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Abstract: The nonclassicality of a macroscopic single-mode optical superposition state is
potentially convertible into entanglement, when the state is mixed with the vacuum on a beam
splitter. Considering light beams with polarization degree of freedom in Euclidean space as
coherent product states in a bipartite Hilbert space, we propose a method to convert the two
orthogonal polarizations into simultaneous entanglement and classical nonseparability through
nonclassicality in the superpositions of coherent and displaced Fock states. Equivalent Bell
state emerges from the resulted superpositions and the proportion of mixed entanglement and
nonseparablity is determined by the displacement amplitudes along the polarization directions.
We characterize the state nonclassicality via features in Wigner distributions and propose an
experimental method for generating these states and measuring them via homodyne tomography.
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1. Introduction

At one end in the realm of optics, light of quantum nature is understood through the corpuscular
concept of photon written as a Fock state. At the other end, its classical counterpart is embodied
by a monochromatic beam written as a coherent state. The linkage between the two ends is the
extension of finite-dimensional state space to infinite dimensions, in which the coherent state is
equivalent to an infinite superposition of Fock states with Poisson distributed photon statistics
[1]. Although the delineation between the classical regime and the quantum regime remains
blurred, it is quite clear that the progression from the quantum state to the classical state of light
is nuanced and a class of states belonging to neither extreme, known as nonclassical states of
light [2–4], occupies the middle ground.

The inclusive term comprises a variety of states. Besides the familiar squeezed states and
Schrödinger cat states, it also encompasses a genre of states connected to the nominally classical
end: derivative states from coherent states. It includes the single-photon-added coherent
state (SPACS, essentially a† |α⟩) [5,6], the displaced Fock state (DFS, D(α) |1⟩) [7,8], and
superpositions of two coherent states (|α⟩+ |β⟩) [9]. The forementioned states have a quantifiable
nonclassicality determined by entanglement potential [10,11], which measures the entanglement
convertible from them when mixed with a vacuum state using just linear optical components and
photodetectors. These investigations open up the possibility of quantum optical computation
using macroscopic nonclassical states derived from classical light beams [12–15]. However,
to what exact quantum state an arbitrarily polarized laser beam is mappable remains an open
question. Specifically, from a quantitative perspective, it is still unclear how quantum and
classical characteristics vary when two macroscopic orthogonal polarizations are converted into
entangled states.

To these ends, we study entanglement as well as classical nonseparability [16–20] obtainable
from a plane-wave electric field with two orthogonal polarizations. The latter has seen recent
usages in coding quantum-like information by using structured light [21–25]. To retain the full
gradation over the progression from the classical to the quantum regime, we consider the electric
field that experiences several stages of splitting and recombining in a light path, where the only

#534088 https://doi.org/10.1364/OE.534088
Journal © 2024 Received 29 Jun 2024; revised 24 Jul 2024; accepted 24 Jul 2024; published 5 Aug 2024

https://orcid.org/0000-0002-7418-7256
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.534088&amp;domain=pdf&amp;date_stamp=2024-08-05


Research Article Vol. 32, No. 17 / 12 Aug 2024 / Optics Express 30115

quantum component is a quadrature operation realizable with parametric down conversion and
projective detection. We show that the full range of entanglement and classical nonseparability
can be obtained and co-exist with suitable polarizations in the two directions when converted.
The convertibility demonstrates not only the potential [10] that entanglement would emerge from
classical states, but also the overlap of classical nonseparability originating from two macroscopic
field components. In addition, the converted light containing the polarization direction and
the photon number degrees of freedom also enriches the studies of classical nonseparability in
structured light [25].

