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5.1            Introduction 

 In this chapter, we focus on design issues related to written tasks and prompts for 
mathematical action and the sequencing and norms of collections of tasks, such as 
textbooks, that shape the expected action. We take a  task  to be the written presenta-
tion of a planned mathematical experience for a learner, which could be one action 
or a sequence of actions that form an overall experience. Thus, a task could consist 
of anything from a single problem, or a textbook exercise, to a complex interdisci-
plinary exploration. The design process for such tasks is not necessarily long or 
cyclic, but we are interested in particular issues that might or should be considered 
when designing tasks to be presented in text. 

 A  text -based task is intended to create mathematical action through prepared and 
published inert written and visual images, in worksheets, textbooks, screen images, 
video, assessment instruments, digital interactive textbooks, and other digital 
 technologies. We emphasize that text-based tasks are any such inert, static tasks 
with which learners interact and do not refer just to tasks in textbooks. In collections 
of text-based materials, such as textbooks, tasks do not exist on their own, but as 
components of the whole collection. Hence, in this chapter we also consider how the 
overall principles and aims of a collection (e.g., a textbook, a set of worksheets) can 
be embodied in different kinds of tasks. When we talk about prepared, published 
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collections of tasks, we focus solely on the school-level curriculum and learners in 
educational environments. We also consider freestanding tasks that might be used 
by learners of any age and in varied phases of learning as relevant. Chapters   3     and   4     
look at how teachers and learners, respectively, work with tasks, including digital 
tasks. Further insights into dynamic digital technologies are found in Chap.   6    . 

 Throughout this chapter, we highlight design principles and research perspec-
tives that are salient whether the tasks are freestanding or part of textbook collec-
tions. Although the design of text-based tasks and the design of textbooks share 
many common features, we believe that text-based task design is worthy of study in 
its own right, separate from but related to design and research on textbooks. 

5.1.1     Research on  Text-Based Tasks  Within Textbooks 

 Some work on task design has delineated how different interpretations of curricu-
lum aims and standards infl uence the design of collections of tasks embodied in 
textbooks. For instance, in the USA a number of large-scale curriculum projects 
were developed in the 1990s in response to the publication of the  Curriculum and 
Evaluation Standards  by their National Council of Teachers of Mathematics 
( 1989 ). As Hirsch ( 2007 ) indicated, this Standards document provided a “basic 
design framework” that infl uenced authors regarding the nature and scope of con-
tent, integration of technology, embedded assessments, professional development 
for teachers, and active engagement of learners through explorations within coop-
erative groups. Thus, a design issue facing the curriculum developers was to pro-
vide text- based tasks or materials that embodied both intention and implementation 
(see Chap.   2    ). Other research on textbooks has focused on how the principles of 
design of the textbook tasks might have infl uenced teachers’ enactment of those 
tasks and how such enactment infl uenced learner achievement (see Chap.   3    ; also 
see multiple perspectives on enactment in Remillard, Herbel-Eisenmann, and 
Lloyd,  2009 ). Still others have focused on design principles through comparisons 
of the tasks within textbooks, sometimes from a neutral stance of simply highlight-
ing differences (e.g., Pepin and Haggarty,  2001 ) and other times from a more criti-
cal stance that highlights differences in tasks and their affordances for student 
learning (Huntley and Terrell,  2014 ). A summary of textbook research presented by 
Fan, Zhu, and Miao ( 2013 ) points to the shortage of research about the design pro-
cess itself and a shortage of research into relationships between textbooks, teach-
ing, and learning. 

 Our focus is on text-based tasks, and there is a growing body of research that 
approaches textbook analysis through the opportunities afforded by task content. 
In these approaches, it is presumed that some affordances are desirable according 
to some theoretical frame or curriculum aims, and research generally reveals the 
presence or lack of a particular feature. For example, research into some text-
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books has shown a lack of explanations (Dole and Shield,  2008 ; Stacey and 
Vincent,  2009 ), of higher-order thinking (Nicely,  1985 ; Nicely, Fiber, and 
Bobango,  1986 ), of worked- out examples (Mayer, Sims, and Tajika,  1995 ), of 
opportunities for reasoning (Stylianides,  2009 ,  2014 ; Thompson, Senk, and 
Johnson,  2012 ), of problem variation (Stigler, Fuson, Ham, and Kim,  1986 ), of 
word problems (Xin,  2008 ), of conceptual connections (Sun,  2011 ), or of concep-
tual robustness (Harel,  2009 ). 

 Detailed examination of such textbook analysis research is beyond the scope of 
our chapter as we are interested in individual and sequential task design and how 
design embodies curriculum principles and theories of learning, either implicitly or 
explicitly. However, the assumptions behind many of these studies are that (a) the 
textbook defi nes the learners’ mathematical experience because of the prevalence of 
textbooks in schools around the world and (b) textbooks could or should provide all 
these experiences. With both of these assumptions, learners’ experiences with the 
tasks are intertwined with the associated teaching and how the teacher enacts the 
tasks as part of instruction (see Thompson and Usiskin ( 2014 ) for more insights on 
the enactment of curriculum). Thus, while we consider presence or lack of particu-
lar textual features, we cannot claim that presence ensures experience or absence 
implies teaching defi cits. Rather, we consider design features that underlie the 
development of tasks, generally irrespective of the implementation of those tasks by 
either teachers or learners. In other words, we examine the relationship between 
authors’ intentions for the task and the affordances and opportunities that the task 
provides; that is, we are interested in the bridge between curriculum intention and 
pedagogic implementation that can be provided through static text. This requires 
imagination and anticipation about learners’ and teachers’ engagement with tasks. 
Our approach is to draw on existing research where possible and also to take a 
scholarly perspective to task design issues by drawing on professional experience 
and published tasks. Many of the tasks presented in this chapter were shared and 
discussed by participants during the conference for ICMI Study 22 on which this 
book is based.  

5.1.2     Shape of the Chapter 

 We consider three interrelated aspects of the design issues of text-based tasks: (1) 
nature and structure of such tasks, (2) pedagogic/didactic purpose of their design 
(i.e., intentions), and (3) intended/implemented mathematical activity as embedded 
in them (i.e., affordances and opportunities for learning). Although the chapter con-
siders these headings, the relationships between the task designer, a teacher, a task, 
the mathematics within the task, and the learner are important at every stage. In 
particular, the relationship between task and teaching is like two sides of a coin 
because both contribute to the context of the learners’ mathematical activity. 
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 The three interrelated perspectives can be seen as a triangular structure with 
nodes (Fig.  5.1 ). Each node can be considered by zooming out and thinking about 
the overall educational context and how this affects task design and also by zooming 
in to the imagined interaction between one learner and the task.

   Throughout the chapter, we present and compare examples of tasks to illustrate 
variation within each node and how principles of design play out within each node.   

5.2     Nature and Structure of Tasks 

 We consider design principles related to three aspects of the nature and structure of 
tasks: (1) the types of text materials in which tasks are found, (2) the authorship, 
authority, or voice of the task, and (3) the mathematical content of the task. Within 
each of these aspects, particular issues related to design are evident. 

5.2.1     Different Kinds of Text Materials 

 We start by making distinctions among different kinds of text-based materials. 
 Learning management systems  are those in which learning is presumed to be man-
aged either by sequencing (such as in a traditional textbook series) or by a planned 
interplay between formative assessment and instructional tasks of various kinds. In 
some online curriculum packages (e.g.,  I Can Learn  in the USA), the learner is 
essentially in his/her own private classroom using a software system that provides 
tasks and then gives mechanistic feedback to both the learner and the teacher about 
the learner’s interaction with the task. Based on that feedback, the learner might 
move forward to new tasks on new concepts or might engage in tasks designed to 
offer remediation. The overall topic sequence is thus managed by a (sometimes 
virtual) teacher and/or possibly learners themselves. 

  Fig. 5.1    Task design intention triangle       
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 In textbooks, the sequence is fi xed according to a designed narrative suggested 
by the authors, with tasks potentially designed to build on each other and with care-
ful consideration to necessary prerequisites. Teachers often choose to modify the 
textbook sequence based on perceived needs of their learners or mandated curricu-
lum goals and must consider what assumed knowledge their students may not pos-
sess in a revised sequence and adjust tasks accordingly. In an online system, 
sequence might be varied according to learners’ responses but a designed narrative 
controls those variations. In  task banks , collections of varied tasks are published for 
which the teacher (or even the learner) is the effective learning manager and makes 
decisions about who does what and in what order; the individual tasks themselves 
may not be linked by a narrative (e.g., Yerushalmy ( 2015 , Chap.   7    , this volume); 
SMILE, n.d.).  Freestanding  tasks are those that do not form part of a curriculum 
package but are supplementary or fulfi ll a special purpose. For example, the NRich 
website provides extension tasks accessible by students, teachers, and parents that 
are intended as curriculum supplements (nrich.maths.org); the COMPASS (Common 
Problem Solving Strategies as Links Between Mathematics and Science) ( 2013 ) 
project (Maaβ, Garcia, Mousoulides, and Wake,  2013 ) provides interdisciplinary 
tasks within a European setting that can be used within mathematics and science 
classrooms. Freestanding tasks are typically designed to be self-contained, without 
relying on completion of previous tasks; if prerequisite knowledge is needed, then 
that information would need to be provided to a potential task user. 

 Task collections might exist in printed form as banks or books for learners with 
or without teacher guidance, in multimedia form such as paper and digital and/or 
physical materials for learners with or without teacher guidance, or in the form of 
guidance for teachers with materials for tasks, but no text for learners (e.g., Numicon 
at: global.oup.com/education/content/primary/series/numicon/). We do not con-
sider the latter type in detail here as there are no given text-based tasks for learners 
unless the teacher constructs one, but our remarks about construction and use of 
text-based tasks apply also to teacher-made text-based tasks. 

 There are general observations about task design that apply across these multiple 
kinds of text. However, we also acknowledge that tasks designed to be included in 
mandated curricula material or those adopted by a governing body (e.g., school, 
district, ministry of education) may be designed under content and pedagogy con-
straints that do not exist for designers of supplementary materials or for teachers 
who design tasks for use with their own learners (Gueudet, Pepin, and Trouche, 
 2013 ). For instance, in tasks within mandated curricula, there may be a focus on 
problems addressing particular processes (e.g., reasoning, graphical representa-
tions) or particular solution approaches (e.g., written explanations); tasks may be 
designed to be facilitated by a teacher, with appropriate teacher guidance provided 
for implementation of the task. In contrast, in collections of tasks for supplementary 
use, there may be more of a focus on inquiry or exploratory approaches or multiple 
solution pathways. Similarly, a task designed for a specifi c purpose, such as intro-
ducing learners to engineering as a career choice, would adhere to different princi-
ples than a teacher-designed task to help a class learn a particular mathematical 
idea. The fi rst requires a zoomed-out view of the design intention triangle, perhaps 

5 Design Issues Related to Text-Based Tasks

http://dx.doi.org/10.1007/978-3-319-09629-2_7


148

focusing on the value of engineering or the types of problems engineers solve, while 
the second will be a zoomed-in view at the classroom level, perhaps focusing on 
skills and understandings learners need for an assessment or to provide evidence of 
meeting an established curricular goal.  

5.2.2     Authorship, Authority, and Voice 

 As designers plan and develop tasks, several issues come into play: (1) how will 
designers interact with each other and with the ultimate users of their tasks, namely, 
teachers and learners; (2) how will they position authority for evaluating the correct-
ness or completeness of a task, namely, within the task or within the user of the task; 
and (3) what voice is used, namely, whether the task is addressed to a teacher or to 
a learner. We consider each of these issues in turn. 

5.2.2.1     Authorship 

 Task designers work together in various formats to author mathematical text-based 
tasks:

•    Substantial teams working with a long development process that includes fi eld 
trials to obtain teacher input. Large-scale curriculum development projects, such 
as the School Mathematics Project in the UK, the many Standards-based curricu-
lum projects in the 1990s in the USA, or the Chinese government teams develop-
ing national curriculum texts, have used this format. Also this format is used for 
many projects with more specifi c aims, such as numeracy recovery. The Canada- 
based project JumpMaths includes information about the effects of experience 
on its genesis (  https://jumpmath.org/cms/    ).  

•   Author teams working on short time frames using design principles imposed by 
publishers or authorities. For example, offi cial textbook production in China in 
1960 took place within a 1-year cycle; there were serious learning problems 
within the textbooks that had to be changed (Li, Zhang, and Ma,  2009 ). 
Anecdotally, we know of one US state which requested a new offi cial textbook 
in 6 months.  

•   Project teams working within particular agreed principles for pedagogical and 
epistemological coherence. For instance, in the COMPASS project, a large team 
works across multiple European countries to develop interdisciplinary tasks, 
with specifi c principles, such as a project-centered approach, an inquiry-oriented 
pedagogy, and an integration of information technology (Maaβ et al.,  2013 ).  

