, 𝚺𝑘, �̇�𝑘] = QSVD(�̇�𝑘)
4: where �̇�𝑘 = (�̇�1, ⋯ , �̇�𝑚) ∈ℍ𝑀×𝑀 ,

�̇�𝑘 = (�̇�1, ⋯ , �̇�𝑛) ∈ℍ𝑁×𝑁 .

5: Calculating �̇�𝑘 = (�̇�1, ⋯ , �̇�𝑟)𝑇 ∈ℍ𝑟×𝑀 and

�̇�𝑘 = (�̇�1, ⋯ , �̇�𝑟)𝑇 ∈ℍ𝑟×𝑁 .

6: Step 2. Solving the optimization problem as followed

�̇�𝑘+1 = argmin
�̇�

∥ �̇� ∥∗ −|𝑡𝑟(�̇�𝑘�̇��̇�𝐻𝑘 )| + 𝜆 ∥ �̇� ∥1,

s.t. 𝑃Ω(�̇�− �̇�) = 0  (�̇�) = �̇�.

7: Until convergence ‖�̇�𝑘+1 − �̇�𝑘‖𝐹 ≤ 𝜀0 , �̇�𝑜𝑝𝑡 = �̇�𝑘+1.

Output: the recovered quaternion matrix �̇�𝑜𝑝𝑡.

3.2. Quaternion discrete cosine transform

3.2.1. The reasons for utilizing QDCT

Operating in the quaternion domain for image recovery offers several 
advantages. By representing color images using quaternion algebra, the 
RGB structure of the image can be preserved, leading to more accurate 
3

and reliable image recovery results. In addition, the spectral coefficients 
obtained using QDCT have strong energy and good redundancy elimi-

nation characteristics [29], while QDCT itself is easy to quantitatively 
analyze. Finally, in the real and complex fields, the energy concentra-

tion of the input information throughout two-dimensional DCT is higher 
than that of the input information after discrete Fourier transform (DFT). 
Research into QDCT is driven by the existence of successful applications 
in both the real and complex domains, and for these reasons, QDCT is 
adopted in the proposed method.

Fig. 1 gives an illustration of the proposed sparse representation on 
the color image “Parrot”. The first image is the original image; the sec-

ond, third, and fourth image respectively display the coefficients after 
QDCT, quaternion DFT (QDFT), and DCT (for grayscale image) using 
a logarithmic scale. After transformation, the coefficients of QDCT and 
DCT are mainly concentrated in the upper left corner, and most of the 
remaining coefficients are close to zero. However, after QDFT transfor-

mation, the coefficients are mainly concentrated at four corners, which 
means that utilizing cosine transform is superior to Fourier transform for 
depicting the sparsity of color images in the quaternion domain. Besides, 
when comparing QDCT with DCT, especially in the upper left corner, it 
can be observed that QDCT has higher energy compaction than DCT.

3.2.2. Definition of QDCT

As the multiplication of quaternions is non-commutative, there are 
two forms of QDCT: a left-handed form QDCT𝐿 and a right-handed form 
QDCT𝑅. These can be formulated as the following equations, respec-

tively [30]:

QDCT𝐿(𝑝, 𝑠) = 𝛼(𝑝)𝛼(𝑠)
𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

�̇� ⋅ �̇�(𝑚,𝑛) ⋅𝐶(𝑝, 𝑠,𝑚, 𝑛) (9)

QDCT𝑅(𝑝, 𝑠) = 𝛼(𝑝)𝛼(𝑠)
𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

�̇�(𝑚,𝑛) ⋅𝐶(𝑝, 𝑠,𝑚, 𝑛) ⋅ �̇�, (10)

where �̇�(𝑚, 𝑛) ∈ ℍ𝑀×𝑁 , m and n is the row and column of quaternion 
matrix �̇�. �̇� is a pure quaternion and satisfies �̇�2 = −1. The values of

𝛼(𝑝), 𝛼(𝑠) and 𝐶(𝑝, 𝑠, 𝑚, 𝑛) are analogous to DCT in the real domain:

𝛼(𝑝) =
⎧⎪⎨⎪⎩
√
1∕𝑀 𝑝 = 0√
2∕𝑀 𝑝 ≠ 0,

𝛼(𝑠) =
⎧⎪⎨⎪⎩
√
1∕𝑁 𝑠 = 0√
2∕𝑁 𝑠 ≠ 0.

(11)

𝐶(𝑝, 𝑠,𝑚, 𝑛) = cos[𝜋(2𝑚+ 1)𝑝
2𝑀

] cos[𝜋(2𝑛+ 1)𝑝
2𝑁

]. (12)

Besides, the corresponding inverse transformation of QDCT is the 
Inverse Quaternion Discrete Cosine Transform (IQDCT). These are thus 
the transformation pairs of each other, and satisfy the following rela-

tionship:

�̇�(𝑚,𝑛) = IQDCT𝐿[QDCT𝐿(�̇�(𝑚,𝑛))],

�̇�(𝑚,𝑛) = IQDCT𝑅[QDCT𝑅(�̇�(𝑚,𝑛))].
(13)
In the proposed algorithm, QDCT𝐿 is utilized to calculate QDCT.
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3.2.3. Calculation of QDCT𝐿
To simplify the calculation of QDCT, we take full advantage of the 

Cayley Dickson form seen in Definition 1, as in [30] is used. The whole 
process of QDCT𝐿 calculation is as follows:

a Transforming the given quaternion matrix �̇�(𝑚, 𝑛) ∈ ℍ𝑀×𝑁 to the 
Cayley Dickson form

�̇�(𝑚,𝑛) = 𝐅𝑝(𝑚,𝑛) + 𝐅𝑞(𝑚,𝑛)j, (14)

where 𝐅𝑝(𝑚, 𝑛) and 𝐅𝑞(𝑚, 𝑛) ∈ℂ𝑀×𝑁 .