Here, entanglement and classical nonseparability are treated in a unified Hilbert space for
quantifying their convertibility from the macroscopic polarizations. Specifically, the x and y
polarizations of an electric field vector in Euclidean space R3 are expressed as coherent states in
the infinite dimensional Hilbert spaces Hx or Hy parametrized by continuous displacements. The
entanglement and nonseparability then both emerge as measures on a superposition state |ψ⟩ in
the product space H = Hx ⊗ Hy. As quantifying metrics, their distinction is only mathematical:
entanglement appears as a functional (we measure it in negativity [26]) directly on the Hilbert
space vector |ψ⟩ while nonseparability appears as a functional (we measure it in Schmidt number
[17,18]) on the Euclidean space vector E = ⟨ψ |Ê |ψ⟩ derived from the field operator Ê.

This unified approach assists in distinguishing the quantum entanglement and classical
nonseparability within a single nonclassical state of light, according to the intuition to distinguish
packetized photons expressed as Fock states from classical single-mode beams expressed as
coherent states. For examples, as our discussions below will show, the apparent product state
|ψ⟩ = |α⟩x ⊗ |iα⟩y has a maximal Schmidt number for classical nonseparability but zero negativity
for entanglement. At the opposite extreme, the superposition |1(γ)⟩x |δ⟩y + |γ⟩x |1(δ)⟩y of the
orthogonal coherent states and DFSs, becoming the analogue of Bell states in the continuous
space, obtains maximal negativity with vanishing Schmidt number. In these nonclassical states,
the complex displacements α, γ, and δ derived from the polarization amplitudes serve as
important indicators for the eventually convertible entanglement and classical nonseparability.

We give a detailed analysis of this convertibility when only one quantum operation is inserted
along a linear optical path below. We remark that the choice of entanglement and classical
nonseparability measures are independent of the results obtained. For example, if we use the
Vogel-Sperling version of Schmidt number [27] that measures entanglement as a functional on
|ψ⟩, the obtained variation against the displacements would coincide with those obtained from
the negativity. Wigner distributions representing the density matrix of the quantum states are
used throughout to visualize the appearance of nonclassical states against the classical ones.

2. Generating entangled state

To substantiate the brief description above, we consider a gedanken experiment that produces
any entangled state of varying degrees of negativity and Schmidt number, as shown in Fig. 1. A
single-mode laser operating well above the threshold is considered the input source. It shows a
coherent state excitation and thus exhibits an almost classical behavior [1]. Regarded as a plane
wave carrying two independent polarizations, it has the joint state |ψ0⟩ = |ξ⟩x |η⟩y ∈ Hx ⊗ Hy
where x and y indicate a pair of orthogonal polarization directions. In other words, photons in
Hx possess polarization opposite to those in Hy [28].

The laser beam is first split into two according to the polarization, after which the x-polarized
part along path 1 undergoes a quadrature operation q = a + a† while the y-polarization along
path 2 is rotated by the HWP1 into x-polarization. The mathematical q-operation is optically
implemented by parametric down conversion (PDC) with parametric gain g: the |ξ⟩1 beam
serves as the signal while a beam with state |0⟩i + gξ |1⟩i serves as the idler input. At the output
end, when the weak idler is measured by a photon detector and only single-photon events are
selected, the signal output becomes conditioned and post-selected to the pure state (a1 + a†1) |ξ⟩1,
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Fig. 1. Gedanken scheme for constructing a macroscopic entangled state: an initial product
state |ψ0⟩ of a polarized beam goes through multiple stages to become entangled in the final
state |ψ3⟩ before it is detected. First, |ψ0⟩ is split into two paths by a polarizing beam splitter
(PBS1), after which one polarization branch (path 1) undergoes a conditional quadrature
operation q = a + a†. Shown in the inset, this operation is implemented by a parametric
down-conversion (PDC) followed by a photon detection (PD), forming a superposition of a
coherent state and a SPACS. The other path 2 is rotated by a half-wave plate (HWP1) to
interfere with path 1 through a balanced beam splitter (BS). The branched beams described
by the product state |ψ1⟩ is thus mixed to generate the entangled state |ψ2⟩ that propagates
along the transmission t and the reflection r directions after splitting. The r mode is rotated
by HWP2 to align its polarization orthogonal to the t mode before they are recombined by
PBS2 to form the final macroscopic entangled state |ψ3⟩.

a superposition of coherent and SPAC states [6,29]. The nonclassicality of this superposition
state is crucial for generating quantum entanglement with a beam splitter [30], as we will see
later.

