Phase transition in the EM scheme of an SDE driven by α -stable noises with $\alpha \in (0, 2]$

Lihu Xu

(Univeristy of Macau)

August 1, 2024

Summer Workshop on Probability

Lihu Xu	August 1, 2024		(Univeristy of Macau)
Phase transition in the EM scheme of	an SDE driven by α -stable noises with α	∈ (0, 2]	1 / 19

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This talk is based on the joint work with Yu Wang (PhD student at UM) and Yimin Xiao:

- Background
- Drift with polynomial growth+ α -stable noise (0 < α < 2)
- Critical drift $-x \log(1 + |x|)$: phase transition as $\alpha \uparrow 2$
- Simulation

The SDE on \mathbb{R}^d :

$$\mathrm{d}X_t = f(X_t)\,\mathrm{d}t + g(X_t)\,\mathrm{d}L_t, \quad X_0 = x_0 \in \mathbb{R}^d, \qquad (0.1)$$

where

- $f: \mathbb{R}^d \to \mathbb{R}^d$, $g: \mathbb{R}^d \to \mathbb{R}^{d \times d}$ satisfy certain regularity conditions,
- (L_t, t ≥ 0) is a *d*-dimensional, rotationally invariant α-stable Lévy process with α ∈ (0,2].

The standard Euler-Maruyama (EM) scheme is given by: $Y_0 = X_0 = x_0$ and

$$Y_{k+1} = Y_k + \eta f(Y_k) + g(Y_k)(L_{(k+1)\eta} - L_{k\eta}), \quad k \in \mathbb{Z}_+$$

where $\eta \in (0,1)$ is the step size.

- When f is Lipschitz and g is bounded Lipschitz, EM scheme in a finite time interval [0, T] strongly converges to SDE (0.1).
- A classical example is

$$\mathrm{d}X_t = -X_t^3 \,\mathrm{d}t + \,\mathrm{d}B_t, \quad X_0 = x_0 \in \mathbb{R}.$$

The corresponding EM scheme will blow up as the step size of EM scheme tends to zero.

The paper¹ considered the following assumption for f and g: There exist constants $\gamma > \lambda > 1$ and $H \ge 1$ such that for all $|x| \ge H$,

$$\max\{|f(x)|, |g(x)|\} \ge \frac{1}{H} |x|^{\gamma}, \text{ and, } \min\{|f(x)|, |g(x)|\} \le H |x|^{\lambda}.$$
(A)

Then for any $p \in [1, \infty)$, the corresponding EM scheme blow up:

$$\lim_{N\to\infty}\mathbb{E}\left[\left|Y_{N}^{N}\right|^{p}\right]=\infty.$$

¹Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden. Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467(2130):1563→ 1576, 2011 → □

Examples for the blow up of EM scheme

(1) The Ginzburg-Landau equation:

$$\mathrm{d}X_t = \left(\left(a + \frac{1}{2}\sigma^2\right)X_t - bX_t^3\right)\,\mathrm{d}t + \sigma X_t\,\mathrm{d}B_t, \quad X_0 = x_0 \in (0,\infty),$$

for $t \in [0, T]$, where constants $a \ge 0$, $\sigma > 0$. And the drift term satisfies

$$\left| \left(a + \frac{1}{2} \sigma^2 \right) x - b x^3 \right| \ge \frac{b}{2} |x|^3$$

for all $|x| \ge C \ge 1$.

(2) The stochastic Verhulst equation:

$$\mathrm{d} X_t = \left(\left(a + \frac{1}{2} \sigma^2 \right) X_t - b X_t^2 \right) \, \mathrm{d} t + \sigma X_t \, \mathrm{d} B_t, \quad X_0 = x_0 \in (0,\infty),$$

for $t \in [0, T]$. Lihu Xu August 1, 2024 (University of Macau) Phase transition in the EM scheme of an SDE driven by α -stable noises with $\alpha \in (0, 2]$ 7 / 19

Lihu Xu

Q1: Under Assumption (**A**), do we have the same result for α -stable noise with $\alpha \in (0, 2)$?

