Euler-Maruyama scheme for the SDE driven by stable process

Lihu Xu

University of Macau

August 28-September 1, 2023

The 2nd HKSIAM Biennial Meeting

The 2nd

Lihu Xu (University of Macau) Euler-Maruyama scheme for the SDE driven L $1/29$

- • A general framework of stochastic approximation
- EM Scheme of SDE driven by stable process
- The optimal convergence rate
- · Future work

Contents

(1) A general probability approximation framework

- EM scheme for SDE driven by stable process
- Review of the recent work on stable processes
- The proof and the optimal convergence rate
- Summary and future work

Let $\xi_{n,1}, ..., \xi_{n,n}$ be a sequence of independent random variables such that

$$
\mathbb{E}\xi_{n,k} = 0 \quad \forall \ k, \qquad \sum_{k=1}^n \mathbb{E}\xi_{n,k}^2 = 1.
$$

Denote

$$
S_n = \sum_{k=1}^n \xi_{n,k}.
$$

Let $\eta_{n,1},...,\eta_{n,n}$ be a sequence of independent random variables such that $\eta_{n,k}$ is a normal random variable with $\mathbb{E}\eta_{n,k}=0$ and $\mathbb{E}|\eta_{n,k}|^2=\mathbb{E}|\xi_{n,k}|^2.$

[Au](#page-4-0)[gu](#page-2-0)[st 2](#page-3-0)[8-](#page-4-0)[S](#page-1-0)[ep](#page-2-0)[te](#page-10-0)[m](#page-11-0)[be](#page-1-0)[r](#page-2-0) [1,](#page-10-0) [2](#page-11-0)[023](#page-0-0) [T](#page-28-0)he 2nd H

Lindeberg method (ctd)

Denote

$$
S_n^{(0)} = \xi_{n,1} + \dots + \xi_{n,n}, \quad S_n^{(1)} = \eta_{n,1} + \xi_{n,2} + \dots + \xi_{n,n},
$$

$$
S_n^{(n)} = \eta_{n,1} + \dots + \eta_{n,n}.
$$

..., ...

We have

 $S_n^{(n)} \sim N(0, 1).$

[Au](#page-5-0)[gu](#page-3-0)[st 2](#page-4-0)[8-](#page-5-0)[S](#page-1-0)[ep](#page-2-0)[te](#page-10-0)[m](#page-11-0)[be](#page-1-0)[r](#page-2-0) [1,](#page-10-0) [2](#page-11-0)[023](#page-0-0) [T](#page-28-0)he 2nd H

 $\rm{Lihu~ Xu~}$ (University of Macau) $\qquad \qquad \rm{Euler~Maruyama~ scheme~ for~ the~ SDE~ driven~t} \quad \, 5 \, / \, 29$

Lindeberg's method

Let $h\in C^3(\mathbb{R}),$ we have

$$
|\mathbb{E}h(S_n) - N(h)| = |\mathbb{E}h(S_n^{(0)}) - \mathbb{E}h(S_n^{(n)})| \le \sum_{k=1}^n |\mathbb{E}[h(S_n^{(k)}) - h(S_n^{(k-1)})|.
$$

Denote

$$
Y_{n,k} = \eta_{n,1} + \dots + \eta_{n,k-1} + \xi_{n,k+1} + \dots + \xi_{n,n},
$$

then

$$
S_n^{(k)} = Y_{n,k} + \eta_{n,k}, \quad S_n^{(k-1)} = Y_{n,k} + \xi_{n,k}.
$$

Now we have

$$
\mathbb{E}[h(S_n^{(k)})-h(S_n^{(k-1)})]=\mathbb{E}[h(S_n^{(k)})-h(Y_{n,k})]-\mathbb{E}[h(S_n^{(k-1)})-h(Y_{n,k})].
$$

If $|h'''(x)| \leq C$ for all x , by third order Taylor expansion to $h(S_n^{(k)}) \!-\! h(Y_{n,k})$ and $h(S_n^{(k-1)}) - h(Y_{n,k})$, we have

$$
|\mathbb{E}[h(S_n)] - N(h)| \le \sum_{k=1}^n \left| \mathbb{E}[h(S_n^{(k)}) - h(S_n^{(k-1)})] \right|
$$

$$
\le \frac{1}{6} ||h'''|| \left(\sum_{k=1}^n \mathbb{E}|\eta_{n,k}|^3 + \sum_{k=1}^n \mathbb{E}|\xi_{n,k}|^3 \right).
$$