At this stage, the system state is |ψ1⟩ = (a1 + a†1) |ξ⟩1 |η⟩2 /
√

N with N being the normalization
constant, where we have used the path subscripts to differentiate the branched beams since both
paths are now x-polarized. The two beams are combined by a 50-50 beam splitter (BS), which
effectively perform the transformation a1,2 → (at ∓ ar)/

√
2 on the annihilation operators as well

as their Hermitian conjugates before and after the beam splitting [31]. That means, for instance,
removing one photon in path 1 is equivalent to removing one photon either at the transmission
beam or the reflection beam. Carrying out the algebraic operation on |ψ1⟩, the BS output is the
state

|ψ2⟩ =
(qt − qr)
√

2N

|︁|︁|︁|︁η + ξ√
2

⟩︃
t

|︁|︁|︁|︁η − ξ√
2

⟩︃
r

(1)

in the product space H = Ht ⊗Hr of the two branches. The state |ψ2⟩ is already an macroscopic
entangled state with respect to the t and r beams, converted from the nonclassical state |ψ1⟩. The
beam splitting effects the transformation q1 → (qt − qr)/

√
2 on the quadrature operator and the

transformation D1(ξ)D2(η) → Dt((η + ξ)/
√

2)Dr((η − ξ)/
√

2) on the displacement operators (see
Supplement 1 section 1 for derivation details). In the latter, the displacement amounts from the
vacuum are essentially the polarizations in the macroscopic beam, i.e. the transmission and the
reflection contains polarization originated from both path 1 and path 2. Therefore, measuring
either the t- or the r-subspace would already yield information from both the original Hx and Hy
spaces.

The quadrature difference operator (qt − qr) in Eq. (1) has two effects: (i) each quadrature
operator creates a nonclassical superposition within its respective Hilbert space, and (ii) the
difference operation as a whole generates entanglement across the two Hilbert spaces. By (i), we

https://doi.org/10.6084/m9.figshare.26369935
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mean the quadrature operation in either Ht or Hr effectively generates the state

q |α⟩ =
(︂
a + a†

)︂
|α⟩ = 2αR |α⟩ + |1(α)⟩ (2)

from any coherent state |α⟩ [32] such that the resulting superposition comprises a displaced
Fock state (DFS)

|︁|︁1(α)⟩︁ = D(α) |1⟩ and the original coherent state with coefficient αR = ℜ{α}.
Since

⟨︁
α |1(α)

⟩︁
= 0, the two terms on the RHS, though not eigenstates of q, are orthogonal. The

nonclassicality of such a superposition is exhibited, qualitatively, by its heralded addition of idler
photons [15] and, quantitatively, by its unique photon-number variance measured by Mandel’s
parameter Q =

⟨︁
∆(a†a)2

⟩︁
/
⟨︁
a†a

⟩︁
≥ 0 [5,33]. As shown in Fig. 2(a), Q vanishes for the Fock

state |1⟩ when |α | = 0 and converges to unity for a coherent state with Poissonian distribution
over the Fock basis. For the nonclassical states, however, they may exhibit either sub-Poissonian
(Q<1) or super-Poissonian (Q>1) distributions, depending on the displacement phase φ as shown
in Fig. 2(b). In such situations, the nonclassicality can be verified by the negativity of the Wigner
function in the phase space corresponding to the squeezed or anti-squeezed photon-number
variance.
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Fig. 2. Nonclassicality of a quadrature-operated coherent state, i.e. the superposition of
a DFS and a coherent state, demonstrated through Q-parameter and Wigner distribution.
Q-parameter as a function of (a) the displacement magnitude |α | when phase φ = 0 and (b)
the displacement phase φ at various magnitudes. The superposition retains sub-Poissonian
statistics for all |α | at zero phase but achieves super-Poissonian at π/2 and 3π/2 phases.
Accordingly, a varying squeezed state is formed, depending on the phase φ. Wigner
distributions W(z) over the phase space z = X1 + iX2 for (c) a coherent state with the
Gaussian distribution and quadrature-operated coherent states with displacements (d) α = 1,
(e) α = (1 + i)/