b Calculating the DCT of complex matrices 𝐅𝑝(𝑚, 𝑛) and 𝐅𝑞(𝑚, 𝑛). The 
results are denoted as DCT𝐶 (𝐅𝑝(𝑚, 𝑛)) and DCT𝐶 (𝐅𝑞(𝑚, 𝑛)), respec-

tively.

c Using DCT𝐶 (𝐅𝑝(𝑚, 𝑛)) and DCT𝐶 (𝐅𝑞(𝑚, 𝑛)) to form a quaternion ma-

trix

�̇�′(𝑚,𝑛) = DCT𝐶 (𝐅𝑝(𝑚,𝑛)) + DCT𝐶 (𝐅𝑞(𝑚,𝑛))𝑗. (15)

d Multiplying �̇�′(𝑚, 𝑛) with the quaternion factor �̇� to get the final 
result QDCT𝐿

QDCT𝐿(�̇�(𝑚,𝑛)) = �̇� ⋅ �̇�′(𝑚,𝑛). (16)

3.3. ADMM-based optimization algorithm

Following the model we discussed in subsection 3.1 and the transfor-

mation introduced in subsection 3.2, ADMM was adopted to optimize 
problem (8). This involves introducing auxiliary variable �̇� and refor-

mulating (8) as

min
�̇�

∥ �̇� ∥∗ − max
�̇��̇�𝐻=𝐈,�̇��̇�𝐻=𝐈

|𝑡𝑟(�̇��̇��̇�𝐻 )|+ 𝜆 ∥ �̇� ∥1

s.t. 𝑃Ω(�̇�− �̇�) = 0 �̇� = �̇� 𝑄𝐷𝐶𝑇𝐿 (�̇�) = �̇�.
(17)

In analogy with the ADMM framework adopted in the complex domain 
[31], as the multiplication is not commutative in the quaternion domain, 
the augmented Lagrangian function of (17) can be written as

𝐿(�̇�, �̇�, �̇�, �̇�, �̇�, 𝛽) =∥ �̇� ∥∗ −|𝑡𝑟(�̇��̇��̇�𝐻 )|+𝜆 ∥ �̇� ∥1 +R(𝑡𝑟(�̇�𝐻 (�̇�− �̇�)))

+𝛽
2
∥ �̇�− �̇� ∥2

𝐹
+R(𝑡𝑟(�̇�𝐻 (�̇�− 𝑄𝐷𝐶𝑇𝐿 (�̇�))))+

𝛽

2
∥ �̇�− 𝑄𝐷𝐶𝑇𝐿 (�̇�) ∥

2
𝐹
,

(18)

where �̇� and �̇� are the Lagrange multipliers, and 𝛽 is the positive penalty 
parameter. The �̇� subproblem is

�̇�𝑝+1 = argmin
�̇�

∥ �̇� ∥∗ +R(𝑡𝑟(�̇�𝑝𝐻 (�̇�− �̇�𝑝))) + 𝛽𝑝

2
∥ �̇�− �̇�𝑝 ∥2

𝐹

+R(𝑡𝑟(�̇�𝑝𝐻 (�̇�𝑝 − 𝑄𝐷𝐶𝑇𝐿 (�̇�)))) +
𝛽𝑝

2
∥ �̇�𝑝 − 𝑄𝐷𝐶𝑇𝐿 (�̇�) ∥

2
𝐹

= argmin
�̇�

∥ �̇� ∥∗ +
𝛽𝑝

2
∥ �̇�− �̇�𝑝 + �̇�𝑝∕𝛽𝑝 ∥2

𝐹

+ 𝛽𝑝

2
∥ �̇�𝑝 − 𝑄𝐷𝐶𝑇𝐿 (�̇�) + �̇�𝑝∕𝛽𝑝 ∥2

𝐹
.

(19)

In the last term of (19), �̇� can not be separated directly as the trans-

formation. Despite this, the Parseval theorem in the quaternion domain 
indicates that the total energy of signal computed in the quaternion do-

main and total energy of signal computed in the spatial domain are the 
same [32,33]. This means that a unitary transformation preserves en-

ergy conservation under the Frobenius norm, and thus the last term of 
(19) can be rewritten as

𝛽𝑝

2
∥ �̇�𝑝 − 𝑄𝐷𝐶𝑇𝐿 (�̇�)+�̇�

𝑝∕𝛽𝑝 ∥2
𝐹
= 𝛽𝑝

2
∥ 𝐼𝑄𝐷𝐶𝑇𝐿 (�̇�

𝑝+�̇�𝑝∕𝛽𝑝) − �̇� ∥2
𝐹
,

4

(20)
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where the 𝐼𝑄𝐷𝐶𝑇𝐿 is the inverse transformation of QDCT𝐿. For a more 
concise representation, let  denote 𝑄𝐷𝐶𝑇𝐿 and  denote 𝐼𝑄𝐷𝐶𝑇𝐿 . 
Consequently, (19) can be reformulated as

�̇�𝑝+1 = argmin
�̇�

∥ �̇� ∥∗ +
𝛽𝑘

2
∥ �̇�− �̇�𝑝 + �̇�𝑝∕𝛽𝑝 ∥2

𝐹

+ 𝛽𝑝

2
∥  (�̇�𝑝 + �̇�𝑝∕𝛽𝑝) − �̇� ∥2

𝐹

= argmin
�̇�

∥ �̇� ∥∗ +𝛽𝑝 ∥ �̇�− 1
2
[�̇�𝑝 + �̇�𝑝∕𝛽𝑝 +  (�̇�𝑝 + �̇�𝑝∕𝛽𝑝)] ∥2

𝐹
.