•   Individuals or teams developing innovative or idiosyncratic materials with a spe-
cifi c focus or for use under specifi c conditions. For instance, Staats and Johnson 
( 2013 ) created specifi c interdisciplinary tasks for use in college algebra and 
Movshovitz-Hadar and Edri ( 2013 ) developed social justice tasks to focus on 
values education in Israeli classrooms.  
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•   Teams of teachers producing editable materials or task banks in a dynamic process. 
For instance, a group of lower secondary teachers in France are working together 
to produce a text easily adapted by all ( Sesamath  as described in Gueudet et al., 
 2013 ); a group of Israeli teachers are designing tasks using  Wikitext  (Even and 
Olsher,  2012 ).  

•   Individual teachers or small local teams disseminating their ideas. The prolifera-
tion of Internet resources has made it possible for teachers to post lessons and 
tasks for use by teachers anywhere in the world, at no cost or for a nominal fee 
(e.g.,   http://www.teachmathematics.net/    ;   http://www.teacherspayteachers.com/    ).    

 A team which has come together because of an underlying shared belief and 
agreed-upon design principles, such as a team designing tasks that use a particular 
software (e.g., Geogebra, Cabri) or have a particular curriculum aim (e.g., Realistic 
Mathematics Education in the Netherlands), is presumed to have epistemological 
and conceptual coherence in their work. In contrast, a Wiki-type team might pro-
duce materials with variable principles (e.g., the French team for  Sesamath ). Even 
when materials have initially been developed by teams with specifi c design princi-
ples, the move from the design stage to more widespread use and adoption through 
commercial publication can create constraints or pressures that force adaptations or 
modifi cations in tasks to satisfy publishing needs. 

 An example of innovative text-based task development was the Resources for 
Learning and Development Unit ( RLDU, n.d.)  in which teams of about 10 teachers 
worked together to design tasks which they trialed and adapted. The fi nal tasks were 
published in a format that implied certain pedagogic principles, namely, that tasks 
would be presented in a learner-friendly format and that learners would engage with 
mathematics through exploration and inquiry without being told exactly what to do 
or how to do it. Authorship for the text of the task rested with the teacher team, but 
authority for the mathematics rested in the explorations of the students (Llinares, 
Krainer, and Brown,  2014 ). Further information can be obtained from Laurinda 
Brown who coordinated and edited the resources (laurinda.brown@bristol.ac.uk). 

 Consider the RLDU task in Fig.  5.2 . Although there is a sequence of questions to 
facilitate engagement with the task, there are no numbers or measures within the 
task. Thus, as written, there is not enough information for learners to answer the 
questions; rather there is the comment, “Bring a bicycle into the classroom!” This 
comment suggests the task designer wanted teachers to use a physical bicycle to 
facilitate inquiry; learners were expected to use the bicycle to explore mathematics 
and possibly to consider differences in answers to the questions for bicycles of 
 different sizes. The questions should be relatively easy for learners to understand, 
but the mathematics is only accessible through exploration.

5.2.2.2        Authority for Mathematics 

 As task developers design a task or a collection of tasks to be included in a textbook, 
the manner in which the task is written can determine where authority lies for evalu-
ating the mathematics that is the product of the task. In considering textbook 
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authority, Herbel-Eisenmann ( 2009 ) cites research indicating that textbooks often 
derive their authority from the structure of the text itself as well as the pedagogy that 
results or the political and cultural context. Authority for mathematics is ultimately 
within mathematics itself at the school level: most results can be checked by working 
backward or using different tools or searching for implications or contradictions, so 
long as learners are working within the usual conventions. However, mathematical 
authority is often ceded to the textbook authors who provide an answer book or the 
teacher who checks answers. Rarely do text-based tasks support the development of 
the self-checking learner, using mathematics to verify solutions. Developing self-
checking learners could be accomplished by including regular explicit self-checking 
strategies or implicit strategies in which a later action modifi es an earlier action or 
tasks that embed immediate feedback or tasks with a solution obtained from multi-
ple approaches. These are possible using digital resources that show implications of 
incorrect reasoning and interactive software that allows for adjustment and self-
correction as an integral activity. Some curriculum materials have attempted to build 

  Fig. 5.2    An RLDU (Resources for Learning and Development Unit) worksheet (n.d.)       
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in features to facilitate this self-monitoring. For instance, curriculum materials for 
secondary learners developed by the University of Chicago School Mathematics 
Project have Quiz Yourself questions at different points within a lesson for learners 
to stop and check their comprehension, with answers to these short tasks at the end 
of the lesson. Throughout recent decades, various teams have developed pro-
grammed learning suites, either in hard copy or digitally, which provide multiple 
pathways, triggered according to diagnostic evaluation of learners’ success so far. 
Responsibility for diagnosing common errors might be with the designers (Anderson 
and Schunn,  2000 ) but could be valuable for the learners themselves. For example, 
the German textbook series  Mathewerkstatt  contains tasks that enable learners to 
self-check their work and diagnose potential errors, ensuring that learners do not 
proceed too far without feedback relative to their mathematical progress (Hußmann, 
Leuders, Prediger, and Barzel,  2011a ). In some of Swan’s tasks, learners diagnose 
errors in the work of other anonymous learners.  

5.2.2.3     Voice of a Task 

 In designing tasks, developers must consider how to address the ultimate user of the 
task and what messages are conveyed through different usages of language. When 
analyzing  voice  of text-based tasks, differences might be found between text which 
is directed at the teacher or at learners in the classroom or at learners who are 
assumed to be studying on their own. Zooming in to the learner’s perspective, the 
main voice used in tasks is imperative. Learners are told what to do:  look at ,  write , 
 solve ,  measure ,  fi nd out , and so on. Instructions may be supplemented with ques-
tions, some of which trigger action or application (such as  how many  …?) and oth-
ers which trigger refl ection, conjecture, and generalization (such as  what do you 
think would happen if …?). There is evidence from a study of 400 learners that those 
who are used to imperative texts will scan the text looking for  what to do  (Shuard 
and Rothery,  1984 , p. 114). When examining textbooks, we have found that the 
imperative tone dominates; when the teacher then refers to the textbook during 
instruction, such as “what does the textbook say?”, the authority of the textbook as 
a means to resolve issues or questions is reinforced (Herbel-Eisenmann,  2009 ). 

 In some texts, there is no direct instruction for tasks but an assumption that some 
action will be carried out, triggered by a format to be completed or some objects to 
be contemplated. Such tasks may be used for young children who may be unable to 
read, but also be used with older students to encourage inquiry and exploration. The 
implied instruction may be to  complete  or  fi ll in the gaps . In all texts, we might ask 
whether the learner is positioned as a compliant learner or as a co-creator of knowl-
edge. Typical worksheets or workbook pages for very young learners provide a 
printed writing frame in which the learner merely fi lls in answers or uses color, 
arrows, and so on to indicate connections or classifi cations. In these cases, dialogue 
with a teacher shapes whether the experience is merely compliant or seen as the 
creation of meaning. Another way to frame this issue is to identify whether the 
overall mathematical narrative is delivered by the text or is created by the learner. 
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 For example, consider the  worksheet  from the RLDU in Fig.  5.3 . There are no 
questions or instructions provided for the task. However, learners who have previ-
ously worked with tasks from this resource know they are to create their own ques-
tions and explorations from the fi gure. Thus, the task positions the learner as creator 
of the narrative, possibly working with others and in dialogue with the teacher.

   Another example of how voice can shift authority is demonstrated by Wagner 
( 2012 ) who analyzes two of his own tasks using Rotman’s ( 1988 ) distinction 
between imperatives that require learners to write ( scribble ) and those that require 
them to think. The fi rst of his tasks is traditionally imperative; the fi rst two parts tell 
the learner what to do and the fi nal part invites some thinking. 

 This polygon is drawn on 1 cm dot paper.

    1.    Find its area by dividing it into a rectangle and two triangles.   
   2.    Find its area by dividing it into two triangles.   
   3.    Show another way you can divide the polygon into two triangles.     

 The second task uses the fi rst person, as if a real person is talking and sharing a 
solution but in a problem-solving sequence used to fi nd the area of an unnamed 
shape as if it is the only method. So, authorship of the second task is more overt than 
in the fi rst task but still focuses mainly on  scribbling  with a little attention to think-
ing and no room for another learner’s own ideas.

•    I knew it was a trapezoid because the arrow marks showed that it had exactly 
two parallel sides.  

•   I identifi ed the bases and the height. I noticed that the 6.8 cm side length was 
extra information that I didn’t need.  

•   I used the formula. (Wagner cites from Small, Connelly, Hamilton, Sterenberg, 
and Wagner,  2008 , pp. 144–145.)    

 In an example from Korea, a solution uses the phrases “Let’s think” and “Let’s 
fi nd” to suggest that the learner work alongside an unknown person (Lee, Lee, and 
Park,  2013 ). Thus, the voice invites the learner to be a co-creator of the mathemati-
cal solution.   

  Fig. 5.3    Worksheet from 
RLDU (n.d.)       
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5.2.3     Nature of Mathematics 

 The examples in Figs.  5.2  and  5.3  strongly imply that mathematics provides tools 
for posing questions and understanding phenomena and also that mathematics can 
emerge from enquiry. By contrast, the teacher-designed sequence task in Fig.  5.4  
implies that mathematics consists of symbolic objects that are acted on according to 
some rules and that mathematical activity consists of mental reasoning (in this case 
calculation) and writing and then seeking and expressing patterns. Task design 
infl uences the nature of mathematical activity and therefore the learners’ perception 
of what it means to do mathematics. If the task in Fig.  5.4  is left at the stage of  fi lling 
in the blanks  with no refl ection on connections between the fi ve sequences, some 
opportunities to learn will have been missed as learners may simply think of math-
ematics as doing computations. However, if learners look for similarities and pat-
terns among the sequences, then they are able to develop understanding of the 
structure and regularity within numbers.

   Comparison of text-based tasks from different educational cultures can be of 
value in highlighting deeper implications about the nature of mathematics as pre-
sented in the task and text. Although ontology is important, in the context of this 
chapter we cannot separate this from epistemology and, hence, the intended or 
assumed nature of mathematical activity. For example, in the Resources for Learning 
and Development Unit (RLDU), an overall intention was to develop a style of math-
ematics that focused on mathematization, posing mathematical questions, collabo-
ration, and problem-solving; zooming in, the learner was encouraged to experiment, 
make conjectures, and search for or create mathematical procedures to carry out 
their enquiries. The mathematical activity that can be imagined being initiated by 
these tasks would involve practical materials, physical activity, discussion, applica-
tion of techniques, and defi nitions. In addition, the nature of the tasks naturally 
lends itself to learners working collaboratively in small groups. Thus, pedagogy is 
not only implied but also structured by the materials, as in the note to bring a bicy-
cle to class. 

 To explore how different views of the nature of mathematics play out in task col-
lections, we look at three examples of comparative studies. The fi rst example shows 
that different perspectives on the nature of mathematics can be related to the notion 
of authority previously discussed. Gueudet et al. ( 2013 ) compared features of two 
different French textbooks. Differences between them can be considered to create, 

a. 7, ..., 25, 34, ..., 52, 61, ...,

b. ..., 1.6, 2.5, 3.4, ..., 5.2, ..., 7.0,

c. 1.7, 2.6, ..., ..., 5.3, ..., 7.1, ...,

d. ..., 0.16, ..., 0.34, 0.43, 0.52, 0.61, ...,

e. -7, 2, 11, 20, 29, ..., ..., ...,

  Fig. 5.4    Collection of 
sequences to be completed       
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rather than to refl ect, differences in school mathematics cultures. One textbook, 
 Helice  (Chesné, Le Yaouanq, Coulange, and Grapin,  2009 ), was of a traditional type 
written by four experts; the other,  Sesamath  (Sesamath,  2009 ), was developed col-
laboratively by a group of 57 teachers using digital open-access tools. As a result of 
the manner in which the books and their related tasks are created,  Helice  has more 
overall consistency in its presentation of mathematics and mathematical activity and 
more coherence of conceptual development.  Sesamath , while possibly empowering 
teachers, offers a fragmented and atomistic approach to concepts. For instance, 
 Sesamath  presents a counting or enumeration approach to fi nding area; in contrast, 
 Helice  presents a conceptual approach to understanding area as a conserved prop-
erty of 2-d shapes by having students decompose and recompose shapes. In addition, 
 Helice  offers problems with a variety of solutions but  Sesamath  offers one expert 
solution. Learners therefore experience mathematics either as a connected whole 
with several possibilities for action or a fragmented collection of limited actions. 