• We prove that the EM scheme blows up.

Q2: Let $f(x) = -x \log(1 + |x|)$, it is a critical case between -x and $-x |x|^{\theta}$ with $\theta > 0$:

- -x: converge for Brownian motion and α -stable noise.
- $-x |x|^{\theta}$: blow up for Brownian motion and α -stable noise.
- $-x \log(1 + |x|)$: what will happen for Brownian motion and α -stable noise?

August 1, 2024

(Univeristy of Macau)

Polynomial growth, $\alpha \in (0,2)$

As $\alpha \in (0, 2)$, let $L_t = Z_t$ being a standard *d*-dimensional rotationally invariant α -stable process, and we consider the EM scheme

$$Y_{k+1} = Y_k + \eta \ f(Y_k) + g(Y_k) (Z_{(k+1)\eta} - Z_{k\eta}), \quad Y_0 = x_0,$$

where learning rate $\eta = T/n$ with T > 0 and $n \in \mathbb{N}$.

Theorem

Lihu Xu

² We assume that (A) holds and $g(x_0) \neq 0$ for SDE (0.1). Let T > 0 be an arbitrary number and $\eta = T/n$. Then, for any $\beta \in (0, \alpha)$, we have

$$\lim_{n\to\infty}\mathbb{E}\,|Y_n|^\beta=\infty$$

 2 X. Li, X., Y. Xiao: Phase transition in the EM scheme of an SDE driven by α -stable noises with $\alpha \in (0, 2)$, arXiv:2403.18626 August 1, 2024

(Univeristy of Macau)

9 / 19

<u>Phase transition in the EM scheme of an SDE driven by α -stable noises with $\alpha \in (0, 2]$ </u>

Here, we consider the following SDE

$$\mathrm{d}X_t = -X_t \log\left(1 + |X_t|\right) \mathrm{d}t + \mathrm{d}L_t, \quad X_0 = x_0 \in \mathbb{R}^d,$$

and corresponding EM scheme is

$$Y_{k+1} = Y_k - \eta Y_k \log \left(1 + |Y_k|\right) + \left(L_{(k+1)\eta} - L_{k\eta}
ight), \quad k \in \mathbb{Z}_+,$$

where $Y_0 = x_0$ and η is the learning rate.

• As
$$\alpha = 2$$
, denote $L_t = B_t$.

• As
$$\alpha \in (0,2)$$
, denote $L_t = Z_t$.

 Lihu Xu
 August 1, 2024
 (University of Macau)

 Phase transition in the EM scheme of an SDE driven by α -stable noises with $\alpha \in (0, 2]$ 10 / 19

As $\alpha = 2$, the EM scheme is

$$Y_{k+1} = Y_k - \eta Y_k \log (1 + |Y_k|) + (B_{(k+1)\eta} - B_{k\eta}), \quad Y_0 = x_0.$$

We have that

Theorem

³ For any fixed initial value x_0 , there exist constants $\eta_0 \leq \min\left\{(1+|x_0|)^{-2}, e^{-5}\right\}$ and C > 0 such that for all $\eta \in (0, \eta_0]$,

$$\sup_{m\geq 0}\mathbb{E}|Y_m|^2\leqslant C.$$

³X. Li, X., Y. Xiao: Phase transition in the EM scheme of an SDE driven by α -stable noises with $\alpha \in (0, 2)$, arXiv:2403.18626

Lihu Xu	August 1, 2024		(Univeristy of Macau)	
Phase transition in the EM scheme of	an SDE driven by $lpha$ -stable noises with $lpha$	∈ (0, 2]	11 / 19	