(21)

The closed solution of the above problem is

�̇�𝑝+1 =D 1
2𝛽𝑝

( 1
2
[�̇�𝑝 + �̇�𝑝∕𝛽𝑝 +  (�̇�𝑝 + �̇�𝑝∕𝛽𝑝)]), (22)

where D𝜏 (∗) is the quaternion singular value shrinkage operator [4] is 
defined as

D𝜏 (�̇�) = �̇�D𝜏 (𝚺)�̇�𝐻, D𝜏 (𝚺) = 𝑑𝑖𝑎𝑔(max{𝜎𝑖 − 𝜏,0}), (23)

where �̇�, �̇�, and 𝜎𝑖 are obtained by computing QSVD of quaternion 
matrix �̇� = �̇�𝚺�̇�𝐻, 𝚺 = 𝑑𝑖𝑎𝑔(𝜎1,⋯ , 𝜎𝑟, 0 ⋯ , 0) ∈ℝ𝑀×𝑁 .

The �̇� subproblem is

�̇�𝑝+1 = argmin
�̇�
𝜆 ∥ �̇� ∥1 +R(𝑡𝑟(�̇�𝑝𝐻 (�̇�−  (�̇�𝑝+1))))

+ 𝛽𝑝

2
∥ �̇�−  (�̇�𝑝+1) ∥2

𝐹

= argmin
�̇�
𝜆 ∥ �̇� ∥1 +

𝛽𝑝

2
∥ �̇�−  (�̇�𝑝+1) + �̇�𝑝𝐻∕𝛽𝑝 ∥2

𝐹
.

(24)

To obtain the optimal solution of (24), we have the following theo-

rem.

Theorem 3. For any 𝜆 > 0, the closed solution of problem min
�̇�
𝜆 ∥ �̇� ∥1 + ∥

�̇�− �̇� ∥2
𝐹

can be given by

�̇�𝑜𝑝𝑡 = 2𝜆(�̇�), (25)

where 𝜏 (⋅) represents the element-wise soft thresholding operator defined by

𝜏 (�̇�) =
�̇�
∣ �̇� ∣

max{∣ �̇� ∣ −𝜏,0}. (26)

4. Proof of Theorem 3

According to [4], we need to prove

min
�̇�

∥ �̇�− �̇� ∥2
𝐹
+𝜆 ∥ �̇� ∥1 (27)

has one unique optimal solution �̇�⋆ and �̇�⋆ equals to �̇�𝑜𝑝𝑡 defined in 
(25).

Proof. It can be observed that two terms in (27) are convex, hence, 
(27) has one unique optimal solution. Based on the rules of quaternion 
matrix derivatives in [34], �̇�⋆ must satisfy the following formula:

0̇ ∈ �̇�⋆ − �̇�+ 2𝜆𝜕 ∥ �̇�⋆ ∥1, (28)

where 𝜕 ∥ �̇�⋆ ∥1 represents the subgradient of ∥ �̇�⋆ ∥1. Following [20], 
the subgradient of the 𝑙1 norm at �̇�⋆ is given by

𝜕 ∥ �̇�⋆ ∥1= {�̇� ∈ℍ𝑀×𝑁 ∶ �̇� = 𝑑𝑖𝑟𝑒𝑐(�̇�⋆) + �̇�, 𝑃Ω(�̇�) = 0,∥ �̇� ∥∞≤ 1},

(29)

where 𝑑𝑖𝑟𝑒𝑐(�̇�⋆) is a 𝑀 × 𝑁 matrix with the entries computed by 
[ 𝑥𝑖𝑗∣𝑥𝑖𝑗 ∣

]𝑀×𝑁 . Then, �̇�𝑜𝑝𝑡 need to be proved to satisfy (28).
When �̇� > 2𝜆, �̇� > 0, then
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Fig. 2. The flowchart of color image recovery using LRQR-SR.

Fig. 3. The eight color images, each with a size of 256 × 256 × 3, are named 𝑇 𝑟𝑒𝑒,𝐵𝑒𝑎𝑛𝑠,𝐹 𝑙𝑜𝑤𝑒𝑟, 𝑉 𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒,𝐻𝑜𝑢𝑠𝑒,𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒,𝐵𝑎𝑟𝑏𝑎𝑟𝑎, and 𝑆𝑝𝑙𝑎𝑠ℎ, respectively.
�̇�− �̇� = �̇�− �̇�

∣�̇�∣max{∣ �̇� ∣ −2𝜆, 0} = �̇�−(�̇�−2𝜆) = 2𝜆. Then, �̇�𝑜𝑝𝑡− �̇�+2𝜆𝜕 ∥
�̇�𝑜𝑝𝑡 ∥1= −2𝜆 + 2𝜆 = 0.

When −2𝜆 ⩽ �̇� ⩽ 2𝜆, �̇� = 0, then

�̇� − �̇� = �̇�. Let �̇� = 1
2𝜆 �̇�, we have ∥ �̇� ∥∞⩽ 1. Then, �̇�𝑜𝑝𝑡 − �̇� + 2𝜆𝜕 ∥

�̇�𝑜𝑝𝑡 ∥1= −�̇�+ �̇� = 0.

When �̇� < −2𝜆, �̇� < 0, then

�̇� − �̇� = �̇� + (−�̇� − 2𝜆) = −2𝜆 = 2𝜆(−1). Then, �̇�𝑜𝑝𝑡 − �̇� + 2𝜆𝜕 ∥ �̇�𝑜𝑝𝑡 ∥1=
2𝜆 − 2𝜆 = 0.