 In the second example, the focus of tasks might inculcate different ways of 
reasoning. Chang, Lin, and Reiss ( 2013 ) compared a Taiwanese and a German 
textbook series according to principles of continuity, accessibility, and contextual-
ization and the ways that content was structured. They took different approaches to 
proof and, more importantly for our purposes, the tasks that followed the proof. 
Figure  5.5  illustrates the Taiwanese visual-algebraic approach which was followed 
by several visual-algebraic tasks that used the theorem; the German approach was 
deductive and followed by tasks with a focus on area.

   There is a subtle but important difference when we zoom in to the learner’s 
perspective. In the Taiwanese approach, learners extract the relationships from a 
diagram directly but must have prior knowledge of how to determine the area of a 
triangle and the area of a square; in the German approach, learners apply a priori 
formal knowledge to a diagram using knowledge of similar triangles embedded 

Taiwanese Example German Example

therefore

a
b c

C

A b

a
c

Dp

qh

  Fig. 5.5    Comparison of Taiwanese and German typical approaches to Pythagoras’ theorem 
(Adapted from Chang et al.,  2013 , p. 308)       
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within the large right triangle. Although the study offered these as examples of 
differences in overall mathematics pedagogy, this contrast highlights how differ-
ences in task design can engender different learner experiences of geometric 
reasoning through different kinds of mental activity. 

 The third comparison we offer contrasts the treatment of the additive relations 
between small whole numbers for young children in the Chinese textbook and a 
Portuguese textbook (Sun, Neto, and Ordóñez,  2013 ). Analysis of control and varia-
tion in the tasks for this concept shows signifi cant differences in opportunities to 
learn. In the Chinese textbook (Fig.  5.6 ), the focus on each page is representing a 
part-part-whole relation visually, physically, and in alternative equivalent symbolic 
forms. Thus, the Chinese textbook presents mathematics as a variety of formal rep-
resentations of some actions, and this implies that mathematical activity consists of 
carrying out physical actions, forming mental images and expressing them in numer-
ical instantiations.

   In the Portuguese textbook, which we cannot show here, the focus was on active 
methods (such as “doubling plus 1”) applied to several sums. If we look at one 

  Fig. 5.6    Page from Chinese 
textbook (Mathematics 
Textbook Developer Group 
for Elementary School,  2005 , 
p.68)       
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page as a text-based task, in the Chinese approach the object of learning and the 
underlying concept is the additive relation, with connections made between addi-
tion and subtraction and reasoning with tens and ones. In the Portuguese textbook, 
the object of learning appeared to be a different procedure applied to different 
problems on every page. 

 To understand what can be learned from one task, it is useful to consider the 
immediate sequence. In the Chinese textbook, the subsequent tasks also focus on 
additive relations, while in the Portuguese textbook a variety of methods which can 
be used in different cases are presented, leaving the teacher to make the connec-
tions. Sun also shows this difference applies to some US textbooks (Sun,  2011 ). 

 These three comparative examples suggest three issues related to task design in 
terms of how learners may view what it means to do mathematics:

•    Is the learner encouraged to explore and compare different solution methods, or 
must the learner apply one given method?  

•   Is the learner expected to apply a priori knowledge or to apply mathematical 
reasoning (such as expressing relationships) to access new ideas?  

•   Do the choice and sequence of examples prioritize conceptual understanding 
(such as through relating actions to symbols or comparing representations) or 
prioritize methods for reaching a solution?     

5.2.4     Summary 

 In this section, we have discussed the nature of text-based tasks, the view of math-
ematics they imply through their structure and expectations, and the authority they 
assume based on the nature of their authorship or the voice they employ. We have 
not intended to imply that any particular set of design principles in these aspects is 
inherently better than any other. Text-based tasks are prepared and static. A major 
question to be considered is: “How can tasks shape an experience of mathematics 
that is dynamic and dialogic and sees the learner as a sensemaking creator of con-
nections, insights, and solutions?” Some of the tasks already presented could pro-
vide the opportunity for such dynamic dialogue, but only if the associated pedagogy 
supports this. In the next section, we consider the pedagogic issues in task design.   

5.3     Pedagogic/Didactic Purpose of Text-Based Tasks 

 The pedagogic intent of a task also infl uences how that task might be designed by 
its developers. In this section, we consider how cultural differences in purpose infl u-
ence design, how learners are made aware of purpose, how developers ensure a 
coherent purpose within a collection of tasks, and how new knowledge is integrated 
with existing knowledge. 
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5.3.1     Cultural Differences in Purpose 

 Throughout this chapter, we assume the aims of mathematics education are 
multifaceted, so that learners become knowledgeable about concepts, competent 
with procedures, and capable and willing to select, adapt, and use mathematics in a 
variety of familiar and unfamiliar contexts and problems. An overarching question 
is whether and how text-based tasks can contribute to all these aims. The relative 
importance of these aims is to some extent cultural, and there is some evidence of 
cultural differences in how aims are translated into text-based tasks and used to 
promote learning. 

 In several countries, lessons typically have three levels: the fi rst level is basic 
facts and formula; the second level is to make connections between these; and the 
third level is for learners to apply some higher-level thinking to problems. The third 
level of classroom mathematical activity is hardest to achieve and depends on pro-
gression embedded within task sequences. One example of a three-level task lesson 
from Taiwan follows:

    1.    Have a triangle with three angles and put the angles together to form a straight 
line with 180°.   

   2.    Show that the exterior angle sum is 360°.   
   3.    Then use the exterior angle sum to prove the sum of the interior angles (National 

Academy for Educational Research (Taiwan),  2009 ).     

 The fi rst-level task is informal and involves constructing a demonstration of the 
interior angle sum; the second-level task requires some reasoning about angles, 
applying previous knowledge that there are 360° in a full rotation; the third task 
requires a different kind of reasoning, involving formal proof. It is the responsibility 
of the teacher to make the links between the three levels so that it does not have the 
appearance of circular reasoning. In cultures where the emphasis is on effi cient 
actions of teachers and learners, it is hard to introduce the messier aspects of 
problem- solving in which solutions may not be arrived at through the optimal use 
of time, effort, and method. In the given example, there is a further diffi culty, 
namely, that the practical, spatial reasoning expected for the fi rst two tasks gives 
way to formal proof for the third task, a shift which is recognized as a major learn-
ing obstacle and pedagogical challenge (e.g., Bell,  1976 ). 

 In the texts available in our discussions at the ICMI Study Conference, we identi-
fi ed different emphases on mathematical behavior. Learners were expected to develop 
effi ciency (e.g., Dindyal et al.,  2013 ), abstraction (e.g., Chang et al.,  2013 ), and 
applications (e.g., Maaβ et al.,  2013 ) or investigate social problems (e.g., Movshovitz-
Hadar and Edri,  2013 ) in various cultures. There are variations within cultures as 
well. No text can do any of this on its own; in most cases, the effects of the texts are 
mediated by the actions of the teacher. Ensuring that teachers understand the peda-
gogic purpose of a task is another design issue that has cultural variations. 

 In some systems (e.g., China, see Ma ( 1999 )), the teacher guide is understood to 
be the authority for pedagogic knowledge and the national curriculum includes very 
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detailed information about curriculum and pedagogic purpose and design. That is, 
the guide provides information to teachers about the  curriculum vision  so that teach-
ers understand the overall goals and how materials fi t together; such understanding is 
important in building  curriculum trust  so that any adaptations made by the teachers 
are consistent with the overall pedagogical and epistemological vision of the materi-
als (Drake and Sherin,  2009 ). 

 In other systems, teacher guides exist but might be ignored or used in different 
ways, particularly if the pedagogic purpose for tasks or their sequence is not clearly 
laid out in the guide. For example, it might be assumed, incorrectly, that merely 
using a textbook in its given order assures coverage of the curriculum and coherence 
with the designers’ intent (Thompson and Senk,  2010 ). Another reason teachers 
might ignore teacher guides is when they expect to interpret and structure the cur-
riculum for themselves, using textbooks as one of several resources and determining 
their own pedagogic purpose for tasks for use with their students. 

 Differences in pedagogic purpose also play out in how various cultures design 
tasks to address learner diversity. In Japan, one task might be offered to an entire 
class with the emphasis on collaboration, recognizing that different learners will 
learn from this process in different ways. In the UK, it has been common to have 
different but parallel textbook series aimed at learners whose level of attainment 
differs, so that those with lower prior attainment have textbooks in which the con-
ceptual and cognitive material is less challenging. In Sweden, the law requires equal 
access for all, so it is seen to be against the law to differentiate between learners by 
placing them in different curriculum tracks. As we write, there is debate about the 
interpretation of these laws (Lundberg, personal communication, 6 January 2014), 
but at present it means that there is no differentiation of textbooks, except for those 
with varied communication abilities. 

 One implication of non-differentiated materials is that tasks need to be designed 
to enable learners with previously low attainment to gain higher-level understand-
ings and also for those with high understanding to extend their knowledge. This 
means that mathematics cannot be presented as a linear accumulation of ideas with 
assumptions about prior learning, but instead task design needs to develop concept 
images and dispositions that will be sustainable across a range of mathematical 
activity and enable learning at several levels. That is, tasks need to be designed so 
there are multiple entry points, with options for extensions and adaptations. 

 To illustrate what we mean by zooming in to learners’ experience, consider the 
following task:

•     Find 9 + 7 = ___  ?  ___.     

 As written, this is a fairly closed task and students generally know the fact or they 
have to work it out. Now consider the following adaptation:

•     Write as many number sentences as you can for 16.     

 This version of the task addresses a similar ultimate goal but has many points of 
entry. Some learners may start by writing 15 + 1 = 16, 14 + 2 = 16, and so on. 
Depending on judgments of learners’ potential and their past achievements, the 
teacher can ask students to use more than two addends, more than one operation, etc. 
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The point is that all learners in a classroom could experience success with the task, 
some with simple number sentences and others with more complex ones. In the 
process, students are investigating number relationships and completing many 
more computations than would have occurred from the original task. When elemen-
tary learners have been given such a task, it is not uncommon to have pairs of learn-
ers write upward of 20 number sentences in a relatively short time span. If pairs of 
learners check the work of other pairs, learners have opportunities to consider other 
potential ways to combine numbers in appropriate number sentences. 

 Similar adaptations of closed tasks might occur in many contexts. Rather than 
consider a task with a single answer and one way to obtain that answer, teachers 
might adapt tasks to encourage multiple answers or multiple pathways to an answer. 
The intent of such tasks is to provide access to diverse learners, and many teacher 
guides provide information about the pedagogic purpose of such adaptations 
through examples of adapting tasks for students who need remediation or extension. 
Such features of text-based tasks, especially the expectations of organization of 
work, are most likely to be identifi ed through textbook comparison studies in which 
assumptions and expectations about ways of working can become more clear (e.g., 
Pepin and Haggarty,  2001 ; Stylianides,  2009 ,  2014 ).  

5.3.2     How Purpose Is Presented to Learners 

 In the task at the end of the previous section, all learners are investigating number 
relationships with differing levels of diffi culty. We now zoom in again to examine 
more possible purposes of tasks and how these might be expressed to learners. 

 In their classic study of children reading mathematics, Shuard and Rothery 
( 1984 ) present fi ve main purposes for mathematical texts:

    1.    Teach concepts, principles, skills, and problem-solving strategies.   
   2.    Give practice in the use of concepts, principles, skills, and problem-solving strategies.   
   3.    Provide revision of 1 and 2 above.   
   4.    Test the acquisition of concepts, principles, skills, and problem-solving 

 strategies.   
   5.    Develop mathematical language, for instance, by broadening the pupils’ mathe-

matical vocabulary and their skill in the presentation of mathematics in a written 
form (pp. 5–6).    

  Shuard and Rothery’s fi ve purposes apply to texts in their entirety. Applying 
these fi ve purposes to individual tasks would imply that such tasks might address 
individual purposes, such as the various desirable goals and outcomes presented in 
Chap.   2    . A more helpful approach would be to use these purposes as parameters for 
task sequence intentions, so a task might incorporate some revision content, some 
new concept content, some relevant language, and so on, and a task sequence might 
present all these purposes in a developmental order. To some extent these purposes 
would be teacher and learner specifi c, or even topic specifi c, so that tasks that sup-
port learning to resolve right-angled triangles would look very different to tasks that 

5 Design Issues Related to Text-Based Tasks

http://dx.doi.org/10.1007/978-3-319-09629-2_2


160

support learning to prove properties of triangles. Another approach is that of the 
MATH taxonomy derived by Smith et al. ( 1996 ) from examination questions but 
which could be applied to opportunities afforded by individual text-based tasks for 
learning. Their categories are outlined in Table  5.1 .

   A more detailed categorization designed to analyze assessment tasks is that of 
Thompson, Hunsader, and Zorin ( 2013 ). In Table  5.2 , we give a summarized form 
to show the range of foci that can be present in a task.