When $X_1,...,X_n$ be i.i.d. r.v. with $\mathbb{E}|X_i|^3<\infty$, then $\xi_{n,k}=\frac{X_k}{\sqrt{n}}$ $\frac{k}{n}$ and we have

$$
|\mathbb{E}[h(S_n)] - N(h)| \leq C \frac{\|h'''\|}{\sqrt{n}}.
$$

AM K 29 K 28 [S](#page-1-0)[ep](#page-2-0)[te](#page-10-0)[m](#page-11-0)[be](#page-1-0)[r](#page-2-0) [1,](#page-10-0) [2](#page-11-0)[023](#page-0-0) [T](#page-28-0)he 2nd H

Lihu X_{11} (University of Macau) Euler-Maruyama scheme for the SDE driven by 7 / 29

$$
\mathbb{E}[h(S_n^{(k)}) - h(S_n^{(k-1)})] = \mathbb{E}[h(S_n^{(k)}) - h(Y_{n,k})] - \mathbb{E}[h(S_n^{(k-1)}) - h(Y_{n,k})]
$$

\n
$$
= \mathbb{E}\{\mathbb{E}[h(Y_{n,k} + \eta_{n,k})|Y_{n,k}] - h(Y_{n,k})\}
$$

\n
$$
- \mathbb{E}\{\mathbb{E}[h(Y_{n,k} + \xi_{n,k})|Y_{n,k}] - h(Y_{n,k})\}
$$

\n
$$
= \mathbb{E}\{Ph(Y_{n,k}) - h(Y_{n,k})\} - \mathbb{E}\{Qh(Y_{n,k}) - h(Y_{n,k})\}
$$

[Au](#page-8-0)[gu](#page-6-0)[st 2](#page-7-0)[8-](#page-8-0)[S](#page-1-0)[ep](#page-2-0)[te](#page-10-0)[m](#page-11-0)[be](#page-1-0)[r](#page-2-0) [1,](#page-10-0) [2](#page-11-0)[023](#page-0-0) [T](#page-28-0)he 2nd H

 \leftarrow

where $Ph(x) = \mathbb{E}[h(x + \eta_{n,k})]$ and $Qh(x) = \mathbb{E}[h(x + \xi_{n,k})]$.

Lihu Xu (University of Macau) Euler-Maruyama scheme for the SDE driven $\mathbf t$ 8 / 29

A universal approximation theorem: P. Chen, Q. M. Shao and X. $(2022+)$

Theorem 0 (General framework)

Let $N \geq 2$ be a natural number and let $h : E \to \mathbb{R}$ be a measurable function such that: (1). $\mathbb{E}|h(X_t^x)| < \infty$ and $\mathbb{E}|h(Y_k^y)$ $\vert x_{k}^{y}\rangle\vert<\infty$ for all $x\in E, y\in E,$ $t\leq N$ and $k\leq N;$ (2). the function $u_k(x):=\mathbb{E} h(X_k^x)$ for $k\geq 1$ satisfies $\mathbb{E}|\mathcal{A}^X u_k(Y_j)|\,<\,\infty$ and $\mathbb{E}|\mathcal{A}^X u_k(X_t^{Y_j})|$ $\left| \begin{smallmatrix} I & j \ t \end{smallmatrix} \right| < \infty$ for all $1 \leq j,k \leq N$ and $0 \leq t \leq 1$. Then

$$
\mathbb{E}h(X_N) - \mathbb{E}h(Y_N) = \mathcal{I} + \mathcal{II} + \mathcal{III}, \tag{1}
$$

Theorem 0 (General framework (ctd))

where \mathcal{A}^X and \mathcal{A}^Y are the infinitesimal generators of $(X_t)_{t\geq 0}$ and $(Y_k)_{k\geq 0}$ respectively, and

$$
\mathcal{I} = \sum_{j=1}^{N-1} \mathbb{E} \big[\mathcal{A}^{X} u_{N-j}(Y_{j-1}) - \mathcal{A}^{Y} u_{N-j}(Y_{j-1}) \big],
$$

$$
\mathcal{II} = \sum_{j=1}^{N-1} \mathbb{E} \int_0^1 \left[\mathcal{A}^X u_{N-j} (X_s^{Y_{j-1}}) - \mathcal{A}^X u_{N-j} (Y_{j-1}) \right] ds,
$$

$$
\mathcal{III} = \mathbb{E}\big[h\big(X_1^{Y_{N-1}}\big) - h(Y_{N-1})\big] + \mathbb{E}\big[h(Y_N) - h(Y_{N-1})\big].
$$

To use the theorem, we need to

- choose the function family of h , e.g.
	- \triangleright bounded measurable: TV metric
	- ▶ Lipschitz: Wasserstein-1 metric
- \bullet bound the three terms $I-TIT$: PDE method, heat kernel, Malliavin calculus.
- We have applied this framework to study the following problems: normal approximation, stable approximation, SGD approximation, SVRG approximation, EM scheme approximation,...