Based on the above discussions, we can obtain that 0̇ ∈ �̇�𝑜𝑝𝑡 − �̇�+2𝜆𝜕 ∥
�̇�𝑜𝑝𝑡 ∥1, which means that �̇�𝑜𝑝𝑡 = �̇�⋆. □

The proof of Theorem 3 is given in the Appendix. Based on Theo-

rem 3, problem (24) has a closed-form solution given by

�̇�𝑝+1 =  4𝜆
𝛽𝑝
( (�̇�𝑝+1) − �̇�𝑝𝐻∕𝛽𝑝). (30)

The �̇� subproblem is

�̇�𝑝+1 = argmin
�̇�

−|𝑡𝑟(�̇��̇��̇�𝐻 )|+R(𝑡𝑟(�̇�𝑝𝐻 (�̇�𝑝+1 − �̇�)))

+ 𝛽𝑝

2
∥ �̇�𝑝+1 − �̇� ∥2

𝐹

𝛽𝑝 𝑝+1 𝑝 𝑝 𝐻 𝑝 2

(31)
5

= argmin
�̇� 2

∥ �̇� − �̇�+ �̇� ∕𝛽 + �̇� �̇�∕𝛽 ∥
𝐹
.

Following equation (31), we can obtain

�̇�𝑝+1 = �̇�𝑝+1 + �̇�𝑝∕𝛽𝑝 + �̇�𝐻 �̇�∕𝛽𝑝. (32)

Moreover, the observed data should remain unchanged in each iteration 
such that

�̇�𝑝+1 = 𝑃Ω𝐶 (�̇�𝑝+1) + 𝑃Ω(�̇�). (33)

The update of penalty parameter 𝛽𝑝 is

𝛽𝑝+1 = min{𝜌𝛽𝑝, 𝛽max }, (34)

where 𝛽max is the given maximum value of the penalty parameter, and 
𝜌 ≥ 1 is a constant parameter. Because the convergence speed of the 
ADMM algorithm can be affected by the choice of the penalty parameter 
𝛽𝑝+1. When it is set to a small value, the algorithm tends to converge 
slowly due to the updates are conservative. Conversely, if it is set to a 
large value, the algorithm may become unstable or diverge altogether. 
So we adopted a dynamically changing 𝛽𝑝+1, and obtained the initial 
value through careful tuning.

Model (17) is the problem in Step 2 listed in Algorithm 1, so that 
the whole procedure to solve it is summarized in Algorithm 2. Fig. 2
represents the flowchart of the proposed LRQR-SR.
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Fig. 4. The PSNR and SSIM values obtained by the proposed LRQR-SR algorithm using different 𝛽1 with other parameters fixed and SR = 0.5.

Fig. 5. The PSNR and SSIM values obtained by the proposed LRQR-SR algorithm using different 𝛽1 with other parameters fixed and SR = 0.3.
6

Fig. 6. The PSNR and SSIM values obtained by the proposed LRQR-SR algorithm using different 𝛽1 with other parameters fixed and SR = 0.1.
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Fig. 7. The PSNR and SSIM values obtained by the proposed LRQR-SR algorithm using different 𝜆 with other parameters fixed and SR = 0.5.

Fig. 8. The PSNR and SSIM values obtained by the proposed LRQR-SR algorithm using different 𝜆 with other parameters fixed and SR = 0.3.
7

Fig. 9. The PSNR and SSIM values obtained by the proposed LRQR-SR algorithm using different 𝜆 with other parameters fixed and SR = 0.1.
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Fig. 10. The PSNR and SSIM values obtained by the proposed LRQR-SR algorithm using different rank with other parameters fixed and SR = 0.5.

Fig. 11. The PSNR and SSIM values obtained by the proposed LRQR-SR algorithm using different rank with other parameters fixed and SR = 0.3.
8

Fig. 12. The PSNR and SSIM values obtained by the proposed LRQR-SR algorithm using different rank with other parameters fixed and SR = 0.1.
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Fig. 13. The first column shows the original image, the second column the observed image (SR=0.2), and the third to eleventh columns the completion results of 
TNNR, TNN-SR, D-N, F-N, LRQA, Q-FFN, Q-DNN, QTNN, and LRQR-SR, respectively.

Fig. 14. The enlargement of observed images under SR = 0.1.
Algorithm 2 ADMM solver for problem (17) in Step 2.

Input: �̇�, Ω, �̇�𝑙 , �̇�𝑙 , tolerance 𝜀, and parameters 𝜆, 𝜌, 𝛽max .

1: Initial �̇�1 = �̇�, �̇�1 = �̇�1 = �̇�1, and 𝛽1. Let �̇�1 and �̇�1 be random quaternion 
matrix with the same size of �̇�1.

2: Repeat

3: Update �̇�𝑝+1

�̇�𝑝+1 =D 1
2𝛽𝑝

( 1
2
[�̇�𝑝 + �̇�𝑝∕𝛽𝑝 +  (�̇�𝑝 + �̇�𝑝∕𝛽𝑝)]).

4: Update �̇�𝑝+1 =  4𝜆
𝛽𝑝
( (�̇�𝑝+1) − �̇�𝑝𝐻∕𝛽𝑝).

5: Update �̇�𝑝+1 = �̇�𝑝+1 + �̇�𝑝∕𝛽𝑝 + �̇�𝐻 �̇�∕𝛽𝑝 ,
�̇�𝑝+1 = 𝑃Ω𝐶 (�̇�𝑝+1) + 𝑃Ω(�̇�).

6: Update �̇�𝑝+1 = �̇�𝑝 + 𝛽𝑝(�̇�𝑝+1 − �̇�𝑝+1).
7: Update �̇�𝑝+1 = �̇�𝑝 + 𝛽𝑝(�̇�𝑝+1 −  (�̇�𝑝+1)).
8: Update 𝛽𝑝+1 = min{𝜌𝛽𝑝, 𝛽max },.

9: Until convergence ‖�̇�𝑝+1 − �̇�𝑝‖𝐹 ≤ 𝜀 or 𝑝 reaches the set maximum itera-

tion number.

Output: �̇�𝑝+1.