√
2, and (f) α = i. The nonclassicality is characterized by negative values

obtained in W(z). Turning the displacement from the real to the imaginary axis, the
distribution of negative W has increased until |ψ⟩ reaches

|︁|︁|︁1(i)⟩︂ that resembles most to a
Fock state.
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For instance, the nonclassicality of a SPACS can be characterized by a dipping towards negative
axis in Wigner distributions [6]. For the nonclassical state of (2), its Wigner function being

W(z) =
2
πN

(︂
4|z − αI |

2 − 1
)︂

e−2 |z−α |2 (3)

shows similar characterizations, as shown in Fig. 2(d)–(f). In the superposition of |α⟩ and
|︁|︁1(α)⟩︁,

the coherent-state term exemplifies when α has a large real part; whereas, only the DFS term
remains when α is purely imaginary. Therefore, as shown in the plots, varying from α = 1 to
α = i, the Wigner function is increasingly removed from the typical Gaussian for a coherent state
towards a volcano-shaped surface with a center dip. This change coincides with the intuitive
view of a classical-to-quantum crossover.

For effect (ii) of the difference operation over the nonclassical states generated from quadrature
operations, we mean such operation would create entanglement between the photon statistics
across the t- and the r-branch beams. To facilitate classical nonseparability on them, which is
defined over a unified beam of orthogonal polarizations, the r-branch of the |ψ2⟩ is π/2-rotated
by another half-wave plate (HWP2) and recombine with the t-branch using a polarizing beam
splitter (PBS2). The resulting beam thus become x- and y-polarized again, whose quantum state
reads

|ψ3⟩ =
1

√
2N

[︂|︁|︁|︁1(µx)
⟩︂
|µy⟩ − |µx⟩

|︁|︁|︁1(µy)
⟩︂
+ 2

√
2ξR |µx⟩|µy⟩

]︂
. (4)

Nevertheless, the displacements µx = (η + ξ)/
√

2 and µy = (η − ξ)/
√

2 differ largely from
the original polarization magnitudes. Nonclassical superpositions with polarization-dependent
coefficient ξR = ℜ{ξ} and the polarization remixing between ξ and η effects a state containing
both quantifiable entanglement and classical nonseparability. Since the coherent states are
orthogonal to both displaced Fock states in Eq. (4), |ψ3⟩ is akin to a Bell state in a two-qubit
Hilbert space when ξR vanishes.

State |ψ3⟩ is an entangled state containing both the quantum entanglement and the classical
nonseparability. The entanglement is measured by negativity [26] on a pure-state density matrix
ρ = |ψ⟩⟨ψ | through a partial transpose T on one of the subspaces. We extend negativity to the
continuous spaces to have N(ρ) = (| |ρTx | |1 − 1)/2, where the partial transpose is applied on
Hx and the trace norm | | · | |1 is effectively the finite sum of negative eigenvalues of ρTx (see
Supplement 1 section 2 for details), to find

N(ρ) =
1

2 + 8ξ2
R

. (5)

When the displacement is purely imaginary along the vertical quadrature axis with ξR = 0,
N(ρ) obtains its maximal value 1/2, verifying our expectation that the case corresponds to a
purely quantum Bell-like |ψ3⟩.