$\alpha \in (0,2)$, Blow up

As $\alpha \in (0,2)$, the EM scheme is

$$Y_{k+1} = Y_k - \eta Y_k \log (1 + |Y_k|) + (Z_{(k+1)\eta} - Z_{k\eta}), \quad Y_0 = x_0.$$

Theorem

⁴ Let $\alpha \in (0,2), \beta \in (0,\alpha), T \in (0,\infty)$ be constants and let $\eta = T/n$ be the step size. For any $\beta \in (0,\alpha)$, we can find a T_{β} so that as $T > T_{\beta}$ $\lim_{n \to \infty} \mathbb{E}|Y|^{\beta} = \infty$

$$\lim_{n\to\infty}\mathbb{E}|Y_n|^{\rho}=\infty.$$

As $\alpha \uparrow 2$, the EM scheme demonstrates a phase transition.

⁴X. Li, X., Y. Xiao: Phase transition in the EM scheme of an SDE driven by α -stable noises with $\alpha \in (0, 2)$, arXiv:2403.18626

One page for the methods of the proofs

- -x|x|^θ: we borrow the idea from the paper ⁵, the key point is to construct a special events so that the EM scheme will blow up on this event as the step size tends to infinity.
- $-x \log(1 + |x|) + \alpha$ -stable noise: the same as the above.
- -x log(1 + |x|)+Brownian motion: we split the Brownian motion into six regimes and use the strategy of 'split and conquer'.

⁵Martin Hutzenthaler, Arnulf Jentzen, and Peter E. Kloeden. Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467(2130):1563→ 1576, 2011 → 3

Simulation for EM driven by B_t

For EM scheme

$$Y_{k+1} = Y_k - \eta Y_k \log (1 + |Y_k|) + (B_{(k+1)\eta} - B_{k\eta}), \quad Y_0 = x_0,$$

we T = 100, n = 10000 and $\eta = T/n = 0.01$, and consider three distinct initial points $Y_0 = 1$, 5 and 10 respectively. Then,

 $Y_{k+1} = Y_k - Y_k \log(1 + |Y_k|)\eta + \sqrt{\eta}N_{k+1}, \eta = 0.0100, T = 100.0 \text{ and } n = 10000$

In practice, $p_{\alpha}(t, x)$ does not have an explicit expression. Hence, the numerical simulation becomes complicated and computationally expensive. We can replace the stable noise $Z_{(k+1)\eta} - Z_{k\eta}$ with i.i.d. random variables with the Pareto distribution. That is,

$$\widetilde{Y}_{k+1} = \widetilde{Y}_k - \eta \widetilde{Y}_k \log\left(1 + \left|\widetilde{Y}_k\right|\right) + \frac{1}{\sigma} \eta^{1/\alpha} \widetilde{Z}_{k+1}, \quad \widetilde{Y}_0 := x_0, \ (0.2)$$

for all k = 0, 1, ..., n - 1. $\{\widetilde{Z}_k, k = 1, 2, ...\}$ is a sequence of i.i.d. Pareto-distributed random variables. we choose T = 100 here, and consider three cases, i.e., $\alpha = 0.5$, 1.0 and 1.5. For each case, we let β be $\alpha/8$, $\alpha/4$ and $\alpha/2$. Then, we can obtain the following tables.

Lihu Xu

August 1, 2024

(Univeristy of Macau)

Phase transition in the EM scheme of an SDE driven by α -stable noises with $\alpha \in (0, 2]$

Continue ...