4.1. Computational complexity

In the analysis of the LRQR-SR model, we examine the computa-

tional complexity of the algorithm. Given an input quaternion matrix 
�̇� ∈ℍ𝑀×𝑁 , the computational complexity in step 1 can be expressed as 
9

(min(𝑀2𝑁, 𝑀𝑁2)). Assuming that the solution is obtained from (22), 
which yields a reduced quaternion matrix of rank 𝑟1 , and considering 
a truncation parameter 𝑡, the following complexity is observed: In step 
2, the computational complexity of the algorithm can be determined by 
updating �̇�, �̇�, and �̇� individually. For the update of �̇�, the complexity 
is (min(𝑀2𝑁, 𝑀𝑁2) +𝑀𝑁𝑟1). For the update of �̇�, the complexity 
is (𝑀2𝑁2). As for �̇�, the complexity is (𝑀𝑁𝑡). Therefore, the over-

all computational cost of the LRQR-SR model for each iteration is given 
by (min(𝑀2𝑁, 𝑀𝑁2) +𝑀𝑁𝑟1 +𝑀2𝑁2 +𝑀𝑁𝑡).

5. Experimental results

5.1. Experimental settings

5.1.1. Comparison methods

Several relevant existing algorithms were used as comparison algo-

rithms, including TNNR [35], TNN-SR [27], D-N and F-N [36], LRQA 
[4], Q-DNN and Q-FNN [5], QTNN [26]. The comparison of these meth-

ods are listed in Table 1.

5.1.2. Test data and experimental environment

All the test images are initially represented by 3-way tensors  ∈
ℝ𝑀×𝑁×3. For quaternion-based method, every image is represented by 

a pure quaternion matrix as �̇� = 𝐎𝑅i + 𝐎𝐺j + 𝐎𝐵k ∈ ℍ𝑀×𝑁 . All the 
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Fig. 15. The recovered results of image 𝑉 𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒 and 𝐻𝑜𝑢𝑠𝑒 by different methods under SR = 0.1.

Table 1

The comparison of the related methods.

Method Representation of image Description of low-rankness Other prior information Computational complexity

TNNR [35] matrix-based truncated nuclear norm - (𝑀𝑁min(𝑀,𝑁))
TNN-SR [27] matrix-based truncated nuclear norm sparse regularization based on DCT (𝑀𝑁min(𝑀,𝑁))
D-N/ F-N [36] matrix-based low-rank matrix factorization - (𝑀𝑁𝑑)
LRQA [4] quaternion matrix-based the Laplace, Geman, and 

weighted Schatten-r functions

- (𝑀𝑁min(𝑀,𝑁))

Q-DNN/ Q-FNN [5] quaternion matrix-based low-rank quaternion matrix 
factorization

- (𝑀𝑁𝑑)

QTNN [26] quaternion matrix-based truncated nuclear norm - (𝑀𝑁min(𝑀,𝑁))
LRQR-SR quaternion matrix-based truncated nuclear norm sparse regularization based on QDCT (𝑀𝑁min(𝑀,𝑁))
experiments were implemented in MATLAB R2019a, on a PC with a 
3.00 GHz CPU and 8 GB RAM.

Eight benchmark color images as shown in Fig. 3, were selected from 
SIPI Image Database1 and McMaster Dataset to demonstrate the effec-

tiveness of the method. In order to fully demonstrate this effectiveness, 
50 color images were also randomly selected from Berkeley Segmenta-

tion Dataset (BSD)2 as further test samples.

1 http://sipi .usc .edu /database /database .php.
2 Available: https://www2 .eecs .berkeley .edu /Research /Projects /CS /vision /
10

bsds/.
5.1.3. Evaluation index setting

The peak signal to noise rate (PSNR) and the structural similarity 
index (SSIM) were utilized as the relevant quality indexes as they used 
in the other competitive approaches, which are defined as follows:

PSNR = 10 log10(Peakval2

MSE
),

where Peakval is the maximum possible pixel value in the test image 
(e.g., for unit8 image it is 255), and MSE is Mean Squared Error, which 
is calculated as MSE = 10 log10( ‖− ‖𝐹

𝑀𝑁
), where  and  are the recov-
ered and original images.

http://sipi.usc.edu/database/database.php
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Fig. 16. The recovered results of image 𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒 and 𝐵𝑎𝑟𝑏𝑎𝑟𝑎 by different methods under SR = 0.1.
SSIM =
(2𝜇 𝜇 +𝐶1)(2𝜎  +𝐶2)

(𝜇 2 + 𝜇2 +𝐶1)(𝜎 2 + 𝜎2 +𝐶2)
,

where 𝜇 , 𝜇 , 𝜎 , 𝜎 and 𝜎  are the sample means, variances, and the 
covariance of images  and  , 𝐶1 = (0.01𝐿)2, 𝐶2 = (0.03𝐿)2, 𝐿 is the 
dynamic range of the pixel values.

The best numerical results are highlighted in bold font. When pro-

cessing image recovery with random samples, a larger Sample Rate (SR) 
value means more observed pixels in a given image.

5.2. Color image recovery

5.2.1. Simulations with different parameters

As simulations with different settings of the parameters (𝛽1 , 𝜆 trun-

cated number 𝑟) offer different performance levels, a range of param-

eters was used to test the performance of the proposed LRQR-SR algo-

rithm, based on recovering random sampled images from Fig. 3.

The influence of different parameter values (𝛽1 = {1𝑒 −4, 5𝑒 −4, 1𝑒 −
3, 5𝑒 − 3, 1𝑒 − 2, 5𝑒 − 2, 1𝑒 − 1, 5𝑒 − 1}) on the experimental results was 
first tested with the other parameters fixed (𝜆 = 0.1, 𝑟 = 30, 𝜌 = 1.01) and 
SR = {0.5, 0.3, 0.1}. The relevant PSNR and SSIM results are plotted in 
Fig. 4-6, showing that when 𝛽1 ≥ 1𝑒 − 2 the recovery effect is minimal. 
The best recovery results are obtained with different degrees of sampling 
when 𝛽1 = 1𝑒 − 4.