3. Mixture of entanglement and classical nonseparability

On the other hand, the classical nonseparability, measured by Schmidt number, has been defined
through the electric field vector E in Euclidean space [18] rather than the density matrix since
the classical picture lacks the Hilbert space description. To reconcile this conflict with the
quantum interpretation, we promote the field vector to the field operator Ê = Êx + Êy over the
two polarizations and compute Schmidt number from Ê as an observable on the last step of the
gedanken experiment of Fig. 1 (indicated as a detector). Writing Êx = exE ax exp{−i(ωt−kz)}+h.c.
and similarly for Êy with field amplitude unit E =

√︁
ℏω/2ε0V and polarization unit vector ex, the

https://doi.org/10.6084/m9.figshare.26369935
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measurement expectation of the field is

E = ⟨ψ3 |Ê |ψ3⟩ =
∑︂

m∈{x,y}
E em × [|µm | cos(ωt − kz − φm) ± r cos(ωt − kz)] (6)

Here, φm denotes the phase of µm, r =
√

2ξR/(1 + 4ξ2
R) =

√
2ξR/N measures the horizontal

displacements in the original coherent state |ξ⟩x, and the sign of the second term is + (−) for
x- (y-) polarization (see Supplement 1 section 3 for details). The overlap of the polarization
amplitudes into one another direction is obvious in Eq. (6), in addition to the extra r term which
appears in y-polarization despite its origin in the x-polarization.

Such overlap constitutes a finite classical separability as reflected in the Schmidt number
K(W) =

[︁
1 − sin2(∆ϕ)sin2(2θ)/2

]︁−1 defined through a polarization matrix W in the lab frame
[34]. The Schmidt number, falling in the range of 1 ≤ K ≤ 2, represents the degree of classical
nonseparability [17,18]. The lower bound corresponds to a separable state, while the upper bound
indicates a Bell-like state. The mixture of polarization appears in both the new polarization angle

θ = arctan

√︄
|µy |2 − 2r |µy | cos φy + r2

|µx |2 + 2r |µx | cos φx + r2 (7)

and the difference ∆ϕ = ϕy − ϕx between the new phases

ϕm = arctan
(︃

|µm | sin φm

|µm | cos φm ± r

)︃
, (8)

the sign being + (−) for x-(y-) polarization. At r = 0, K(W) obtains its maximal value when
µy = ±iµx, i.e. when ξR = ηI and ξI = ±ηR; the case where the y-polarization is π/2 ahead
(behind) the x-polarization or the beam at |ψ0⟩ is CCW (CW) circularly polarized. If r ≠ 0,
one of the scenario for maximal K(W) associates with the conditions µy = −µ∗x, i.e. when
ξR/ξI = −ηI/ηR. This case includes the previous scenario as a subset and other scenarios of
disproportioned amplitudes among ξ and η, the latter of which correspond to beams with elliptical
polarization.

Since the negativity depends on the polarization amplitude ξR while the Schmidt number
depends on the scaled r, their extrema do not coincide but are obtainable independently despite
the functional dependence of r on ξR. The entanglement and the classical nonseparability can
be separately maximized or minimized depending on the input beam polarization, as shown in
Table 1, where the only common constraint is r = 0. In particular, the simultaneity of maximal
negativity (5) and Schmidt number occurs for a circularly polarized beam with zero ξR in its
x-polarization. Conversely, a linearly polarized beam with proportional x- and y- polarizations
such that ξR = ηR is sufficiently large generates the simultaneous minimum. For the latter, the
large ξR and ηR limit corresponds to vanishing µy and r, leading the E field of Eq. (6) back to a
unmixed classical state containing only x-polarization.

Figures 3(a)–(b) show, respectively, negativity and Schmidt number as functions of ξR and
ηI . Negativity is symmetric about the ξR = 0 axis. Since the quadrature q only measures
x-polarized component along light path 1 in Fig. 1, it verifies that the quantum entanglement is
solely associated with vacuum or displaced Fock states. Because of its asymmetric placement
between paths 1 and 2, the quadrature operation further breaks the mirror symmetry about the
ξR = 0 plane in the Schmidt number that measures the classical nonseparability. Rather, the
mirror symmetry arises on the diagonal ξR = ±ηI planes when the operation on the state |ψ1⟩ has
mitigated effects for large ξR and the two light paths have symmetric polarization magnitudes.

https://doi.org/10.6084/m9.figshare.26369935
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Table 1. Conditions among the beam
x- and y-polarizations ξ = ξR + iξI and
η = ηR + iηI for obtaining the extrema
of the negativity N(ρ) and the Schmidt
number K (W), where r is set to zero.

k is a real proportional constant.