   Although these categorizations apply to assessment tasks, they can also be 
related to the purpose of learning tasks. For example, if some assessment tasks 
focus on translation between representations, this kind of mathematical action needs 
to be met throughout lessons and also needs to be accompanied with a coherent 
theory that connects translation with some desirable learning outcomes. While 
using any of these categorizations to ensure that a learning management system 

   Table 5.1    MATH taxonomy categories (From Smith et al.,  1996 )   

 Group A  Factual knowledge (A1) 
 Comprehension (A2) 
 Routine use of procedures (A3) 

 Group B  Information transfer (B1) 
 Applications in new situations (B2) 

 Group C  Justifying and interpreting (C1) 
 Implications, conjectures, and comparisons (C2) 
 Evaluation (C3) 

   Table 5.2    Categorizations to analyze assessment tasks for mathematical processes (From 
Thompson et al.,  2013 )   

  Reasoning and Proof  
 The item directs students to provide or show a justifi cation or argument for  why they gave that 
response  
  Opportunity for Mathematical Communication  
 The item directs students to communicate  what they are thinking  through symbols, graphics/
pictures, or words 
  Connections  
 The item is set in a real-world context outside of mathematics 
 The item is  not  set in a real-world context, but explicitly interconnects two or more 
mathematical concepts (e.g., multiplication and repeated addition, perimeter and area) 
  Representation: Role of Graphics  
 A graphic is given and must be interpreted to answer the question 
 The item directs students to make a graphic or add to an existing graphic 
  Representation: Translation of Representational Forms  
 Students are expected to record a translation from a verbal representation to a symbolic 
representation or vice versa 
 Students are expected to record a translation from a symbolic representation to a graphical 
(graphs, tables, or pictures) representation or vice versa 
 Students are expected to record a translation from a verbal representation to a graphical 
representation or vice versa 
 Students are expected to record a translation from one graphical representation to another 
graphical representation 
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addresses the associated desirable learning outcomes, it is not the case that merely 
setting a task that requires a particular mathematical approach ensures learning. The 
three-part task sequence given previously about triangles gives no help to learners 
who cannot see how to proceed. By contrast, the text-based tasks in Burn’s approach 
(e.g.,  A Pathway into Number Theory , 1982) promote guided learning by anticipa-
tory dialogue. Burn’s opening four questions are (p.18):

    1.    Look at table 1.1 [below]. If the same pattern was extended downwards, would 
it eventually incorporate any positive integer {1, 2, 3, …,  n ,  n  + 1, …} that we 
might care to name?   

   2.    What is the relation between each number in table 1.1 and the number below it?   
   3.    Give a succinct description of the full set of numbers in the column below 0.   
   4.    If you choose two numbers from the column below 0 and add them together, 

where in the table must their sum lie?    

 0  1  2  3 
 4  5  6  7 
 8  9  10  11 
 12  13  14  15 
 etc. 

   Burn’s “answers” for these tasks are unusual as they often set up new ideas for 
learners and encourage dialogue with the text. As an answer to question 1, he gives 
formal defi nitions and notations for natural numbers, integers, rational numbers, 
real numbers, and complex numbers. For question 2, he writes  four less and four 
more  and for question 3,  three multiples of 4 . Question 4 he answers with 
 4n + 4 m = 4 ( n + m ) .  So the fi rst answer situates what is meant by  integers  in the 
context of different classes of number. The second and third confi rm the learner’s 
reasoning. The fourth indicates that it is time to shift to symbolic representations 
and shows how such representations can be a tool to express reasoning. In this fash-
ion, Burns leads the reader through a number theory course in which the learner’s 
activity initiates the closest thing to a dialogue that one can get from a static text. 
Note also the fact that only two of these  questions  are imperatives; even then, the 
fi rst instructs the learner to  look  before posing a question. In terms of the previous 
categorizations of Thompson et al., Burns’ questions provide opportunities for stu-
dents to communicate, make connections, and interpret a graphic. 

 It would be possible to dismiss Burns’ approach as a teaching style relevant only 
for adult learners or those who are studying mathematics through choice. However, 
The School Mathematics Project (SMP) in England experimented widely with dia-
logic teaching for 11-/12-year-old learners of average attainment from the early 1960s. 
We do not have good measures of readability that take into account the need to inter-
pret mathematical ideas and multilingual classrooms, but it is likely that learners with 
restricted literacy would fi nd a text-based dialogic approach hard to understand and 
successive versions of SMP materials reduced the reading requirements and hence the 
dialogic opportunities signifi cantly (there were multiple editions, now all out of print). 
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 Anticipation of learners’ responses is a key idea in designing tasks to promote 
mathematical dialogues with the text, and published examples are often trialed 
before publication. Burns anticipates responses in his tasks previously described 
( 1982 ). A Portuguese textbook (Gregório, Valente, and Calafate,  2010 ) provides 
examples of a new method intended to be used in that page, but the fi rst example 
(1 + 2 = 1 + 1 + 1 = 3) is ambiguous and could be taken by learners to mean individual 
counting, rather than an instance of  n +  ( n + 1 )  = n + n +  1. Here, anticipation has not 
led authors to imagine alternative interpretations. Some texts have specifi c exam-
ples in which there is a thinking frame to help learners think about a solution. Then 
an actual solution is written in a different font to model the type of response that the 
learner would be expected to provide; such a method is another way to engage in 
dialogue between a learner and a static text. 

 The task in Fig.  5.7  was given to a class of 11-year-olds with diverse prior knowl-
edge. The task shaped the mathematical activity in such a way that the teacher was 
able to identify particular problems of understanding. It also provided a structure 
within which learners could work together to show each other how to measure accu-
rately, how to use the algebraic information, how to express a fraction of 100 as a 
percentage, and so on. Because the class had been enculturated into making conjec-
tures, connections within rows were identifi ed by learners. However, if this had not 
happened, the teacher could have used a digital version of the table, bringing appro-
priate columns adjacent to each other so that conjectures could be made. While all 
learners were working on connections between decimal fractions, vulgar fractions, 
and percentages, new learning varied from learner to learner depending on what 
they already knew and could do.

Equal 
pieces 
(n)

Fraction 
of a 
metre: 

Measurement 
in cm

Percentage 
of a metre

Decimal 
fraction 
of a 
metre

Calculate
1 ÷ n

2
4
8

5
10

3
6

You have been given some meter strips of paper and a meter stick and a table to
enter your findings. Fold the strip into 2 equal lengths; measure the length of one
piece in centimeters and write the measurement in the table. Fill in any other cells
that you can in the same row of the table. Look at the column heading to decide
what to write. Now fold strips into other numbers of equal lengths and continue to
complete the table.

  Fig. 5.7    An example of a task to format new knowledge       
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   The task in Fig.  5.7  demonstrates a particular strength of text-based tasks, 
namely, that they offer formats that bring particular features together so that com-
parisons and connections can be made to show relationships, equivalence, and so 
on. The provision of tables, grids, sequences, columns, and so on to organize math-
ematical data can draw attention to connections between different representations or 
different instances. Comparisons and connections could be engineered to ensure 
that a critical feature of a concept is foregrounded and that data are structured so that 
patterns and relations can be sought and conjectures made. Formatting the outcomes 
of activities is one way that text-based prepared tasks can provide scaffolding for 
new insights and relational ways of thinking. Texts developed by the University of 
Chicago School Mathematics Project contain guided examples, with blanks to help 
students get started on a solution. The well-known use of ratio tables in RME 
(Corcoran and Moffett,  2011 ; Van den Heuvel-Panhuizen,  2003 ) and bars in 
Singapore (Hoven and Garelick,  2007 ) shows how consistent use of images in text- 
based tasks can scaffold understanding. 

 One issue, however, in all these task examples is that the purpose for the task is 
not always made clear to students. Particularly when tasks have engaged students in 
inquiry and discovery, there is a need to bring closure or summary to ensure that 
students take from their engagement with the task the expected learning objectives. 
So, opportunities to summarize learning are an essential feature of task design and 
associated pedagogy.  

5.3.3     Coherent Purpose in Collections of Tasks 

 The role of the teacher with regard to text-based tasks is to mediate between the text 
and the learner. If that role is passive, the teacher is neither augmenting nor limiting 
what is offered by the text, whether compliant or dialogic. Of course, there is no 
guarantee that a learner will use a static text interactively, even if there are interac-
tive prompts such as those in Fig.  5.2 . By contrast, teachers who assume responsi-
bility to provide conceptual and pedagogic coherence through their teaching 
inevitably mediate tasks through the construction of classroom cultures in which 
tasks direct and shape existing forms of mathematical activity. Between these two 
extremes, published collections of tasks can themselves provide conceptual and 
pedagogic coherence through the consistent application of design principles. Firstly, 
we look at a coherent approach to epistemology and pedagogy. 

 Herbart ( 1904a ,  1904b ) suggested that teachers should raise learners’ interest 
before formal teaching. His approach contrasts with classical texts in which a formal 
defi nition is provided fi rst. In Herbart’s model, the learner’s fi rst task is to think 
imaginatively about the phenomenon; in the classical model, the learner’s fi rst task 
is to decode the defi nition and possibly imagine some examples of it. The role of 
 direct apprehension , i.e., being provided with a situation or image that embodies a 
concept, is more than merely motivational; it suggests that mathematics is a process 
of abstraction of structures, properties, and relationships from specifi c contexts, 
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whereas the defi nitional approach suggests that mathematics consists of instantia-
tions and use of abstract ideas. An example of direct apprehension is the use of a 
domino rally to introduce proof by induction. Love and Pimm ( 1996 , p. 375) note 
that starting with an exploratory task involving inquiry also has implications for 
authority because the work starts with learners’ activity or with the learner’s mental 
model, whereas starting with a defi nition implies an external authority. They con-
trast texts which consist of exposition of given ideas with texts which develop mean-
ing through learners’ construction. 

 As Hart says (personal communication, 24 July 2013), “A good defi nition encap-
sulates a core idea … But, in terms of learning and task design, they seem to be 
more effective if they come after instruction, not before. After wrestling with an 
idea, fi guring it out, seeing how it naturally comes up when trying to solve interest-
ing problems, then you say, well, let’s call this idea ___, and then defi ne it.” Applying 
this perspective to task design, he provides carefully structured sequences of exam-
ples that, on refl ection, can be treated as data for conjecture and conceptualization 
of a new idea (Fig.  5.8 ). As Hart notes, the sequence of numbers used is critical as 
part of the design process. Numbers that are special cases and do not assist in devel-
oping a generalization are not appropriate as examples in the development of the 
concepts.  

 To establish in learners the habit of automatic refl ection on collections of exam-
ples, this kind of task would need to be used regularly (see also Watson and Mason, 
 2006 ). It is more usual, however, for a sequence of procedural questions to be treated 
by learners and teachers as a sequence of isolated cases. When cases are used to 
encourage looking for patterns, the specifi c instances must be chosen with care to 
ensure they lead to the desired generalization and do not generate a misconception. 
For example, consider attempts at conceptual understanding of division using the 
examples in Fig.  5.9 .

   Note how the task embeds practice of division and encourages a comparison 
between division and subtraction that may connect them via a  repeated subtraction  
procedure. As with some other tasks in this chapter, practice is not only associated 
with fl uent use of procedures but also with insights into relationships. There is a 
potential problem, however. In the two cases, the divisor and the quotient have the 
same value. So, learners may correctly write 16 ÷ 4 = 4 and 25 ÷ 5 = 5, respectively, 

2a. Find a number in Z10 that you can add to 6 to get 0 mod 10.  Such a number 
is the additive inverse of 6 in Z10.

2b. Find a number in Z10 that you can add to 2 to get 0 mod 10.  Such a number 
is the additive inverse of 2 in Z10.

2c. What is the additive inverse of 3 in Z10? Explain.
2d. What is the additive inverse of 3 in Z8? Explain why this answer is different than 

the answer yougot for the additive inverse of 3 in Part c.

  Fig. 5.8    Task sequence to scaffold conceptualization of a new idea leading to a defi nition (Hart, 
 2013 , p.340)       
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for the two examples but reverse the meanings of the divisor and the quotient. 
Modifying the example to be 20–5 = 15, 15–5 = 10, 10–5 = 5, and 5–5 = 0 avoids the 
potential confusion because the appropriate division sentence is 20 ÷ 5 = 4, and the 
divisor and quotient cannot be switched. 

 In the previous two tasks, there is an imperative approach to what needs to be 
done, but not how to do it. In the Chinese textbook and  Helice  series mentioned 
earlier in this chapter, an important feature is multiple approaches to each mathe-
matical situation. In a German textbook described by Barzel, Leuders, Prediger, and 
Huβmann ( 2013 ), a consistent set of characters regularly display preferred 
approaches to solving problems throughout the series, for example, “Till likes to try 
numbers and to begin a table. Pia likes to explore patterns and to describe a situation 
algebraically”. This embeds the idea that there are alternative approaches to prob-
lems that might be valid. 