n	$\mathbb{E} \widetilde{Y}_n ^{lpha/8}$	$\mathbb{E} \widetilde{Y}_n ^{lpha/4}$	$\mathbb{E} \widetilde{Y}_n ^{lpha/2}$
100	$1.8 imes10^{13}$	$6.2 imes10^{26}$	$3.8 imes10^{55}$
105	$6.5 imes10^{13}$	$1.3 imes10^{28}$	$4.7 imes10^{57}$
110	$2.8 imes10^{14}$	$3.0 imes10^{29}$	$3.6 imes10^{60}$
115	$1.2 imes10^{15}$	$5.4 imes10^{30}$	$1.6 imes10^{63}$
120	$5.5 imes10^{15}$	$1.3 imes10^{32}$	$4.3 imes10^{65}$
125	$2.4 imes10^{16}$	$2.1 imes10^{33}$	$1.7 imes10^{68}$
130	$1.1 imes10^{17}$	$4.5 imes10^{34}$	$1.3 imes10^{71}$
135	$1.5 imes10^{18}$	∞	∞
140	∞	∞	∞
145	∞	∞	∞

Table 1: Simulated values of the absolute moment for the EM scheme (??) with T = 100, $\alpha = 0.50$ and $n = \{100, 105, 110, \dots, 145\}$.

Continue ...

n	$\mathbb{E} \widetilde{Y}_n ^{lpha/8}$	$\mathbb{E} \widetilde{Y}_n ^{lpha/4}$	$\mathbb{E} \widetilde{Y}_n ^{lpha/2}$
100	$3.8 imes10^{25}$	$7.1 imes10^{52}$	$2.2 imes10^{109}$
105	$7.7 imes10^{26}$	$1.5 imes10^{55}$	$2.3 imes10^{112}$
110	$1.3 imes10^{28}$	$1.1 imes10^{58}$	$5,4 imes10^{117}$
115	$2.7 imes10^{29}$	$2.2 imes10^{60}$	$2.7 imes10^{124}$
120	$4.6 imes10^{30}$	$1.3 imes10^{63}$	$6.3 imes10^{128}$
125	$9.2 imes10^{31}$	$3.9 imes10^{65}$	$1.2 imes10^{135}$
130	$1.7 imes10^{33}$	$2.9 imes10^{68}$	$2.1 imes10^{141}$
135	$2.9 imes10^{34}$	$3.7 imes10^{71}$	$1.9 imes10^{145}$
140	$5.9 imes10^{35}$	$1.8 imes10^{73}$	∞
145	∞	∞	∞

Table 2: Simulated values of the absolute moment for the EM scheme (??) with T = 100, $\alpha = 1.0$ and $n = \{100, 105, 110, \dots, 145\}$.

Continue ...

п	$\mathbb{E} \widetilde{Y}_n ^{lpha/8}$	$\mathbb{E} \widetilde{Y}_n ^{lpha/4}$	$\mathbb{E} \widetilde{Y}_n ^{lpha/2}$
100	$8.7 imes10^{37}$	$8.4 imes10^{77}$	$7.0 imes10^{158}$
105	$5.8 imes10^{39}$	$5.6 imes10^{83}$	$7.8 imes10^{168}$
110	$3.9 imes10^{41}$	$3.7 imes10^{86}$	$6.9 imes10^{174}$
115	$2.7 imes10^{43}$	$1.4 imes10^{90}$	$2.1 imes10^{182}$
120	$2.9 imes10^{45}$	$6.0 imes10^{93}$	$4.6 imes10^{192}$
125	$1.9 imes10^{47}$	$2.4 imes10^{97}$	$1.8 imes10^{200}$
130	$3.3 imes10^{49}$	$4.8 imes10^{101}$	$8.7 imes10^{207}$
135	$4.7 imes10^{51}$	$7.2 imes10^{104}$	$7.1 imes10^{215}$
140	$2.9 imes10^{53}$	$2.5 imes10^{111}$	$9.2 imes10^{219}$
145	∞	∞	∞

Table 3: Simulated values of the absolute moment for the EM scheme (??) with T = 100, $\alpha = 1.5$ and $n = \{100, 105, 110, \dots, 145\}$.

Lihu Xu	August 1, 2024	(Univeristy of Macau)
Phase transition in the EM scheme of a	an SDE driven by $lpha$ -stable noises with $lpha$	∈ (0, 2] 19 / 19

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで