Phase transition in the EM scheme of an SDE driven by α -stable noises with $\alpha \in (0, 2]$

Lihu Xu

(Univeristy of Macau)

August 1, 2024

Summer Workshop on Probability

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

 η an

This talk is based on the joint work with Yu Wang (PhD student at UM) and Yimin Xiao:

- Background
- Drift with polynomial growth+ α -stable noise $(0 < \alpha < 2)$
- Critical drift $-x \log(1+|x|)$: phase transition as $\alpha \uparrow 2$
- Simulation

The SDE on \mathbb{R}^d :

$$
dX_t = f(X_t) dt + g(X_t) dL_t, \quad X_0 = x_0 \in \mathbb{R}^d, \qquad (0.1)
$$

where

- $\bullet\; f:\mathbb{R}^d\to\mathbb{R}^d,\; g:\mathbb{R}^d\to\mathbb{R}^{d\times d}$ satisfy certain regularity conditions,
- $(L_t, t \geq 0)$ is a d-dimensional, rotationally invariant α -stable Lévy process with $\alpha \in (0, 2]$.

K ロ ▶ K 母 ▶ K

The standard Euler-Maruyama (EM) scheme is given by: $Y_0 = X_0 = x_0$ and

$$
Y_{k+1} = Y_k + \eta f(Y_k) + g(Y_k)(L_{(k+1)\eta} - L_{k\eta}), \quad k \in \mathbb{Z}_+
$$

where $\eta \in (0,1)$ is the step size.

K ロ ▶ K 倒 ▶ ..

- • When f is Lipschitz and g is bounded Lipschitz, EM scheme in a finite time interval $[0, T]$ strongly converges to SDE (0.1) .
- A classical example is

$$
dX_t = -X_t^3 dt + dB_t, \quad X_0 = x_0 \in \mathbb{R}.
$$

The corresponding EM scheme will blow up as the step size of EM scheme tends to zero.

The paper 1 considered the following assumption for f and g : There exist constants $\gamma > \lambda > 1$ and $H \geq 1$ such that for all $|x| \geq H$,

$$
\max\{|f(x)|, |g(x)|\} \geq \frac{1}{H}|x|^{\gamma}, \text{ and, } \min\{|f(x)|, |g(x)|\} \leq H|x|^{\lambda}.
$$
\n(A)

Then for any $p \in (1,\infty)$, the corresponding EM scheme blow up:

$$
\lim_{N\to\infty}\mathbb{E}\left[\left|Y_N^N\right|^p\right]=\infty.
$$

¹Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden. Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuo[us](#page-18-0) coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 46[7\(21](#page-4-0)[30\):](#page-6-0)[15](#page-4-0)[63](#page-5-0)[–](#page-6-0) [157](#page-0-0)[6, 2](#page-18-0)[011.](#page-0-0)

Examples for the blow up of EM scheme

(1) The Ginzburg-Landau equation:

$$
dX_t = \left(\left(a + \frac{1}{2} \sigma^2 \right) X_t - b X_t^3 \right) dt + \sigma X_t dB_t, \quad X_0 = x_0 \in (0, \infty),
$$

for $t \in [0, T]$, where constants $a \geqslant 0$, $\sigma > 0$. And the drift term ¯ satisfies

$$
\left| \left(a + \frac{1}{2} \sigma^2 \right) x - bx^3 \right| \geqslant \frac{b}{2} |x|^3
$$

for all $|x| \geqslant C \geqslant 1$.

(2) The stochastic Verhulst equation:

$$
dX_t = \left(\left(a + \frac{1}{2} \sigma^2 \right) X_t - bX_t^2 \right) dt + \sigma X_t dB_t, \quad X_0 = x_0 \in (0, \infty),
$$

for $t \in [0, T]$. 299 Lihu Xu August 1, 2024 (Univeristy of Macau) [Phase transition in the EM scheme of an SDE driven by](#page-0-0) α -stable noises with $\alpha \in (0, 2]$ 7 / 19

Q1: Under Assumption ([A](#page-5-1)), do we have the same result for α -stable noise with $\alpha \in (0, 2)$?

• We prove that the EM scheme blows up.

Q2: Let $f(x) = -x \log(1 + |x|)$, it is a critical case between $-x$ and $-x|x|^\theta$ with $\theta > 0$:

- $-x$: converge for Brownian motion and α -stable noise.
- \bullet $-x$ $|x|^\theta$: blow up for Brownian motion and α -stable noise.
- $-x \log(1+|x|)$: what will happen for Brownian motion and α -stable noise?