 Zooming out to the overall context, another way in which published task collec-
tions can establish cultures of mathematical activity is through the inclusion of 
assessment tasks whose design aligns with the curriculum and pedagogic aims 
(Thompson et al.,  2013 ). In the cases just considered, method is less important—so 
long as it is correct—than refl ection on the outcomes. If both the formative and 
summative assessment tasks provide the same coherence and consistency as the 
intended curriculum, then even if the teacher and learners approach mathematics 
with a test-focused lens, broad aims might be achieved. Such consistency can be 
achieved through aligning curriculum, pedagogy, and assessment so that the 
expected forms of reasoning, the expected communication methods, the connec-
tions between and within topics, the representations used, and the connections 
between them are evident. Consistency also requires that similar things are priori-
tized and foregrounded in assessment tasks as in the curriculum, not only in concep-
tual and procedural aspects but also in the nature of mathematical activity. 

 For example, consider the development of an assessment task as in Fig.  5.10  
showing how apparently similar tasks can make different demands on learners, 
emphasizing fi rst counting and representation, second the action of sharing and a 
representation, and third the action of sharing and producing two related representa-
tions. In the fi nal version, the connection between pictorial and symbolic represen-
tation has to be explicit, thus providing insight into conceptual understanding by 
having to change register, as described by Duval ( 2006 ). This task involves more 
than simple translation, because in each representation some process has to take 
place, and the processes are different. In words, some imaginary modeling needs to 

16 – 4 = 12
12 – 4 = 8
8 – 4 = 4
4 – 4 = 0

25 – 5 = 20
20 – 5 = 15
15 – 5 = 10
10 – 5 = 5
5 – 5 = 0

Rewrite each set of subtractions 
as a division.

  Fig. 5.9    Attempts to connect 
conceptual and procedural 
views on division (Adapted 
from Zorin, Hunsader, and 
Thompson,  2013 )       
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be done; in the arrays of sweets, some methods of enumeration have to take place. 
The varied forms of the assessment can align with the nature of the tasks incorpo-
rated as part of instruction.    Mathematics is presented as being about expressing 
relations between quantities in alternative representations. In addition, mathe-
matical activity consists of following instructions to draw these different represen-
tations, with the implication that comparison will take place to support cognition. 
These versions show how assessment tasks within a learning management system 
can express overall aims of the system and also give learners direct insight in the 
associated values of that system. Appropriate assessment tasks are essential to 
ensure that collections of tasks have a coherent purpose overall, both instructionally 
and in evaluative aspects. 

 Of course, high-stakes assessment tasks structure purpose and pedagogy to some 
extent, but a recurrent problem is how such tasks can recognize and even measure 
the development of mathematical behavior. Dindyal et al. ( 2013 ) have attempted to 
make problem-solving activity assessable by using a practical worksheet, similar to 
worksheets or data recording sheets used in laboratories. By providing a format in 
which learners can record the stages and processes of problem-solving (see 
Fig.  5.11 ), teachers not only enculturate learners into the habits of exploratory group 
work but also are able to monitor competence and progress in relevant behavior. 
This is another situation where textual formats can scaffold mathematical enquiry 
and insights.

   Collections of tasks need to have a consistent approach to the conceptual devel-
opment of the content. We have already compared how different ideas about learn-
ing addition can be enacted throughout a text, presenting either the additive 
relationship or addition techniques. We also gave an example in Fig.  5.5  of how 
geometric reasoning can be differently enacted. In the respective textbook series as 
a whole, these differences are sustained; the one based on similarity assumes 

Adaptation 1. Five friends have 20 pieces of candy to share 
equally. How many pieces of candy will each friend get? Write a 
number sentence to show how many pieces of candy each friend 
will get.

Adaptation 2. Five friends have 20 pieces of candy to share 
equally. How many pieces of candy will each friend get? Write a 
number sentence to show how many pieces of candy each friend 
will get. Use the picture to explain your thinking about the 
problem. 

Adaptation 3. Five friends have 20 pieces of candy to share 
equally. Draw a picture to show how many pieces of candy each 
friend will get. Write a number sentence to represent your 
picture.

  Fig. 5.10    Three adaptations to a basic division task to engage learners in different mathematical 
processes (From Thompson et al.,  2013 , p. 406)       
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that this idea has been understood earlier and the relevant notation already adopted. 
In the use of mathematical notation, there is little room for variation throughout a 
task collection as notation tends to be standardized, but in the use of images, devel-
opment of mental images, inner language, and promoted action, there is more room 
for variety, sometimes based on cultural expectations. 

 At times, clashes of images need to be anticipated in collections of tasks within 
a textbook or between textbooks in a series. For instance, diffi culty can occur when 
learners have depended on a balance model for solving linear equations but are then 
introduced to a “fi nd roots” approach for quadratics, thus fragmenting their knowl-
edge of solving equations. A similar problem for younger students is having an 
array understanding of multiplication and then trying to use multiplication for scal-
ing quantities. Text can introduce particular images, but these have to be used in a 
coherent manner.  

5.3.4     Embedding New Knowledge with Existing Knowledge 

 So far we have discussed tasks for learners to introduce them to new ideas, problems 
and procedures, and assessment tasks that might follow and convey a particular 
view of what is valued in mathematics. An intermediate range of tasks can be 
designed to connect new to existing knowledge, help learners recognize the value of 
that knowledge, and make it available for future use. Such tasks are particularly 
important when the main teaching/learning mode is exploratory and divergent 
because the tasks help relate the exploration to conventional knowledge. There are 
various ways to address this range of tasks, as described in more detail in Chap.   2    : 
in Realistic Mathematics Education,  vertical mathematization  describes the neces-
sary process of transforming methods used for individual problems into tools for 
future use (Treffers,  1987 ); Brousseau refers to  institutionalization  as a process of 
legitimizing the work done in conventional mathematical terms ( 1997 ). In Japan a 
process of  neriage  (kneading) takes place to bring students’ into a coherent whole 
(Takahashi,  2011 ). In these approaches, the teaching is vital. In the KOSIMA project 
(Hußmann, Leuders, Prediger, and Barzel,  2011b ), this exploratory process has 

Devise a plan
Write down the key concepts that might be involved in solving the equation.

  Fig. 5.11    Outline of part of the practical worksheet with student’s response (From Dindyal et al., 
 2013 , p. 319)       
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been a specifi c focus for research in determining how to coordinate the individual 
efforts of learners with the intended conventional knowledge and how to support 
this through the text. Note that all these approaches suggest that the teacher’s intel-
lectual input needs to relate to students’ activity. 

 Barzel et al. ( 2013 ) offer three components of knowledge organization necessary 
for learners to incorporate their experience of exploratory tasks into a repertoire of 
conventional knowledge:  systematization  (structuring results and connecting them 
to other knowledge),  regularization  (transforming into the conventional repertoire), 
and  preserving  (writing in an accessible form). These processes do more than  insti-
tutionalization  by also focusing on personal conceptual development and recording. 
Tasks can align divergent experiences toward shared understanding of concepts and 
procedures by embedding technical language and conventional symbolism, relating 
defi nitions to recognition, and providing individuals with opportunities to express in 
words and symbols. 

 A good teacher can provide knowledge organization experiences by orchestrat-
ing students’ ideas as seen in the task designed by teacher Jim Noble (personal com-
munication, 8 April 2014) when he found that some of his students were confused 
by information in a textbook that ratios could be expressed as fractions, e.g., 1:2 
could be expressed as 1/2. He created a formatted task to help them compare mean-
ings of ratios and fractions (Fig.  5.12 ). Note that his use of fractions differs from 
that in the textbook they were using.

   Published tasks can also provide these refl ective perspectives. KOSIMA includes 
many strategies for knowledge organization as specifi c tasks, for example, after 
studying parallel and perpendicular pairs of lines, students are offered several state-
ments from which to choose  the best  descriptions of parallelism and perpendicular-
ity (Barzel et al.,  2013 ).  

Ratios and Fractions!
Consider this statement: The ratio of boys to girls in a class is 1 : 2. 

3
1 of the class are boys,

3
2 are 

girls. The table below is based on statements like these. Can you arrange the given numbers into 
the right place to make similar statements correct? You must use all the numbers and once only. 
For example, for the statement I have just made the given numbers would be: 1, 1, 2, 2, 3, 3.

Numbers Ratio of boys to girls Fraction of class 
that are boys

Fraction of the class 
that are girls

3, 3, 5, 5, 8, 8
3, 3, 4, 4, 7, 7
4, 4, 5, 5, 9, 9
1, 2, 3, 4, 4, 6
1, 2, 3, 3, 3, 6

  Fig. 5.12    Formatted task to help students connect ratios and fractions (From Jim Noble, personal 
communication)       
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5.3.5     Summary 

 In this section, we have talked mainly about the purposes a designer might have for 
tasks to address learning or assessment and have given examples of how these pur-
poses are turned into design parameters for collections and sequences of tasks. In 
the next section, we focus more systematically on desirable forms of mathematical 
activity and whether these can be shaped by text-based tasks.   

5.4     Intended/Implemented Mathematical Activity 

 The fi nal node in the task design intention triangle relates to the mathematical activ-
ity of the task. Design issues related to mathematical activity relate to principles 
about learning and mathematical aims of particular tasks. We discuss both of these 
issues in turn. 

5.4.1     Principles About Learning 

 We cannot talk about connections between tasks and learning without some theories 
about how pedagogy shapes mathematical learning and hence design frameworks as 
described in Chap.   2    . Here, we add to the arguments in Chap.   2     by providing exam-
ples of these principles in action in individual test-based tasks and what they might 
look like on a page or screen. 

 The idea behind a cognitive confl ict approach is that learners are presented with 
situations that confl ict with ideas they already have, so that their ideas have to be 
modifi ed to incorporate new experiences. Tasks have to bring these confl icts to 
learners’ attention by leading them to become stuck if they continue with the old 
idea. Learning in this theoretical frame means to adapt, alter, or extend a previous 
notion, so tasks have to present opportunities to use previous notions and then fi nd 
contradictions or puzzles that need to be resolved. Many other examples of tasks 
evincing the resolution of cognitive confl icts created through paradoxes that can be 
integrated in school curriculum can be found in Movshovitz-Hadar and Webb 
( 2013 ) and also in Swan ( 2006 ). 

 As an example of how cognitive confl ict can be used to extend learning, Barabash 
(personal communication, March 2014) points to potential confl icts between learn-
ers’ early conceptions of the tangent concept that do not hold in more advanced 
settings. In the Israeli curriculum, the concept of  tangent  is introduced in geometry 
as a tangent to a circle and then in precalculus as a tangent to a parabola. For both 
the circle and the parabola, the tangent is intuitively understood or actually defi ned 
as “if a line has common points with a curve, then it  either  intersects it (in two 
points!)  or  is tangent to it.” However, this result is only true provided the curve is 
seen as convex and smooth; developing the concept of tangency on this basis is not 
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always valid as illustrated in Fig.  5.13a, b  when the curve has power higher than 2. 
Thus, the means for introducing tangent in early instances and with the given defi ni-
tion are in confl ict with later, more advanced perspectives on the concept. The task 
is to redefi ne tangency given these two juxtaposed examples. In presentational 
terms, the graphs can be compared side by side to identify what is the same and 
what is different.

   In Variation Theory (VT), the idea is that learners will notice what is varying 
against an invariant background (Marton,  2014 ). Mathematics tasks should be 
designed so that the desired key idea (known as the  critical aspect  in the theory) is 
varied and learners can see this and the effects of such variation in successive exam-
ples. A full application of VT requires the initial identifi cation of a critical aspect to 
be learned, and it is this that will then be varied. Such identifi cation takes place 
through a phenomenographic analysis of learners’ work in a particular context, so it 
could be argued that no static text can fully use VT. Nevertheless, the theory does 
draw attention to the importance of organizing variation in learners’ experience, the 
 space of learning . Dynamic digital environments are very useful for this type of 
variation as variations of a parameter of an object and variation in a representation 
of the object can be seen at the same time or soon after each other. For instance, 
imagine learners using a graphing tool to graph  y  =  x ,  y  = 2 x ,  y  = 3 x ,  y  = − x ,  y  = −2 x , 
and so on. Learners should quickly be able to determine that all lines of the form 
 y  =  mx  go through the origin and that the value of  m  determines the slant and steep-
ness of the line. In static environments, near-simultaneous or adjacent presentation 
can have a similar effect. The presentation of the sequence of examples needs to 
make clear what features of a concept are varying in order to show relationships 
between different aspects of the mathematical idea. The learner is to recognize and 
generalize the relationship between variables. 