The effect of different parameter values (𝜆 = {0.01, 0.03, 0.05, 0.07,
0.1,0.3,0.5, 0.7, 1}) on the recovery results was then tested with other 
parameters fixed (𝛽1 = 1𝑒 − 4, 𝑟 = 30, 𝜌 = 1.01) and SR = {0.5, 0.3, 0.1}. 
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In Fig. 7-9, the relevant PSNR and SSIM values are given, showing that 
if the value of 𝜆 is too large or too small, a better recovery results cannot 
be obtained. The best recovery results are obtained with different SRs 
when 𝜆 = 0.07.

Finally, the effect of the number of truncations on the recovery ef-

fect was verified. The truncated number 𝑟 was set as 𝑟 = {10, 20, 30, 40,
50, 60, 70,80, 90} with other parameters fixed (𝛽1 = 1𝑒 − 4, 𝜆 = 0.07, 𝜌 =
1.01) and SR = {0.5, 0.3, 0.1}. In Fig. 10-12, the relevant PSNR and SSIM 
values are given, indicating that the best recovery results were obtained 
when the degree of sampling was high (SR = 0.5) and the truncated 
number 𝑟 = {40, 50}. However, when the degree of sampling is lower 
(SR = {0.3, 0.1}) and 𝑟 = {30, 40}, good recovery results are also ob-

tained. This is also consistent with the fact that the more missing pixels 
in the observed image, the more low-rank constraints are required to 
improve the recovery effect. Intuitively, when the observed image is 
missing a lot of pixels, the truncation would contain less useful infor-

mation.

5.2.2. Images recovery with random sample

The LRQR-SR algorithm was compared with several other methods 
mentioned previously by setting SR = {0.3, 0.2, 0.1}. The parameters of 
LRQR-SR were set as 𝛽1 = 1𝑒 −4, 𝜆 = 0.07, 𝜌 = 1.01, while the truncation 
number 𝑟 = {40, 30, 20} was decided by the SR: the lower the SR, the less 
truncation is required.

Fig. 13 displays the visual comparisons between the designed novel 
LRQR-SR method and the other methods of comparison for the eight 
tested color images when SR = 0.2. The PSNR and SSIM results of recov-
ery as seen in Fig. 3 with SR = {0.3, 0.2, 0.1} are presented in Table 2.
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Fig. 17. The recovered results of image 𝑇 𝑟𝑒𝑒 and 𝐵𝑒𝑎𝑛𝑠 by different methods under text mask.
As demonstrated, when comparing with other matrix-based meth-

ods across all SR values, the results obtained by D-N and F-N do not 
exhibit significant recovery. However, the effectiveness of factorization 
techniques becomes more apparent when applied in the quaternion do-

main, as observed in Q-FFN and Q-DNN. These results serve as evidence 
for the validity of quaternion-based methods. Additionally, the results of 
TNNR are inferior to those of TNNR-SR, indicating that relying solely on 
low-rankness as a prior is insufficient for achieving more accurate im-

age recovery. This supports the rationale behind incorporating sparsity 
into the LRQR-SR method.

In comparison with other quaternion-based methods, the LRQR-SR 
method has been found to provide the most visually optimal results, with 
crisp details. This method outperforms other comparators such as LRQA, 
Q-FFN, and Q-DNN in terms of both PSNR and SSIM values. The superi-

ority of LRQR-SR can be observed in the data presented in Table 2. When 
the value of SR is very low, utilizing only the truncated skill cannot ac-

curately recover the potential images. However, LRQR-SR consistently 
outperforms other methods, demonstrating its effectiveness in achieving 
high-quality results.

Fig. 15-16 compare the visual results for all the competing com-

pletion approaches related to recovering 𝑉 𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒, 𝐻𝑜𝑢𝑠𝑒,𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒,
𝐵𝑎𝑟𝑏𝑎𝑟𝑎 under SR = 0.1. The corresponding observed images are shown 
in Fig. 14. The image in the green box is the zoomed-in image of that in 
the red box. These images demonstrate that solely relying on low rank-

ness for recovery may result in the loss of some local details. However, 
the proposed method in this study is able to recover more details, such as 
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the outlines and borders of the house and vegetable. On the other hand, 
approaches like TNNR and QTNN only provide rough restorations when 
the sample rate is low, and other methods also face similar issues. When 
comparing the two optimal algorithms, TNN-SR and LRQR-SR, the vi-

sual difference in the restored images may not be apparent. However, 
the corresponding PSNR and SSIM values confirm the superiority of the 
proposed method.

5.2.3. Images recovery under text mask

The LRQR-SR algorithm was then compared with other methods un-

der a text mask. The parameters of LRQR-SR were set to 𝛽1 = 1𝑒 −4, 𝜆 =
0.07, 𝜌 = 1.01, and the truncated number 𝑟 = 30.