∢ ロ ▶ - ∢ 母 ▶ →

Polynomial growth, $\alpha \in (0, 2)$

As $\alpha \in (0, 2)$, let $L_t = Z_t$ being a standard *d*-dimensional rotationally invariant α -stable process, and we consider the EM scheme

$$
Y_{k+1} = Y_k + \eta \, f(Y_k) + g(Y_k) (Z_{(k+1)\eta} - Z_{k\eta}), \quad Y_0 = x_0,
$$

where learning rate $\eta = T/n$ with $T > 0$ and $n \in \mathbb{N}$.

Theorem

² We assume that ([A](#page-5-1)) holds and $g(x_0) \neq 0$ for SDE [\(0.1\)](#page-2-0). Let $T > 0$ be an arbitrary number and $\eta = T/n$. Then, for any $\beta \in (0, \alpha)$, we have

$$
\lim_{n\to\infty}\mathbb{E}\left|Y_n\right|^{\beta}=\infty
$$

²X. Li, X., Y. Xiao: Phase transition in the EM scheme of an SD[E d](#page-7-0)ri[ven](#page-9-0) [b](#page-7-0)[y](#page-8-0) α [-s](#page-9-0)[tab](#page-0-0)[le n](#page-18-0)[oise](#page-0-0)[s wi](#page-18-0)[th](#page-0-0) $\alpha \in (0, 2)$, arXiv:2403.18626 ∢ □ ▶ ⊣ [⊖]

Lihu Xu August 1, 2024 (Univeristy of Macau)

[Phase transition in the EM scheme of an SDE driven by](#page-0-0) α -stable noises with $\alpha \in (0, 2]$ 9 / 19

Here, we consider the following SDE

$$
dX_t = -X_t \log (1+|X_t|) dt + dL_t, \quad X_0 = x_0 \in \mathbb{R}^d,
$$

and corresponding EM scheme is

$$
Y_{k+1} = Y_k - \eta Y_k \log (1 + |Y_k|) + (L_{(k+1)\eta} - L_{k\eta}), \quad k \in \mathbb{Z}_+,
$$

where $Y_0 = x_0$ and η is the learning rate.

• As
$$
\alpha = 2
$$
, denote $L_t = B_t$.

• As
$$
\alpha \in (0, 2)
$$
, denote $L_t = Z_t$.

Lihu Xu August 1, 2024 (Univeristy of Macau) [Phase transition in the EM scheme of an SDE driven by](#page-0-0) α -stable noises with $\alpha \in (0, 2]$ 10 / 10 / 19

Kロト K倒 K

As $\alpha = 2$, the EM scheme is

$$
Y_{k+1} = Y_k - \eta Y_k \log (1 + |Y_k|) + (B_{(k+1)\eta} - B_{k\eta}), \quad Y_0 = x_0.
$$

We have that

Theorem

 3 For any fixed initial value x_0 , there exist constants $\eta_0 \leqslant$ min $\left\{ (1+ |x_0|)^{-2}\, , {\mathrm{e}}^{-5} \right\}$ and ${\mathcal{C}}>0$ such that for all $\eta\in (0,\eta_0]$,

$$
\sup_{m\geqslant 0}\mathbb{E}\left|Y_m\right|^2\leqslant C.
$$

³X. Li, X., Y. Xiao: Phase transition in the EM scheme of an SD[E d](#page-9-0)ri[ven](#page-11-0) [b](#page-9-0)[y](#page-10-0) α [-s](#page-11-0)[tab](#page-0-0)[le n](#page-18-0)[oise](#page-0-0)[s wi](#page-18-0)[th](#page-0-0) $\alpha \in (0, 2)$, arXiv:2403.18626 Þ

 $\alpha \in (0, 2)$, Blow up

As $\alpha \in (0, 2)$, the EM scheme is

$$
Y_{k+1} = Y_k - \eta Y_k \log (1 + |Y_k|) + (Z_{(k+1)\eta} - Z_{k\eta}), \quad Y_0 = x_0.
$$

Theorem

⁴ Let $\alpha \in (0, 2), \beta \in (0, \alpha), T \in (0, \infty)$ be constants and let $\eta = T/n$ be the step size. For any $\beta \in (0, \alpha)$, we can find a T_{β} so that as $T > T_{\beta}$

$$
\lim_{n\to\infty}\mathbb{E}\left|Y_n\right|^{\beta}=\infty.
$$

As $\alpha \uparrow 2$, the EM scheme demonstrates a phase transition.