 ATD (Anthropological Theory of Didactics) and RME are both ways to engineer 
a need for a formal mathematical idea. Fujii gave an example of such a task ( 2015 , 

  Fig. 5.13    Illustrations in which the concept of tangent confl icts with formal defi nition as a line 
that intersects a  curve  at only one point (diagrams from Barabash, personal communication). ( a ) 
The tangent at one point intersects the  curve  at another point. ( b ) The tangent intersects the  curve  
at the infl ection point       
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Chap.   9    , this volume) in which learners were given various distance-time relationships 
and asked to identify which relationship represented the  fastest . It is impossible to 
give a typical example of an RME task in text, because the nature of the resources 
varies widely. One type of task is to present a picture, such as a stack of oranges, and 
invite questions to be posed and generalizations made about piles of oranges of vari-
ous heights and widths (Dickinson and Hough,  2012 ). Another type is to offer a 
realistic problem and a format for the fi ndings of the problem-solving process, such 
as a bar diagram, which can then become a model for future reasoning (Van den 
Heuvel-Panhuizen,  2003 ). 

 In all these theoretical frameworks, the main pedagogic purpose is to learn new 
mathematical concepts and methods. In the fi rst two (cognitive confl ict and varia-
tion theory), this is generally achieved by working on given examples and then 
comparing and refl ecting on the outcomes. In the second two (RME and ATD), 
learners have often to be exploratory and exert some mental effort to suggest solu-
tion paths. Most of the tasks presented so far can be viewed as examples of one or 
more of these approaches, but Fig.  5.3  offers nothing but the opportunity to mathe-
matize a situation. The teacher could use this fi gure to develop the need for the idea 
of proportionality or as a context for applying proportional reasoning. By contrast, 
Fig.  5.4  is a relatively closed task that can be treated merely as practice in complet-
ing linear sequences, but a teacher could then encourage refl ection and comparison of 
outcomes to develop algebraic understanding of linearity, possibly using learners’ 
conjectures to do so. 

 Tasks on their own are unlikely to address all the complex aims of the mathemat-
ics curriculum, particularly those that are about developing mathematical behavior, 
and the authors’ intentions depend on associated pedagogy. Note that the author 
might be the teacher (as in Jim Noble’s task in Fig.  5.12 ) and may have produced 
the text-based task to support complex pedagogic aims. The extent to which the 
teacher understands and supports the pedagogic aims of the text infl uences the man-
ner in which adaptations are conducted in order to maintain those aims—the issue 
of curriculum vision and trust (Drake and Sherin,  2009 ) discussed previously.  

5.4.2     Aims Enacted Through Individual Tasks 

 In earlier sections, we have sometimes described the mathematical activity prompted 
by a task. We now systematize this from the perspective of desirable mathematical 
activity. In Chap.   2    , there is a call for more focus on the grain size of frameworks as 
research in task design would benefi t from further clarity about different levels of 
activity. Because the purpose of tasks is to promote mathematical action, we look at 
grain size from the point of view of actions:

  Grain Sizes of Mathematical Actions 

   i.    Basic actions   
   ii.    Transformative actions   
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   iii.    Concept-building actions   
   iv.    Problem-solving, proving, and applying   
   v.    Interdisciplinary activity    

  Compliant and passive learners expect to undertake basic actions of type (i) and 
can begin to get stuck with transformative actions of type (ii). A common pedagogic 
approach to overcoming these diffi culties is to routinize type (ii) actions by provid-
ing rules for transformation, such as  change the side, change the sign  as a routine 
when solving linear equations, or  FOIL  (fi rst, outside, inside, last) as a routine for 
multiplying two binomials. Type (iii) actions have been available to learners in 
many of the task examples presented so far, sometimes explicitly and sometimes 
implicitly. Where these are implicit, explicit pedagogy and the development of 
appropriate cultures of classroom mathematical work can ensure they take place. 
Actions of type (iv) are expected in most national curricula and statements of edu-
cational aims, but an overreliance on routinizing type (i) and type (ii) actions and a 
lack of explicit focus on type (iii) actions can make type (iv) actions, and hence type 
(v) actions, hard to achieve. We also note that some would say the outcomes of type 
(iv) activity are essential components of concept building, and we would agree. 
However, here we are focusing on how a designer needs to imagine what the learner 
is actually going to DO in response to the task, rather than only imagining what 
MIGHT be possible with supportive teaching. 

 It is helpful to think in terms of desirable mathematical behavior that needs to be 
promoted by tasks. Cuoco, Goldenberg, and Mark ( 1996 ) describe  habits of mind , 
or what several people call the  verbs of mathematics , as starting points for tasks (i), 
(i), and (iii). Similarly, Schoenfeld ( 1985 ) and Mason, Burton, and Stacey ( 2010 ) 
provide ways to think about tasks of types (iv) and (v). For this chapter, our main 
goal is to indicate behavior which can be triggered by text-based tasks, how this can 
happen, and what remains the domain of pedagogy, particularly the creation of cer-
tain classroom cultures. 

 In Table  5.3 , we elaborate on actions at different grain sizes but do not claim that 
these are mutually exclusive or that the table is complete.

   This approach to thinking about what learners need to do omits some aspects of 
mathematical experience, such as:

•    The need to talk, write, and listen to mathematics  
•   Reasoning for different purposes, e.g., to conjecture, persuade, and prove  
•   The need to use mathematical feedback, such as self-correcting, monitoring 

overall sense, understanding comments from others, and appreciating a need for 
consistency  

•   Seeing mathematics as part of citizenship—information for understanding the 
world  

•   Relating mathematical work to other human values    

 We see these aspects as pertaining to all grain sizes of mathematical actions. 
None of these can be embedded in learners’ experience solely by indicating them in 
text or including an opportunity in a task; there has to be the associated pedagogy to 
ensure they happen. For example, Simon’s design of a questioning sequence used 
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to move Erin toward understanding the traditional fraction division method depends 
on being responsive to her (described in Chap.   2    ). He tries to identify, through 
observing patterns in talk, when she has developed a new schema, so the next question 
he poses must provide refl ection on this new schema toward abstraction. In this way, 
Simon structures a task that sounds like type (i) but has the effect of moving through 
to type (iii) as she extends the domain of application and then generalizes her ad hoc 
and visual reasoning into an algorithm. Although it would be possible to write the 
questions as a sequence in text, it would not be possible to hold them until the right 
pedagogic moment arises for them to be effective in changing understanding. Human 
dialogue is necessary, even though the outcome will be a calculation procedure.  

5.4.3     Complex Aims Enacted Through Large-Grain-Size Tasks 

 It is possible to shape experiences related to more complex activity through provid-
ing tasks in textual form. Movshovitz-Hadar and Edri ( 2013 ) developed an approach 
to help teachers bring values into the mathematics classroom (Fig.  5.14 ).

   By reverse engineering the outcomes of the project (as is also applied to educa-
tional tasks by Amit and Movshovitz-Hadar,  2011 , p. 176), the authors present 
four issues related to design that make this approach manageable for teachers and 
learners:

    1.    Tasks are based in the mathematics curriculum and designed to last one class or 
homework session.   

   2.    They include a clearly phrased introduction followed by two kinds of short ques-
tions: (i) mathematical exploration or thinking and (ii) dialogue to clarify values 
using mathematical and other perspectives.   

   3.    Editing to avoid obstacles.   
   4.    Advice about the social mode of working: group, individual, discussion, and so on.    

    Table 5.3    Actions for different grain sizes of mathematical work   

 Grain size  General focus  Examples of specifi c actions 

 i  Basic actions  Calculating, doing procedures, stating facts 
 ii  Transformative  Organizing, rearranging, systematizing, visualizing, 

representing 
 iii  Concept building  Sorting, comparing, classifying, generalizing, 

structuring, varying, extending, restricting, defi ning, 
specializing, relating to familiar and intuitive ideas 

 iv  Problem-solving, 
proving, 
applying 

 Conjecturing, assuming, symbolizing, modeling, 
predicting, explaining, verifying, justifying, refuting, 
testing special cases 

 v  Interdisciplinary 
activity 

 Incorporating other epistemologies, identifying variables 
and structures, recognizing similarities, comparing 
familiar and unfamiliar knowledge 
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  Consideration of values-focused tasks raises the question of the starting points 
for task design and for presentation of the task in text. Is priority given to the context 
and the mathematical perspectives that emerge from it? Or is priority given to a 
mathematical idea and the context is then built around it? Design might have prob-
lem orientation, concept orientation, or context orientation (Nikitina,  2006 ). For 
example, within variation theory the critical aspects of the mathematical concept 
have priority; however, when interdisciplinary work is an explicit aim, priority 
might be given to context. In the COMPASS project, Maaβ et al. ( 2013 ) report on 
their development of design issues for interdisciplinary tasks. This was an interna-
tional project, so thought had to be given to different prevailing pedagogic attitudes 
and ICT use in the participating countries. The aim was to produce digital and 
paper-based resources for dissemination beyond the development process, and these 
had to communicate clearly the key mathematical and scientifi c ideas so that teach-
ers and learners could see how these emerged from their work. Each task had to 
make reference to the appropriate national curriculum to encourage teachers to use 
it. The most appropriate pedagogy for interdisciplinary tasks of this type would 
have been extended exploratory project-type work, but the designers also provided 
more structured versions to support teachers who were not confi dent enough to 
undertake long tasks. Task designers gave considerable thought to how complex 
materials could be made teacher friendly and easy to use. Further issues, many of 
which emerged during the design research process with teachers, included:

•    The need for an overview of the lesson sequence, with tasks and subtasks.  
•   Tasks presented so they could be used directly in lessons without 

transformation.  
•   Questions needed for guiding learners.  
•   Clear links between subtasks and the big contextual questions.  
•   Possible solutions.  
•   Information about adapting tasks for different learners.  
•   Different materials (e.g., task sheets, solutions, background information) had to 

be easily distinguished at fi rst glance.    

In 2007, minorities (Arabs, Druze, and Circassians) were one fifth of the population in Israel. 
Despite this, only 6.2% of all civil service employees in this year were minorities. Over the 
years, the Israel government has made decisions (in 2004, 2006, and 2007) to promote suitable 
representation of minorities in the civil service, setting 10% as a target for the percentage of 
employment of minorities in the civil service.
1. What do you think about the goal that was set by the government? 
2. The Ministry of Housing and Construction had 741 employees in 2007. Had the target set by 

the government been achieved, how many members of minorities would have worked in the 
Ministry of Housing and Construction?

3. Twelve employees in the Ministry of Housing and Construction were minorities in 2007. 
What percentage of all employees in the ministry were minorities?

4. What do you have to say about the two results you obtained?

  Fig. 5.14    Values task for Israeli classrooms (From Movshovitz-Hadar and Edri,  2013 , p. 382)       
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 One such project is about water shortage. The subtask materials are too complex to 
give in full here. The guiding questions and two of the subtasks are shown in Fig.  5.15 .

   The issues of design for COMPASS are useful guidelines for the production of 
any multimedia curriculum package. They address key questions in interdisciplin-
ary work about the balance between context for mathematical learning and the use 
of mathematics to support learning in other disciplines. 

 Staats and Johnson ( 2013 ) tackled the problem of algebraic competence at col-
lege level through a novel interdisciplinary approach. They adopted the typical 
social science pedagogic method and provided tasks coauthored by a mathematics 
teacher, a disciplinary specialist, and a creative writer. The creative writer prepares 
an engaging presentation of a scenario. This is followed by explicit learning goals 
for both disciplines for class discussion, with scaffolding questions and a short sup-
portive bibliography. We do not have room here to present a full narrative but will 
summarize the content of one module (for more details see   z.umn.edu/icmi22    ). The 
core of the module is a short story titled  Indebted,  in which a young man wrestles 
with the question of how to pay for his college education. The young man visits his 
grandfather, who suffers from Alzheimer’s disease. The grandfather hoped to con-
tribute to his grandson’s education but instead had to use his savings for his own 
care. The young man considers mathematical scenarios associated with indebted-
ness, such as rapidly rising college tuition and the per capita value of the national 
debt. Finally, he signs his college loan papers. The learner recognizes the social and 
emotional dimensions of the problem as well as the mathematical issues. 

 So far in this section, we have talked about tasks that address the largest of our 
grain sizes but include aspects of smaller grain size, mainly type (i) and type (ii) 
with other types to obtain models for prediction purposes. This is not a surprise as 
most of the research in task design addresses complex aspects of mathematical 
work. However, there is much to be understood about the design of tasks that scaf-
fold basic, transformative, or concept-building activity. Each of the actions in 
Table  5.3  could be triggered by an imperative, such as  put in order ;  classify 
according to … ;  give three contrasting examples of … ; and  prove that … . As the 
professional development procedures of lesson study and learning study have shown, 

  Fig. 5.15    Examples from cross-curriculum task in COMPASS (2013 ©  2010–2011 COMPASS 
project reuse under Creative Commons Licence)       
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the actual examples used and their availability to learners make a difference in 
opportunities to learn. We give some insight here, and there are others throughout 
this chapter. 