Fig. 17-18 compares the visual results for all the competing com-

pletion approaches related to recovering 𝑇 𝑟𝑒𝑒, 𝐵𝑒𝑎𝑛𝑠, 𝐹 𝑙𝑜𝑤𝑒𝑟, 𝑆𝑝𝑙𝑎𝑠ℎ
under text mask. The image in the green box is a zoomed-in image of 
that in the red box. As shown, the recovered results from D-N and F-N 
are very blurry, especially in complex image content. This can also be 
observed from the zoomed-in portion of Fig. 17 (𝑇 𝑟𝑒𝑒) that the results 
for TNNR, LRQA, Q-FFN, and Q-DNN still leave some obvious artifacts 
in the blue area. Similar problems can be seen in Fig. 17 (𝐵𝑒𝑎𝑛𝑠). In 
Fig. 18, there are some obvious artifacts on the red beans in the zoomed-

in portion, while in Fig. 18 (𝐹 𝑙𝑜𝑤𝑒𝑟), some vertical lines remain in the 
enlarged area after the restoration of the image. In Fig. 18 (𝑆𝑝𝑙𝑎𝑠ℎ), 
some further visible blemishes appear on the white part of the zoomed-in 
portion. In comparison, the TNNR-SR and the proposed LRQR-SR ap-

proaches show better performance. Although there may not be much 

difference between the two approaches based on visual observation, the 
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Fig. 18. The recovered results of image 𝑉 𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒 and 𝑆𝑝𝑙𝑎𝑠ℎ by different methods under text mask.
corresponding PSNR and SSIM results indicate that the proposed method 
can technically restore the image more effectively.

5.2.4. 50 images recovery to further demonstrate the effectiveness of our 
method

A set of 50 images was subject to recovery to further demonstrate 
the effectiveness of the method. In this simulation, 50 images were ran-

domly selected from BSD as a test sample, though in order to keep the 
parameters of the comparison algorithms as in the original set, these 
images were resized to 256 × 256 × 3 throughout under random sample 
(SR=0.25).

The corresponding PSNR and SSIM results are reported in Fig. 19 and 
Fig. 20. As shown in Fig. 19 and Fig. 20, the effectiveness of sparsity is 
further demonstrated by the results of TNN-SR and the proposed LRQR-

SR. Additionally, when comparing TNN-SR with LRQR-SR, LRQR-SR is 
found to be superior in all cases. These findings suggest that LRQR-SR 
outperforms TNN-SR in terms of effectiveness. The proposed LRQR-SR 
method shows better results in achieving sparsity, indicating its poten-

tial for more efficient and accurate data representation.

5.3. Discussions

The simulation experiment results offer various items for discussion 
that can be summarized as follows:

• The newly-developed LRQR-SR algorithm outperforms comparable 
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existing algorithms both visually and numerically. The main rea-
sons for this can be summarized in three points: this algorithm has 
been developed in the quaternion domain where the spatial struc-

ture information of color image is not destroyed; the model uses 
QTNN to depict low-rankness, which helps preserve the informa-

tion contained in the first few large singular values; and, finally, 
the 𝑙1 norm is added to act as the regularization in the algorithm, 
helping to model the sparseness of the underlying quaternion ma-

trix.

• When compared with matrix-based methods, TNNR, D-N, and F-

N only depict low-rankness by means of modified NN or low-rank 
factorization. Hence, the recovery results are generally not satisfac-

tory. However, as TNN-SR is based on both low-rankness and sparse 
priors, the recovered results are improved. In general, for matrix-

based methods, the RGB channels of color images must be processed 
separately causing the recovered color images to potentially have 
details omitted.

• When compared with quaternion matrix-based methods, LRQA, Q-

FFN, Q-DNN, and QTNN are limited by only utilizing low-rankness. 
For LRQR-SR, the 𝑙1 norm is also incorporated to describe the sparse 
prior of the underlying quaternion matrix in the QDCT domain. 
Thus, LRQR-SR offers superior performance to the other compara-

ble methods.

6. Conclusion

This paper introduces a novel approach for low-rank quaternion re-
covery with sparse regularization, enhancing both the theoretical under-
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Fig. 19. Comparison of the PSNR results of different algorithms for recovering 50 color images selected from BSD (SR = 0.25).
14

Fig. 20. Comparison of the SSIM results of different algorithms for recovering 50 color images selected from BSD (SR = 0.25).



Digital Signal Processing 156 (2025) 104781L. Yang, Y. Liu and K.I. Kou

Table 2

The PSNR/SSIM values obtained by different recovery algorithms for 8 color images.

Image
SR = 0.3

TNNR [35] TNN-SR [27] D-N [36] F-N [36] LRQA [4] Q-FFN [5] Q-DNN [5] QTNN [26] LRQR-SR

𝑇 𝑟𝑒𝑒 20.936/0.670 23.275/0.793 18.356/0.490 18.309/0.485 21.148/0.668 20.600/0.650 21.070/0.657 21.028/0.676 24.915/0.82724.915/0.82724.915/0.827

𝐵𝑒𝑎𝑛𝑠 27.699/0.954 33.799/0.984 26.509/0.938 26.559/0.938 27.950/0.950 28.100/0.957 28.133/0.955 28.324/0.960 34.583/0.98834.583/0.98834.583/0.988

𝐹 𝑙𝑜𝑤𝑒𝑟 22.275/0.818 25.343/0.903 20.061/0.735 20.093/0.738 22.353/0.816 22.053/0.796 22.260/0.807 22.588/0.830 26.128/0.92026.128/0.92026.128/0.920

𝑉 𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒 24.053/0.848 27.861/0.919 20.871/0.757 20.861/0.758 24.294/0.854 24.002/0.852 24.311/0.848 24.359/0.859 28.865/0.93628.865/0.93628.865/0.936

𝐻𝑜𝑢𝑠𝑒 21.838/0.802 25.357/0.873 19.299/0.711 19.288/0.712 22.162/0.804 21.786/0.786 22.281/0.799 21.866/0.806 26.272/0.88726.272/0.88726.272/0.887

𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒 23.182/0.544 26.237/0.676 21.028/0.400 21.078/0.399 23.101/0.527 22.777/0.526 23.059/0.518 23.214/0.548 26.851/0.71226.851/0.71226.851/0.712

𝐵𝑎𝑟𝑏𝑎𝑟𝑎 20.853/0.690 22.525/0.758 19.992/0.590 20.038/0.591 20.688/0.679 19.433/0.603 20.065/0.643 21.046/0.697 22.734/0.76922.734/0.76922.734/0.769