A general probability approximation framework

2 EM scheme for SDE driven by stable process

Review of the recent work on stable processes

The proof and the optimal convergence rate

Summary and future work

Lihu Xu (University of Macau) Euler-Maruyama scheme for the SDE driven L 12 / 29

stochastic differential equation driven by stable noise

The SDE

$$
\mathrm{d} X_t = b(X_t) \, \mathrm{d} t + \mathrm{d} Z_t, \quad X_0 = x,
$$

where

- $x \in \mathbb{R}^d$ is the starting point,
- \bullet $(Z_t)_{t>0}$ is a d-dimensional, rotationally invariant α -stable Lévy process with index $\alpha \in (1, 2)$,
- b is Lischitz, there exist some $c > 0, K > 0$ such that for all x, y

$$
\langle b(x) - b(y), x - y \rangle \le -c|x - y|^2 + K.
$$

EM scheme:

$$
Y_0 = x
$$
, $Y_{k+1} = Y_k + \eta b(Y_k) + \frac{\eta^{1/\alpha}}{\sigma} \widetilde{Z}_{k+1}$, $k = 0, 1, 2, ...,$

where

 \bullet $\widetilde{Z}_1, \widetilde{Z}_2, \cdots$ is an iid sequence with Pareto distribution, i.e.

$$
\widetilde{Z}_1 \sim p(z) = \frac{c}{|z|^{\alpha+d}} 1_{(1,\infty)}(|z|),
$$

€⊡

 $A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B$ The [2](#page-16-0)nd

 \bullet *n* is the step size.

Under the condition: b is Lischitz, there exist some $c > 0, K > 0$ such that for all x, y

$$
\langle b(x) - b(y), x - y \rangle \le -c|x - y|^2 + K,
$$

AM K 29 K 28 [S](#page-10-0)[ep](#page-11-0)[te](#page-15-0)[m](#page-16-0)[be](#page-10-0)[r](#page-11-0) [1,](#page-15-0) [2](#page-16-0)[023](#page-0-0) [T](#page-28-0)he 2nd H

we have

- $(X_t)_{t\geq0}$ is ergodic, denote the ergodic measure by μ ,
- $(Y_k)_{k\geq0}$ is ergodic, denote the ergodic measure by μ_n .

Theorem

(Chen, Deng, Schilling, X.) As b satisfies the above condition, there exists a constant C such that the following two statements hold:

1 For every $N > 2$, one has

$$
W_1(\text{law}(X_{\eta N}), \text{law}(Y_N)) \le C(1+|x|)\eta^{2/\alpha-1}.
$$

² One has

$$
W_1(\mu, \mu_\eta) \le C \eta^{2/\alpha - 1},
$$

where μ and μ_n are ergodic measures of $(X_t)_{t>0}$ $(X_t)_{t>0}$ $(X_t)_{t>0}$ and $(Y_k)_{k>0}$. λ λ λ u[gu](#page-14-0)[st 2](#page-15-0)[8-](#page-16-0)[S](#page-10-0)[ep](#page-11-0)[te](#page-15-0)m[be](#page-10-0)[r](#page-11-0) [1,](#page-15-0) [2](#page-16-0)[023](#page-0-0) $-$ [T](#page-28-0)he 2nd H A general probability approximation framework

EM scheme for SDE driven by stable process

(3) Review of the recent work on stable processes

The proof and the optimal convergence rate

Summary and future work

Lihu Xu (University of Macau) Euler-Maruyama scheme for the SDE driven L 17 / 29

- • Stable random fields: Xiao, Peligrad, Sang, Yang,...,...,
- Stable type processes: Chen, Kyprianou, Wang, Schilling, Song, Xiao, Yang, Zheng...,...,
- SDEs driven by stable processes: Deng, Kyprianou, Schilling, Wang, Zhai, Zhang, Zhang,...,...,