 The example comes from Barabash and Guberman ( 2013 ). In writing textbook 
tasks about shapes, they had to choose between (a) allocating a lesson to each solid 
in turn and then asking for comparison or (b) looking at all relevant solids together 
and fi nding their common and special properties. They chose (b), an approach 
which brings type (i), (ii), and (iii) actions together, rather than (a) which climbs up 
from (i) to (iii). The authors embedded the approach in a problem situation in which 
an intruder has left traces of certain solids in the form of stains made from static 
contact or traces left by rolling solids (see Fig.  5.16 ), thus working with type (iv) 
actions. Their overall aim is to develop  mathematical insight , which is akin to the 
organization of knowledge described by Barzel et al. ( 2013 ). Their approach is 
shaped at the start of the work by the expectation that mathematics is going to pro-
vide the analytical tools to identify the solids. Students explore with the solids, 
make conjectures, and then refi ne their conjectures.

   Note that we have addressed all grain sizes from the zoomed-in view of learners’ 
experience, rather than from a zoomed-out view of curriculum aims. How learners 
can be “ramped” from simpler tasks to more complex tasks, where their previous 
experience has not prepared them for complexity, is a related problem. One useful 
approach is to use a gradient of “novice”, “apprentice”, and “expert” tasks (MARS, 
 2014 ). These descriptions were developed for designing assessment tasks but could 
be used equally well for the development of complex mathematical habits of mind.   

5.5     Visual Features of Text-Based Tasks 

 Text-based tasks are planned, prepared, and presented to learners visually; they are 
not the tasks that arise within teacher-learner dynamics. Most of our discussion is 
about the work that goes into planning and preparation, but the experience for the 
learner is fi rstly visual. For this reason, research about learners’ experiences with 
text-based tasks needs to take into account many of the same perceptual impacts as 

  Fig. 5.16    Marks left by  solids  from static contact with a surface or by rolling; the task is to deter-
mine which solid could have left the given mark (Barabash and Guberman,  2013 , p. 297)       
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might be considered by graphic designers. However, we found little research which 
related perceptual impact to mathematical cognition. In the graphic design literature, 
we read that the learners’ attention can be directed in sequence to particular features, 
as in statistical representations, but making mathematical sense of those features and 
coordinating with other features are not widely discussed across mathematics. In a 
few textbook comparisons, researchers draw attention to the use of color, pictures, 
text boxes, and so on and whether these are used for cognitively specifi c purposes 
or whether they are merely to make a page appear attractive to young learners. 
Thompson et al. ( 2013 ) classify the use of graphics as was previously shown, but we 
repeat a shortened form here: no graphic; graphic does not illustrate inherent math-
ematics; graphic explicitly illustrates inherent mathematics; graphic has to be inter-
preted to answer a question; and make a graphic. 

 When we talk of visual features as part of a task, we are not interested in the use 
of color, pictures, or position merely for visual attraction but at how those features 
contribute to learners’ mathematical activity by enabling coordination of the eye 
and brain. In the static environments that are our focus in this chapter, we are also 
interested in how pictures and diagrams can suggest action. For example, in Fig.  5.6  
the pictures suggest both collation and separation using place value. In Fig.  5.10 , the 
sweets suggest systematic enumeration. 

 In Fig.  5.6 , the pictures have a deliberate cognitive purpose in that they illustrate 
actions which can contribute to an understanding of the symbolic representations 
that follow immediately. In Chap.   2    , Fig.   2.7     demonstrates a similar set of pictures 
and diagrams. Symbolic statements are placed next to each other when they relate 
to each other in particular structural ways or follow each other in a deliberately 
varied fashion. Without the need for mediation through speech, a learner who deci-
phers the page from top to bottom and left to right has the information they need to 
complete the suggested statements. In Fig.  5.4 , the layout confi rms for the learner 
that they need to fi ll in some blank spaces, and when this is done there are some 
relationships to be found. In other words, the layout encourages comparison, con-
jecture, and generalization between sequences rather than merely completing them 
separately. However, visual similarity does not always imply mathematical equiva-
lence and learners have to sort out when it does and when it does not. 

 Learners have to make a distinction between pictures and diagrams. For exam-
ple, Curcio ( 1987 ), among others, describes learners being over-infl uenced by the 
shape of graphs when matching them to situations that might be generating the rel-
evant data and points to confusion between words such as higher, faster, and lower 
and the shape of associated graphs. In several studies, learners are seen to react 
visually to diagrams that need to be interpreted symbolically (Dörfl er  2005 ; Radford, 
 2008 ). In geometrical reasoning, a diagram has to be understood not as an accurate 
case but as a representation of a system of relations and properties. Moreover, both 
diagrams and pictures can introduce simplifi cations or elaborations which could 
mislead novice learners. For example, a vertex could look as if it is a right angle 
when it is supposed to be general; a learner might assume that the base of a triangle 
has to be parallel to the page edge. Love and Pimm ( 1996 , p. 380) point out that 
dynamic digital technology will help learners to understand that a single example is 
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an instance of a class of fi gures and that a specifi c example can be manipulated to 
address these potential misconceptions. Puphaiboon, Woodcock, and Scrivener 
assume a dynamic environment, saying “The graphic representation must portray 
the relationship between the graphical parts in time and space to reinforce cause and 
effect relationships” ( 2005 , p. 3). Static images have to embed this dynamic rela-
tionship and be understood as instances of a variable class so that they direct the 
learner toward the salient features of the class. 

 Tufte shows a variety of ways in which quantitative and dynamic data can be 
represented through static diagrams, such as through labeling, encoding, relating 
data to familiar scales, etc. ( 1997 , p. 13). He claims that good design enables atten-
tion without clutter so that “clear and precise seeing becomes as one with clear and 
precise thinking” (p. 53). Shuard and Rothery ( 1984 , p. 61) draw attention to the use 
of arrows in text to indicate some movement and action, the static equivalent of 
mouse clicks and dragging; the use of arrows is a convention that learners know 
from outside the classroom but that might have a special meaning and use inside 
mathematics. Diagrams make a difference to learning; so long as the diagram and 
its associated text are near each other so the eye can move back and forth, relative 
position does not matter (Shuard and Rothery,  1984 , p. 53). Some recent research 
using eye tracking to determine if experts and novices  read  tabular data differently 
has shown no differences, but each participant in the study seemed to have a per-
sonal pattern of engagement with such data (Crisp, Inglis, Mason, and Watson, 
 2011 ). More work is needed in this area to fi nd out how learners acquire and coor-
dinate information from a mathematical text. 

 The use of color for specifi c mathematical purposes became established in 
nineteenth- century geometry teaching, for example, Byrne’s edition of Euclid 
( 1847 ) color to draw attention to different objects and quantities whose relations 
could then be understood spatially. Fig.  5.17  gives a sense of the use of color to 
compare objects.

   Color is widely used in the teaching of algebra to draw attention to like terms or 
to provide spatial patterns to be generalized (e.g., showing ( x  +  y ) 2  =  x  2  + 2 xy  +  y  2  
with appropriate shading), as a way to draw attention to area as the space inside a 
closed 2-d shape and so on. Indeed color is used for a mixture of mathematical and 

That is, red angle added to the yellow angle added to
the blue angel, equal twice the yellow angle, equal two
right angles.

Or in words, the red angle added to the blue angle, equal
the yellow angle.

.==++1. 2

.=+2.

  Fig. 5.17    Use of  color  to relate objects (Byrne,  1847 , p. x)       
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attentional reasons to support the distinctions learners make when understanding a 
mathematical idea, but it is also used purely for visual variety. We wonder how 
learners learn when to use color cognitively and when it has no mathematical pur-
pose. The use of specifi c color words disadvantages color-blind learners (up to 
10 % of boys and 0.5 % of girls can be color blind). In Fig.  5.17 , the words  red , 
 yellow , and  blue  will confuse a signifi cant number of people, so although different 
shades may be perceived, it is better to refer to them in some other way, as is done 
in Japan (Ohtani, personal communication, 22 May 2014). The key idea is how the 
text draws learners’ attention to examples and how they relate to each other. As well 
as the use of emphasis through color and layout, the control of variability and the 
near- simultaneous presentation of variation are key factors in the kind of atten-
tion that is necessary for type (ii) and (iii) activities. Tasks in Figs.  5.5  and  5.9 , 
among others, demonstrate the use of juxtaposition to elicit conjecturing and 
generalization. 

 Thinking about the page as a whole, Kress and Van Leeuwen ( 1996 ) use the 
metaphor of an art gallery or museum (see Yerushalmy  2015 , Chap.   7    , this volume) 
to think about where to position items to direct the learner in a logical or develop-
mental order while making ancillary information and elaborations available through 
hyperlinks. Although diffi cult to replicate on the printed page, such links could eas-
ily be provided in digital text. Cognitive load theory, which is concerned with fi nd-
ing the optimal number of ideas that can be handled to understand a concept while 
not oversimplifying it, also has a role to play in the preparation of a page. The 
learner should be able to follow a pathway through the text that allows access to 
core ideas, possibly through various representations and instances, without becom-
ing too distracted by irrelevant details; in essence, the learner needs to distinguish 
the core idea from other material and cannot learn to do that if it is always presented 
in isolation (Love and Pimm,  1996 ). In cognitive load theory, researchers are con-
cerned with whether the content is intrinsically necessary for the object of learning 
or germane to it or extraneous (e.g., Paas, Renkl, and Sweller,  2003 ). We would 
argue that the grain size of the pedagogic intentions determines whether these loads 
are desirable or not. For type (i) activity, only intrinsic content is necessary; for the 
other types of activity, mixtures of intrinsic and germane and even extraneous con-
tent are desirable. In variation theory, it is suggested that background variables (i.e., 
those that are not the critical aspect for learning) should be kept invariant but need 
to be present to enable variation in the critical aspect to be observed in the fore-
ground. An alternative is to have variation of many features but invariance of a key 
feature. Examples could be a collection of contextual problems that all have the 
same underlying structure when the structure is the intended object of learning or a 
collection of quadratics that all have the same roots when roots are the intended 
object of learning. 

 An associated factor is whether collections of exercise questions in grid form are 
done horizontally or vertically and whether it matters. The example from an old 
algebra text in Fig.  5.18  shows that it does matter whether the learner follows rows 
or columns. The authors of the exercise seem to be aware of the value of organizing 
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variation in examples, and the numbering order encourages comparisons, so that the 
role of the numerator can be refl ected upon.

   In Fig.  5.19 , the authors appear to be aware of the importance of variation, but 
the layout and order provide several variations between successive questions, so that 
little refl ective awareness is available. If the fi rst two questions had been: a + b and 
a–b; −b + a and  b + a , there would have been something to notice and justify which 
could have supported conceptual learning. A type (i) task could have become a type 
(i), (ii), (iii), and even (iv) task in this way.

   The amount of writing may be an issue for some learners. Shuard and Rothery 
( 1984 ) studied 400 learners’ reactions to versions of a task with more or less writing 
required and found that reactions varied (p. 130). Learners’ reactions may be due to 
past experience, causing Shuard and Rothery to conclude that people need help to 
learn how to read mathematical text. Reactions to an exposition presented in comic 
strip style also varied inconclusively, but there is now a range of popular resources 
of this style on the internet. 

 The use of background effects such as grids, frames, fi lls, and so on can enhance 
attention and avoid the  fl atness  of appearance of the page (Cuoco,  2001 ), in which 
every part of the text appears to have a similar status. However, care has to be taken 
that such effects do not mislead readers. For example, presenting rectilinear shapes 
on squared grids can mislead learners into counting boundary squares to fi nd the 
perimeter. 

 In addition, the choice of font, or variation of fonts, and length of lines of print 
can infl uence learners’ attention and reading capability. Such features can even 
infl uence the ways in which teachers and their learners engage with the text, an 
interesting example of this being the use of handwriting in the RLDU materials 
(e.g., Fig.   5.2  ) establishing a sense of mathematics as a human and exploratory 
endeavor. However, in Shuard and Rothery’s study of 400 learners aged 11–12 
using handwritten text, some found this font friendly and helpful, but others found 

1. × 5 4. × 3

2. × 5 5. × 3

3. × 5 6. × 3

  Fig. 5.18    From  Elementary 
Algebra , Part 1 (Godfrey and 
Siddons,  1915 , p. 43, 
Cambridge University Press)       

Find the sum of:
1. a + b and a - b 2. 2x - a and 3x + a
3. -x + a and x + a 4. 2x + a and 3x + a
5. a - 3b and a + 2b 6. 2a - b and 3a - b

  Fig. 5.19    From W. Baker and A. Bourne ( 1937 , p. 19)       
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“funny writing” harder to read ( 1984 ). Literacy in the language of instruction is an 
omnipresent issue as are broader issues about language and mathematics. 

 In the discussion so far, we have recognized the diffi culties designers have in 
enacting their intentions through their design. In every case, we have focused not on 
what WILL be learned but the opportunities made available to learn by each task. 
We now turn to how designers need to anticipate teachers’ use of tasks (see also 
Chap.   3    ).  