𝑆𝑝𝑙𝑎𝑠ℎ 26.761/0.952 31.508/0.979 24.838/0.933 24.938/0.934 26.926/0.951 26.699/0.950 27.124/0.951 26.860/0.952 32.126/0.98232.126/0.98232.126/0.982

Image
SR = 0.2

TNNR [35] TNN-SR [27] D-N [36] F-N [36] LRQA [4] Q-FFN [5] Q-DNN [5] QTNN [26] LRQR-SR

𝑇 𝑟𝑒𝑒 18.517/0.545 21.921/0.730 17.465/0.433 17.551/0.447 18.910/0.551 18.354/0.515 18.554/0.523 18.583/0.548 23.093/0.76923.093/0.76923.093/0.769

𝐵𝑒𝑎𝑛𝑠 24.163/0.918 31.165/0.974 24.846/0.918 24.990/0.918 25.103/0.924 25.018/0.926 25.197/0.927 25.033/0.930 31.804/0.97931.804/0.97931.804/0.979

𝐹 𝑙𝑜𝑤𝑒𝑟 20.112/0.736 23.599/0.866 19.214/0.692 19.310/0.698 20.442/0.745 20.068/0.725 20.062/0.719 20.465/0.753 24.138/0.88424.138/0.88424.138/0.884

𝑉 𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒 21.674/0.781 25.978/0.891 20.299/0.732 20.299/0.735 21.947/0.791 21.902/0.790 21.737/0.777 22.028/0.796 26.802/0.90926.802/0.90926.802/0.909

𝐻𝑜𝑢𝑠𝑒 19.232/0.723 23.615/0.839 18.423/0.677 18.397/0.677 19.800/0.736 18.950/0.710 19.464/0.716 19.120/0.727 24.349/0.85524.349/0.85524.349/0.855

𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒 20.601/0.419 24.496/0.600 19.641/0.332 19.774/0.340 20.898/0.421 20.401/0.400 20.608/0.404 20.739/0.427 25.002/0.63625.002/0.63625.002/0.636

𝐵𝑎𝑟𝑏𝑎𝑟𝑎 19.335/0.602 21.487/0.697 18.935/0.547 19.174/0.554 19.503/0.601 19.301/0.593 18.884/0.567 19.522/0.609 21.695/0.71021.695/0.71021.695/0.710

𝑆𝑝𝑙𝑎𝑠ℎ 24.285/0.929 29.473/0.970 23.620/0.919 23.689/0.920 24.643/0.931 24.211/0.929 24.643/0.929 23.946/0.924 29.915/0.97329.915/0.97329.915/0.973

Image
SR = 0.1

TNNR [35] TNN-SR [27] D-N [36] F-N [36] LRQA [4] Q-FFN [5] Q-DNN [5] QTNN [26] LRQR-SR

𝑇 𝑟𝑒𝑒 13.794/0.256 19.943/0.629 14.905/0.266 15.232/0.289 15.893/0.364 15.474/0.359 15.604/0.338 11.508/0.178 20.435/0.65720.435/0.65720.435/0.657

𝐵𝑒𝑎𝑛𝑠 17.403/0.779 28.089/0.952 21.672/0.845 21.777/0.846 22.191/0.879 22.293/0.869 22.135/0.879 14.141/0.388 28.511/0.96028.511/0.96028.511/0.960

𝐹 𝑙𝑜𝑤𝑒𝑟 14.956/0.467 21.673/0.807 16.960/0.564 17.195/0.583 17.973/0.632 17.457/0.615 17.541/0.595 12.518/0.346 22.013/0.82522.013/0.82522.013/0.825

𝑉 𝑒𝑔𝑒𝑡𝑎𝑏𝑙𝑒 16.217/0.563 23.579/0.841 18.213/0.645 18.176/0.648 18.608/0.673 17.899/0.657 18.277/0.650 13.923/0.478 24.040/0.85624.040/0.85624.040/0.856

𝐻𝑜𝑢𝑠𝑒 13.190/0.496 20.757/0.773 15.764/0.565 15.775/0.567 15.932/0.591 15.138/0.576 15.839/0.582 12.214/0.459 21.161/0.78721.161/0.78721.161/0.787

𝐴𝑖𝑟𝑝𝑙𝑎𝑛𝑒 14.778/0.206 22.141/0.486 17.335/0.220 17.563/0.229 18.461/0.291 18.024/0.283 18.373/0.283 12.289/0.114 22.467/0.52722.467/0.52722.467/0.527

𝐵𝑎𝑟𝑏𝑎𝑟𝑎 14.808/0.381 20.283/0.615 16.862/0.437 17.213/0.454 17.896/0.496 17.352/0.475 17.414/0.467 12.338/0.284 20.400/0.62720.400/0.62720.400/0.627

𝑆𝑝𝑙𝑎𝑠ℎ 16.765/0.817 26.556/0.948 20.228/0.884 20.299/0.886 21.157/0.891 20.616/0.890 21.015/0.885 13.311/0.737 26.900/0.95326.900/0.95326.900/0.953
standing and practical application of quaternion matrix recovery tech-

niques. By integrating low-rank and sparse regularization, this method 
extends existing techniques and offers a more comprehensive frame-

work for recovering quaternion matrices. The combination of low-rank 
and sparse structures in the recovery model bridges the gap between 
these two crucial properties, advancing the understanding of their rela-

tionship in quaternion matrices. This approach not only improves data 
recovery accuracy but also provides practical advantages. However, it 
is necessary to consider limitations such as computational complexity 
and parameter sensitivity. Future research should focus on developing 
more robust sparse representations through deep learning [37], incor-

porating additional prior knowledge for more efficient recovery, and 
creating scalable algorithms for high-resolution image processing [38].
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