N(ρ) max N(ρ) min

K(W) max
ξR = ηI = 0 ξR → ∞

ξI = ±ηR η = ±iξ

K(W) min
ξR = ηR = 0 ξR → ∞

ξI = ±kηI η = ±kξ

-5 0 5
0

1/6

1/3

1/2 (a)
(b)

Fig. 3. (a) Negativity for measuring the quantum entanglement and (b) Schmidt number for
measuring the classical nonseparability. Both measures the nonclassical state |ψ3⟩, and for
(b) ηR = 1 and ξI = −1.

4. Experimental proposal for state detection

As illustrated in Fig. 2 above, the nonclassical superposition state |ψ2⟩ is uniquely described by a
Wigner distribution W(z) [6,7,35]. The entangled |ψ3⟩ containing a mixture of entanglement
and classical nonseparability over the Hilbert spaces Hx and Hy can then be detected using
Wigner distributions along both polarization directions. The measured results correspond to the
parameters of the generated states, indicating the structures of light across different degrees of
freedom. The character of the mixture is readily identified by the unique locations and shapes
derived from tomographic measurement on either polarization, where the other polarization is
traced out over the orthogonal basis {|µm⟩ ,

|︁|︁1(µm)
⟩︁
}. For instance, if we measure the density

matrix ρx = try{|ψ3⟩ ⟨ψ3 |} on the x-polarization, its Wigner distribution reads

W(z) =
4|z − µx +

√
2ξR |

2

(1 + 4ξ2
R)π

e−2 |z−µx |
2
, (9)

for which the circular symmetry about z = µx is broken by the addition of
√

2ξR in the quadratic
factor but not in the Gaussian, echoing the effect we already observed in Fig. 3(b). Geometrically,
the symmetry breaking corresponds to a transition from a volcano shape to one with a slanted
crest, as shown in Fig. 4(a)–(b).

Removed from the origin, the relative locations of the displacement of µx and µy on the
quadrature plane determine the degrees of both entanglement and classical nonseparability
convertible from |µx⟩

|︁|︁µy
⟩︁
. For instance, as shown in Fig. 4(c)–(e), the case of simultaneous

maximal entanglement and classical nonseparability occurs for µx and µy symmetric about the
horizontal quadrature axis, i.e. they having the same real part but non-zero opposite imaginary
parts. When the imaginary part vanishes and hence the displacements coincide, only the
entanglement survives. All states with coinciding displacements are purely entangled states
(without classical nonseparability) though this is not true vice versa as inferred from Eqs. (7)–(8).
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When the displacements become large and differ by a phase of π/2, the classical nonseparability
survives and the entanglement vanishes.

=π/2

(c)

=
=0

(d)

=π/2

(b)

(e)

(a)

Fig. 4. Wigner distributions about the reduced density matrix ρx (associated with x-
polarization of the output light beam at state |ψ3⟩). Surface plots for small displacements
µx = (ξ + η)/

√
2 = 0.1 are shown in (a) where

√
2ξR = 0.1 and in (b) where

√
2ξR = 0.

The slight difference in ξR incurs a symmetry breaking about the center. Contour plots
for large displacements are shown in (c)–(e): (c) shows the case where entanglement and
classical nonseparability are both maximal; (d) shows the case with maximal entanglement
and vanishing classical nonseparability; and (e) shows the case with maximal classical
nonseparability and vanishing entanglement.