[Au](#page-18-0)[gu](#page-16-0)[st 2](#page-17-0)[8-](#page-18-0)[S](#page-15-0)[ep](#page-16-0)[te](#page-17-0)[m](#page-18-0)[be](#page-15-0)[r](#page-16-0) 2023 The [2](#page-18-0)nd

EM scheme: Bao, Huang, Schilling, Yuan,...,...,

- A general probability approximation framework
- EM scheme for SDE driven by stable process
- Review of the recent work on stable processes
- The proof and the optimal convergence rate
- Summary and future work

 \bullet For a Lipschitz function h , define

$$
P_t h(x) = \mathbb{E}h(X_t^x), \quad Q_k h(x) = \mathbb{E}h(Y_k^x).
$$

The framework can be simplified in this special case as

$$
P_{N\eta}h(x) - Q_Nh(x) = \sum_{i=1}^{N} Q_{i-1}(P_{\eta} - Q_1)P_{(N-i)\eta}h(x).
$$
 (2)

- Need to estimate $(P_{\eta}-Q_1)P_th(x)$:
	- \blacktriangleright the regularity of $P_th(x)$ plays a crucial role,
	- ▶ we use Malliavin calculus to study it.

Subordination

- $Z_t \,:=\, W_{S_t},$ where W_t is a d dimensional standard Brownian motion, $\{S_t\}_{t\geq 0}$ be an independent $\frac{\alpha}{2}$ -stable subordinator.
- The equation can be rewritten as

$$
dX_t = b(X_t) dt + dW_{S_t}, \quad X_0 = x.
$$
 (3)

Given a sample path l_t from the subordinator S_t , consider the SDE:

$$
dX_t^l = b(X_t^l) dt + dW_{l_t}, \quad X_0 = x.
$$
 (4)

 $\langle AB \rangle + \langle AB \rangle + \langle BP \rangle = \text{The 2nd}$ $\langle AB \rangle + \langle AB \rangle + \langle BP \rangle = \text{The 2nd}$ $\langle AB \rangle + \langle AB \rangle + \langle BP \rangle = \text{The 2nd}$ $\langle AB \rangle + \langle AB \rangle + \langle BP \rangle = \text{The 2nd}$ $\langle AB \rangle + \langle AB \rangle + \langle BP \rangle = \text{The 2nd}$

 $P_t h(x) = \mathbb{E}[h(X_t^x)] = \mathbb{E}[\mathbb{E}[h(X_t^{l,x})]]$ $_{t}^{l,x}]$] $|_{l=S}$] = $\mathbb{E}[P_{t}^{l}h(x)|_{l=S}]$.

How to get the regularity of $P_t^lh(x)$?

- Given a sample path l_t from the subordinator S_t , it is cadlag and nondecreasing.
- For every $\epsilon \in (0,1)$, define its approximation as

$$
l_t^{\epsilon} := \frac{1}{\epsilon} \int_t^{t+\epsilon} l_s \, \mathrm{d} s + \epsilon \mathfrak{t}.
$$

Let γ^ϵ_t be the inverse function of l^ϵ_t , then

$$
l_{\gamma_t^\epsilon}^\epsilon = t, \quad t \geq l_0^\epsilon \quad \text{and} \quad \gamma_{l_t^\epsilon}^\epsilon = t, \quad t \geq 0.
$$

 $A \gg \rightarrow A \gg \rightarrow A$ The [2](#page-25-0)nd

By definition, γ^ϵ_t is absolutely continuous on $[l^\epsilon_0,\infty)$. Let us now define

$$
Y_t^{l^{\epsilon}} := X_{\gamma_t^{\varepsilon}}^{l^{\epsilon}}, \quad t \ge l_0^{\epsilon}.
$$

Changing variables in [\(4\)](#page-20-1) we see that for $t\geq l_0^\epsilon,$

$$
Y_t^{l^{\epsilon}} = x + \int_{l_0^{\epsilon}}^t b\left(Y_s^{l^{\epsilon}}\right) \dot{\gamma}_s^{\epsilon} \, \mathrm{d}s + \mathcal{W}_t \tag{5}
$$

AM K 29 K 28 [S](#page-17-0)[ep](#page-18-0)[te](#page-24-0)[m](#page-25-0)[be](#page-17-0)[r](#page-18-0) [1,](#page-24-0) [2](#page-25-0)[023](#page-0-0) [T](#page-28-0)he 2nd H

 $(\dot{\gamma}_s^\epsilon$ denotes the derivative in $s)$.

Time change and Malliavin calculus (Zhang, SPA, 2013)

We apply Malliavin calculus to the SDE w.r.t. $Y_{t}^{l^{\epsilon}}$ and obtain the regularity of the associated semigroup.