4X. Li, X., Y. Xiao: Phase transition in the EM scheme of an SD[E d](#page-10-0)ri[ven](#page-12-0) [b](#page-10-0)[y](#page-11-0) α [-s](#page-12-0)[tab](#page-0-0)[le n](#page-18-0)[oise](#page-0-0)[s wi](#page-18-0)[th](#page-0-0) $\alpha \in (0, 2)$, arXiv:2403.18626 Þ OQ

- • $-x|x|^\theta$: we borrow the idea from the paper ⁵, the key point is to construct a special events so that the EM scheme will blow up on this event as the step size tends to infinity.
- $-x \log(1+|x|) + \alpha$ -stable noise: the same as the above.
- $-x \log(1+|x|) +$ Brownian motion: we split the Brownian motion into six regimes and use the strategy of 'split and conquer'.

⁵Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden. Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuo[us](#page-18-0) coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 46[7\(21](#page-11-0)[30\):](#page-13-0)[15](#page-11-0)[63](#page-12-0)[–](#page-13-0) [157](#page-0-0)[6, 2](#page-18-0)[011.](#page-0-0)

Simulation for EM driven by B_t

For EM scheme

$$
Y_{k+1} = Y_k - \eta Y_k \log (1 + |Y_k|) + (B_{(k+1)\eta} - B_{k\eta}), \quad Y_0 = x_0,
$$

we $T = 100$, $n = 10000$ and $\eta = T/n = 0.01$, and consider three distinct initial points $Y_0 = 1$, 5 and 10 respectively. Then,

 QQ

 $Y_{k+1} = Y_k - Y_k \log(1 + |Y_k|)n + \sqrt{n}N_{k+1}$, $n = 0.0100$, $T = 100.0$ and $n = 10000$

In practice, $p_{\alpha}(t, x)$ does not have an explicit expression. Hence, the numerical simulation becomes complicated and computationally expensive. We can replace the stable noise $Z_{(k+1)n} - Z_{kn}$ with i.i.d. random variables with the Pareto distribution. That is,

$$
\widetilde{Y}_{k+1} = \widetilde{Y}_k - \eta \widetilde{Y}_k \log \left(1 + \left| \widetilde{Y}_k \right| \right) + \frac{1}{\sigma} \eta^{1/\alpha} \widetilde{Z}_{k+1}, \quad \widetilde{Y}_0 := x_0, \ (0.2)
$$

for all $k = 0, 1, \ldots, n - 1$. $\left\{ \widetilde{Z}_k, k = 1, 2, \ldots \right\}$ is a sequence of i.i.d. Pareto-distributed random variables. we choose $T = 100$ here, and consider three cases, i.e., $\alpha = 0.5$, 1.0 and 1.5. For each case, we let β be $\alpha/8$, $\alpha/4$ and $\alpha/2$. Then, we can obtain the following tables.

(□) (_□) (

 QQ

Lihu Xu August 1, 2024 (Univeristy of Macau) [Phase transition in the EM scheme of an SDE driven by](#page-0-0) α -stable noises with $\alpha \in (0, 2]$ 15 / 19

Continue ...

Table 1: Simulated values of the absolute moment for the EM scheme ([??](#page-0-1)) with $T = 100$ $T = 100$ $T = 100$ $T = 100$, $\alpha = 0.50$ and $n = \{100, 105, 110, \ldots, 145\}.$ $n = \{100, 105, 110, \ldots, 145\}.$

Continue ...

Table 2: Simulated values of the absolute moment for the EM scheme ([??](#page-0-1)) with $T = 100$ $T = 100$ $T = 100$, $\alpha = 1.0$ $\alpha = 1.0$ $\alpha = 1.0$ and $n = \{100, 105, 110, \ldots, 145\}$ $n = \{100, 105, 110, \ldots, 145\}$.

Continue ...

Table 3: Simulated values of the absolute moment for the EM scheme ([??](#page-0-1)) with $T = 100$ $T = 100$ $T = 100$, $\alpha = 1.5$ $\alpha = 1.5$ $\alpha = 1.5$ and $n = \{100, 105, 110, \ldots, 145\}$ $n = \{100, 105, 110, \ldots, 145\}$.