To demonstrate the varying degrees of entanglement and classical nonseparability, we consider
the experimental setup shown in Fig. 5. The single-mode light source is generated from a
picosecond pulsed mode-locked laser, which is split into two paths by a BS: one is used as the
local oscillator (LO) input for the homodyne detection later on and the other is further split into
three paths. The pulses along the first path is attenuated by a variable filter (VF) to act as the
weak idler |αi⟩x ≈ |0⟩x +αi |1⟩x. The second path is fed to a nonlinear crystal for second harmonic
generation (SHG), generating the pump pulses for the PDC. The third path goes through a fiber
polarization controller (FPC) to generate an arbitrarily polarized initial state |ψ0⟩. Through the
subsequent polarizing beam splitter, |ψ0⟩ is split into the two orthogonally polarized states |ξ⟩x
and |η⟩y. The half-wave plate HWP1 rotates |η⟩y into |η⟩x such that the two polarizing paths
interfere with each other at BS1.

Before the interference at BS1, |ξ⟩x acting as the signal is mixed with the idler |αi⟩x and
the pump at a nonlinear crystal for the PDC process. For simplicity, we omit the polarization
subscript and denote the input signal and idler by the product state |ξ⟩1 (|0⟩i + αi |1⟩i). The
quadrature operation in Fig. 1 is conditioned on single-photon measurements of the idler output
at PD after the three-wave mixing. The mixing approximately has the effect of 1+ ga†1a†i + g∗a1ai
on the input state |ξ⟩1 (|0⟩i + αi |1⟩i) when the parametric gain g is sufficiently low (|g| ≪ 1) [6],
giving the output

(1 + g∗ξαi) |ξ⟩1 |0⟩i + (αi + ga†1) |ξ⟩1 |1⟩i +
√

2gαia†1 |ξ⟩1 |2⟩i. (10)

When one photon is recorded by the PD, the signal state is projected onto g(αi/g + a†1)|ξ⟩1.
Letting αi = gξ, the emitted signal state would be equivalent to the desired g(a1 + a†1)|ξ⟩1 and
the normalized system state would become |ψ1⟩.

The 50-50 beam splitting at BS1 then generates |ψ2⟩ as in Fig. 1 along two legs, which are
spatially recombined by PBS2 after the reflection leg is rotated by HWP2. Hence, the final state
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Fig. 5. Proposed experimental setup for detecting entangled and classically nonseparable
states converted from nonclassical states. The components used include: beam splitters (BS),
polarized beam splitters (PBS), half-wave plates (HWP), variable filters (VF), parametric
down converter (PDC), second harmonic generator (SHG), and photon detectors (PD).

|ψ3⟩ containing complex amplitudes along both the x- and y-polarizations is prepared. The beam
splittings at BS2 and BS3 separate the quadratures for each polarization direction, which are
individually detected for their time correlations. The relative phase between the LO and the
signal can be adjusted by a piezoelectric transducer (not shown) in the LO. The measurement
results of PD after spectral and spatial filters (F), which herald the preparation of the nonclassical
state, are used to select the results from balanced homodyne detection.

5. Conclusions and discussions

We demonstrate the convertibility of a classical polarized beam to an macroscopic entangled state,
where the relationship between the degrees of quantum entanglement and classical nonseparability
obtained from the polarizations of the beam is established. The convertibility is realized by
the nonclassicality obtainable from a coherent single-mode beam through linear optics and, by
inserting a quadrature operation asymmetrically along one polarization path, arbitrary mixtures
of entanglement and classical nonseparability are eventually converted from an appropriate pair
of displacements from the beam polarizations.

In other words, we have shown full range of quantum entanglement and classical nonseparability
can be simultaneously generated from macroscopic polarizations. The generation method
advances the study of controlling continuous variable quantum information and manipulation of
different degrees of freedom in structured light. The computation method provides a means to
characterize both the quantum and classical aspects of a single light state. The convertibility from
polarizations here is useful for developing state preparation and quantum information processing
techniques that take advantage of both the unique property of entanglement and the ease of
operation of classical beams. Our proposed experimental setup demonstrates its viability.
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