5.6     Teachers’ Use of Tasks 

 Design and use are like two sides of a coin and both are infl uenced by the educa-
tional system, assessment system, culture, and other contextual features. The job of 
design is to communicate to teachers and learners through text the mathematical 
intentions; the teacher’s role includes modifi cation to enable learners to connect to 
the core ideas and learning goals (Love and Pimm,  1996 ; Rezat,  2006 ; Tzur, 
Zaslavsky, and Sullivan,  2008 ). Assuming that the designer is not the teacher, we 
ask whether the design assumes that teachers can use the task as written, or whether 
teachers will need to adapt the task for their context. The latter assumes that teach-
ers have the motivation, time, and knowledge to make adaptations, whereas the 
former masks the fact that teachers are likely to make adaptations anyway, deliber-
ately or not. Teachers are integral actors in the whole process of design when they 
use published tasks in their classrooms, with the tools, cultural expectations, and 
norms of classroom life. An important aspect of professional learning is to become 
critical users of an externally designed task. There has always been debate about 
this. Wittmann ( 1995 ) wanted to preserve task design as a specialist process under-
taken by those who have time and experience to develop tasks that are to some 
extent  teacher proof . Stein, Grover, and Henningsen ( 1996 ) point out that there will 
always be adaptation of tasks in use, at least because of classroom dynamics and at 
most because of teachers who alter the goals and demands of tasks. These issues are 
explored further in Chap.   3     of this volume. 

 Prestage and Perks ( 2007 ) offer a collection of task-adapting tools, with which 
busy teachers can develop complex tasks from textbook resources: change a given, 
add a mathematical constraint, change representations, and so on. Whereas design-
ers have more time, experience, and access to research than busy teachers, teachers 
have more local knowledge but need design adaptation tools of this kind. Swan 
( 2006 ) also provides design heuristics that could be used by teachers to create and 
adapt tasks:

•    Is a statement always, sometimes, or never true?  
•   Interpret, match, and classify different representations of similar objects.  
•   Diagnose and correct examples of common mistakes.  
•   Resolve cognitive confl icts.  
•   Create new problems by reversing given problems or varying givens.    
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 The fi nal type can be extended by turning givens into variables, a technique also 
suggested by Prestage and Perks ( ibid. ). In an elementary example, given that 8 = 3 + 5, 
tasks could be created to fi nd  x  where  x  = 3 + 5; 8 =  x  + 5; 8 = 3 +  x  or  x  and  y  where 
 x  =  y  + 5; 8 =  x  +  y  and so on. This sequence shifts learners from a number fact to deal-
ing with an unknown, to dealing with variables and, fi nally,  z  =  x  +  y  could be an 
exploration of structure. Watson and Mason ( 1998 ) collected generic task design heu-
ristics by providing a range of actions that can be applied to mathematical objects: 
classifying, ordering, defi ning, constructing, varying, reversing, exemplifying, and so 
on. Using these, teacher task design can be a repertoire of in-the-moment strategies 
rather than a time-consuming process. 

 Lee et al. ( 2013 ) observed how teachers modifi ed tasks and noticed they would 
typically change the givens or the context or the demands of the question. One 
example they shared is as follows: a rectangle of paper is folded in half and then cut 
along the diagonal of the new shape; the textbook asks for the name of the resulting 
shape and where equal angles might be found. One teacher made the task more open 
ended by asking students to fi nd the properties of the resulting shape. In their 
research, the mathematical knowledge of the teachers played an important part in 
their decisions to improve text-based tasks. In contrast, Lundberg and Kilhamn 
( 2013 ) show how problems inherent in a published task derailed a teacher who 
relied on the textbook to prepare learners to solve some ratio problems. The prob-
lem involved mixing lemon squash using juice, water, and sugar and asked for mea-
sures in liters. They report widespread confusion about whether the sugar contributes 
any volume to the drink, confusing everyday knowledge and mathematical assump-
tions. They also report that teachers resorted to ad hoc additive methods rather than 
setting up a multiplicative equation as the authors expected. 

 In several papers referred to in this chapter, teachers have been involved through-
out the design process (e.g., Hußmann et al.,  2011a ; Movshovitz-Hadar and Edri, 
 2013 ). In many countries, teachers are involved in collaborations that produce banks 
of tasks, shared among teachers (e.g., Sesamath, Wikitext, SMILE). There is a 
growing use of digital sharing which enables individual teachers to adapt the text, 
the examples, and the language for their own learners. This massive growth of 
resources places an increasing burden on teachers who design or selectively choose 
tasks rather than rely on the authority of an unknown author from the web. It is safe 
to assume that the reason for proliferation of such resources is teachers’ dissatisfac-
tion with commercially published materials and inability to fi nd published tasks 
which address precisely their teaching goals. There is also software which supports 
teachers’ creation of worksheets, sometimes from banks of individual questions, 
and video resources. This could be seen as rejection of the authority of textbook 
authors, publishing houses, or outside designers. 

 Designers, by contrast, are often concerned with how to make their intentions 
explicit to teachers and what support to provide to enable tasks to be used as 
intended. It is likely there needs to be a professional development component in the 
textual presentation of the task, and teachers need time to prepare themselves to use 
a task fully. Even though there is a need for research about whether, how, and why 
teachers pursue the explicit intentions of task designers, such research will always 
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be contextualized within the normal pedagogic practices of the research sites. So, 
such research might be seen as local, specifi c evaluation. 

 Other designers might want tasks to provide something that can be used directly 
by learners without teacher mediation. When these are published as collections, 
such as in the textbook or as a package of worksheets, there may be consistent, 
strong messages about how to study. For example, readers might be asked to predict 
answers or refl ect on key ideas that arise in a task. In a package of tasks that is devel-
oped over time with classroom trialing, the question of how, whether, and why 
learners take up these messages would be a key aspect of evaluation. 

 One particular aspect of teacher adaptation that may be of general concern is 
when tasks are adapted so that learners of different capabilities can work with them. 
Such adaptations can simplify or extend the learning goals or simplify access or 
both. Designers might indicate ways in which tasks can be adapted that maintain the 
core learning afforded by the task. 

 Moving from the use of individual tasks to the sequencing of tasks, again much 
depends on the prevailing culture. For example in the UK, the roles of good math-
ematics teachers are to provide the curriculum and cognitive mathematical coher-
ence and to adapt text not only to engage learners but also to help them organize 
their knowledge (in the sense offered by Barzel et al.,  2013 ). Ancillary materials and 
teacher guides might be available but are not necessarily used consistently. The use 
of teacher guides and textbooks in some cultures is seen as central to professional 
practice; for example, the  kyozaikenkyu  phase of Japanese lesson study uses these, 
while Chinese teachers claim to learn most from the teacher guides (Fan,  2013 ), and 
 concept study  is a growing practice in Canada (Davis,  2008 ). Some schemes pro-
vide no learner textbook but offer teacher-friendly guides and resources such as 
photocopiable masters, apps, and online resources. Teachers who engage in these 
schemes have to engage with the guidance, possibly collaboratively, and develop 
their own teaching from the scheme. By contrast, there are schemes which provide 
detailed lesson scripts or videos to copy. There is, therefore, a spectrum of practice 
and expectations, ranging from using the task sequence provided so as to adhere to 
the implied theories and goals of learning and development behind such sequenc-
ing, to teachers developing their own sequencing and populating it with tasks from 
a variety of sources and media. The relations between tasks and teaching are plural-
istic and situated.  

5.7     Conclusion: What Text-Based Tasks Can and Cannot Do 

 To introduce this section, we present a thought experiment as an extension to an 
example given earlier from Taiwan about plausible pedagogic approaches to the 
interior angle sum of any triangle, assuming that learners understand what angles are.

•    Teachers could state the property and then give learners various triangles with 
two angle measures so that learners use the property to fi nd the measure of the 
third angle.  
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•   Teachers could have learners draw various triangles, measure all the angles, and 
then put the sum of the measures of the angles at the front of the room, presum-
ably having most sums close to 180°.  

•   Teachers could construct a triangle using geometric software, have learners mea-
sure the angles, place the measures in a table, and then drag one vertex of the 
triangle and record the angle measures as they update, again fi nding that all sums 
are 180°.  

•   Teachers could have learners draw various triangles, tear the triangles into three 
pieces without tearing through the angles, and then place the angles adjacent to 
each other to demonstrate that the three angles form a straight line.  

•   Learners could be told that angles round a point add up to 360°, given a tessella-
tion of the plane by congruent triangles, and asked to use logical reasoning to 
deduce the angle sum of any triangle.    

 The underlying mathematics concept is the same in all fi ve tasks, but the nature 
of the mathematical activity embedded within each instantiation infl uences the 
degree to which learners develop sensemaking, reasoning, and a justifi cation that 
such a relationship is true for all possible triangles. The version of the task used by 
the teacher depends to some extent on a curricular and pedagogical vision of learn-
ing. It is possible to imagine all of these presented as written text to learners, espe-
cially the prepared triangles in the fi rst suggestion. However, could learners follow 
the instructions (especially in the fourth version), and, if so, would they come to the 
conclusion that the angle sum is 180° without a further lesson phase of regulariza-
tion, systematization, and verbalization as described by Barzel et al. ( 2013 )? In this 
thought experiment, nothing needs to be prepared on paper apart from a bank of 
examples in version 1 or the materials for version 5. 

 So why do we need text-based tasks at all? Most teachers cannot initiate all 
mathematical activity from their own creativity and resources, due to a range of 
workplace limitations. As we have shown, tasks can offer engagement in mathemat-
ical processes and opportunities to demonstrate, practice, and apply knowledge. 
They can offer suggestions for action, in an order, with some intentions for learn-
ing, with a range of visual and verbal stimuli in planned positional relation to each 
other (possibly using hypertext). Text-based tasks can offer models of structuring 
questions and prompts at all grain sizes of mathematical activity, planned sequences 
of tasks, conceptual focus and development, representations, pedagogic assump-
tions, and triggers to organize knowledge and can also provide simultaneous or 
sequential representational variety, possibly using hyperlinks. At the level of com-
plex tasks, text can provide realistic resources which would be hard for individual 
teachers to fi nd or construct and can bring together documentary resources for 
enquiry tasks. Text-based tasks can introduce teachers and learners to new ways of 
engaging in mathematics even if these are not taken up. We have also shown that 
text can provide formats which structure mathematical information and make com-
parisons and connections available for learners and teachers. Text can offer visual 
repetition of useful images and layouts. Text can also provide frames and methods 
of self-evaluation. 
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 Many of these features can be provided digitally, but it is important to note that 
text can offer learning management systems in which tasks are presented in an order 
based on mathematical and educational principles; static text can offer immutable 
structure, data, images, and layouts; static text can be used in a variety of on-screen 
and off-screen modes of working. Static text cannot provide direct haptic experience 
of mathematical change nor instant feedback from all possible learners’ actions nor 
models of continuous variability in mathematical and other phenomena. Furthermore, 
text cannot provide the important phases of learning that take place through interac-
tion and mathematical refl ections on what has been done by a particular set of learn-
ers. In other words, to echo what was said earlier in Chap.   2    , tasks are only one 
element of a complex interactive learning ecology. 

5.7.1     A Potential Research Agenda 

 The design principles described throughout this chapter and illustrated with varied 
examples from a range of international sources suggest areas where future research 
might be conducted. Research into textbook design and use is being undertaken 
widely and addresses concerns about the relationships between curriculum authori-
ties, publishers, author teams, teachers, pedagogy, and learners from many perspec-
tives and has led to international conferences (International Conference on 
Mathematics Textbook Research 2014) and several publications (e.g., Thompson 
and Usiskin,  2014 ). 

 Where individual tasks are concerned, teachers’ use (Chap.   3    ) and learners’ per-
spectives (Chap.   4    ) make critical contributions to the act of design. In thinking 
about the actual words, diagrams, and appearance of text-based tasks, we can ask: 
 how do differences in authority and voice in text-based tasks infl uence learning  and 
 how do visual aspects of text-based tasks infl uence attention and learning ? There is 
little robust research about how these aspects of text-based tasks infl uence learning. 
More attention to these, such as is undertaken in Learning Study, might help answer 
the question:  what different conceptual experiences arise from different task treat-
ments of the same concept ? Working on such comparisons will generate more 
knowledge about the relationships between task and learning. 

 We can also ask:  what are the relationships between grain size of tasks, types of 
mathematical activity, and learners’ mathematical development ? We are not con-
vinced that these are always fully matched in practice. In structuring this chapter, 
we offered a triangular, interdependent relationship between the nature and struc-
ture of a task, its purpose, and the resulting mathematical activity for consideration. 
This structure has given a way to think about design and selection of tasks that 
places the task at the heart of the connection between teaching and learning. 

 The questions above should all be seen in the context of more general research 
about design principles, implementation, teacher knowledge, learners’ perspectives, 
and digital affordances as described in other chapters.      
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