• Recall

$$
Y_t^{l^{\epsilon}} := X_{\gamma_t^{\varepsilon}}^{l^{\epsilon}}, \quad t \ge l_0^{\epsilon},
$$

transfer the regularity w.r.t. $Y_{t}^{l^{\epsilon}}$ to that w.r.t. $X_{\gamma_{t}^{\epsilon}}^{l^{\epsilon}}$ $\frac{t^{\epsilon}}{\gamma_t^{\varepsilon}}$.

Pass to the limit of $X_{\gamma i}^{l^{\epsilon}}$ γ^ϵ_t to X^l_t as $\epsilon\to 0$, and obtain the regularity of $P_t^l h(x)$.

We shall use OU stable process to verify that our convergence rate is optimal:

$$
dX_t = -X_t dt + dZ_t.
$$

Choose the Lipschitz function $h(x) = \frac{1}{M} \left(\frac{\sin x}{x} \right)$ $\frac{\ln x}{x}1_{\{x\neq0\}}+1_{\{x=0\}}$

$$
W_1(\mu, \mu_{\eta})
$$
\n
$$
\geq \left| \mathbb{E} \left[h(Y_{\eta}) \right] - \mathbb{E} \left[h(\alpha^{-1/\alpha} Z_1) \right] \right|
$$
\n
$$
= \left| \int_{\mathbb{R}} \left(\frac{1}{2M} \int_{-1}^1 e^{i\xi x} d\xi \right) \mathbb{P}(Y_{\eta} \in dx) - \int_{\mathbb{R}} \left(\frac{1}{2M} \int_{-1}^1 e^{i\xi x} d\xi \right) \mathbb{P}(\alpha^{-\frac{1}{\alpha}} Z_1 \in dx) \right|
$$
\n
$$
= \left| \frac{1}{2M} \int_{-1}^1 \mathbb{E} \left[e^{i\xi Y_{\eta}} \right] d\xi - \frac{1}{2M} \int_{-1}^1 \mathbb{E} \left[e^{i\xi \alpha^{-1/\alpha} Z_1} \right] d\xi \right|
$$
\n
$$
= \frac{1}{2M} \left| \int_{-1}^1 \left(\mathbb{E} \left[e^{i\xi Y_{\eta}} \right] - \mathbb{E} \left[e^{i\xi \alpha^{-1/\alpha} Z_1} \right] \right) d\xi \right| \geq \Omega(\eta^{2/\alpha - 1}).
$$

 $\rm{Lihu\; Xu\;}$ (University of Macau) $\qquad \qquad$ Euler-Maruyama scheme for the SDE driven t $\;$ 25 / 29 \qquad

- A general probability approximation framework
- EM scheme for SDE driven by stable process
- Review of the recent work on stable processes
- The proof and the optimal convergence rate
- (5) Summary and future work

Summary and the future work

Summary

- We introduce a probability approximation framework by modifying Lindeberg principle.
- We show by this framework that the EM scheme of SDE driven by stable process can approximate the ergodic measure of the SDE.

The future work

The noise is multiplicative, we need a non-adaptive Malliavin calculus (Chen, X., Zhang and Zhang).

AM K 29 K 28 [S](#page-24-0)[ep](#page-25-0)[tem](#page-28-0)[be](#page-24-0)[r](#page-25-0) [1, 2](#page-28-0)[023](#page-0-0) [T](#page-28-0)he 2nd H

• The step size is decreasing (Chen, Jin, Xiao, X.).

-
- P. Chen*, Q.M. Shao, L. Xu: A probability approximation framework: Markov process approach, Annals of Applied Probability, (2023).
- P. Chen*, J. Lu*, L. Xu: Approximation to stochastic variance reduced gradient Langevin dynamics by stochastic delay differential equations, Applied Mathematics and Optimizations, (2022).
- P. Chen*, C. Deng, R. Schilling, L. Xu: Approximation of the invariant measure of stable SDEs by an Euler–Maruyama scheme, Stochastic Processes and Their Applications.
- X. Jin*, G. Pang, L. Xu, X. Xu*: An approximation to steady-state of M/Ph/n+M queue, Mathematics of Operations Research (minor revision), arXiv:2109.03623.

Thanks A Lot!

÷,

イロト (押トイラ) イヨト

The 2nd

Lihu Xu (University of Macau) Euler-Maruyama scheme for the SDE driven L 29 / 29