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We study the estimation of high-dimensional covariance matrices and
their empirical spectral distributions under dynamic volatility models. Data
under such models have nonlinear dependency both cross-sectionally and
temporally. We establish the condition under which the limiting spectral dis-
tribution (LSD) of the sample covariance matrix under scalar BEKK mod-
els is different from the i.i.d. case. We then propose a time-variation ad-
justed (TV-adj) sample covariance matrix and prove that its LSD follows the
Marčenko–Pastur law. Based on the asymptotics of the TV-adj sample co-
variance matrix, we develop a consistent population spectrum estimator and
an asymptotically optimal nonlinear shrinkage estimator of the unconditional
covariance matrix.

1. Introduction.

1.1. The Marčenko–Pastur law. Random matrix theory (RMT) is a powerful tool in
the study of high-dimensional statistics. When the dimension and sample size grow pro-
portionally, for i.i.d. data, it is well known that the limiting spectral distribution (LSD)
of the sample covariance matrix is connected to that of the population covariance matrix
through the Marčenko–Pastur equation; see, for example, Marčenko and Pastur (1967), Yin
(1986), Silverstein (1995), and Silverstein and Bai (1995). El Karoui (2008) studies esti-
mating population spectrum based on the Marčenko–Pastur (M-P) law, and Ledoit and Wolf
(2012, 2015, 2020) develop algorithms for estimating the population spectrum and nonlinear
shrinkage estimation of the covariance matrix. All these studies focus on the case where the
observations are i.i.d.

1.2. Dynamic volatility models. An important feature of financial returns is that their
volatilities are time-varying and dependent over time. Dynamic volatility models such as
the multivariate generalized autoregressive conditional heteroskedasticity (GARCH) (Engle,
Granger and Kraft (1984), Bollerslev, Engle and Wooldridge (1988)), the dynamic condi-
tional correlation (DCC) model (Engle (2002)), and the Baba, Engle, Kraft, and Kroner
(BEKK) model (Engle and Kroner (1995)) are popular in studying the dynamic variances
and covariances. In particular, the widely used scalar BEKK model (Ding and Engle (2001))
describes the dynamics of the covariance matrix as follows:

(1.1) �t+1 = (1 − a − b)� + aRtRT
t + b�t ,

where �t is the conditional covariance matrix, � is the unconditional covariance matrix of the
returns Rt = (R1t , . . . ,Rpt )

T , and 0 < a,b < 1 with a+b < 1 are the related parameters. The
parameter a is sometimes referred to as the innovation coefficient, and a + b the persistence
coefficient.
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To estimate a dynamic volatility model, a common approach is variance/correlation target-
ing (Pedersen and Rahbek (2014), Pakel et al. (2021)). The method requires estimating the
unconditional covariance/correlation matrix. When the dimension is high, the sample covari-
ance/correlation matrix is not consistent. For large dynamic volatility models, estimating the
unconditional covariance/correlation matrix is challenging and calls for rigorous investiga-
tion.

1.3. Existing research in RMT for sample covariance matrix when there is time depen-
dency. There is a growing literature on the study of limiting spectral properties of the sam-
ple covariance matrix when there is time dependency. Jin et al. (2009), Yao (2012), Liu, Aue
and Paul (2015), and Bhattacharjee and Bose (2016) obtain the LSD of the sample covari-
ance/autocovariance matrix of linearly dependent time series that can be transformed into data
with independent columns. Banna and Merlevède (2015) and Merlevède and Peligrad (2016)
investigate the LSD of the sample covariance matrix of stationary dependent processes with
independent rows. Yaskov (2017) focuses on the case where data have dependence in finite
lags. Zheng and Li (2011) establish the LSD, and Yang, Zheng and Chen (2021) derive the
central limit theorem of linear spectral statistics of sample covariance matrix under elliptical
models.

Engle, Ledoit and Wolf (2019) propose to estimate the unconditional covariance/
correlation matrix under large BEKK/DCC models using the nonlinear shrinkage (NLS) es-
timator developed in Ledoit and Wolf (2012, 2015). Ledoit and Wolf (2012, 2015) document
that the NLS estimator has several advantages in estimating the high-dimensional covariance
matrix. For example, it does not rely on sparsity assumptions on the covariance matrix, and
for i.i.d. data, it is consistent in estimating the asymptotically optimal shrinkage estimator
in the class of rotation-equivariant estimators; see Ledoit and Wolf (2012, 2015) for detailed
explanations. It is worth emphasizing that the asymptotic property of the NLS estimator relies
on the fact that the LSD of the sample covariance matrix follows the M-P law.

1.4. Our contributions. We aim to estimate the unconditional covariance matrix under
large dynamic volatility models. An important and natural question motivated by the proposal
of Engle, Ledoit and Wolf (2019) is: Does the NLS estimator work under large dynamic
volatility models?

To see how the dynamic volatility model can affect the spectral distribution of the sam-
ple covariance matrix, we simulate data from BEKK model (1.1) with � = I, a = 0.05,
and b = 0.9, which is the setting used in Engle, Ledoit and Wolf (2019). The dimen-
sion p = 100 or 500, and the sample size n satisfies p/n = 0.8. We compute the empirical
spectral distribution (ESD) of the sample covariance matrix and compare it with the M-P
distribution. The results are shown in Figure 1. We see from Figure 1 that the ESD of the
sample covariance matrix under the BEKK model substantially deviates from the M-P law.
Therefore, it is problematic to perform NLS on the sample covariance matrix the same way
as in the i.i.d. case.

In this paper, we investigate the limiting spectral properties of the sample covari-
ance matrix under large BEKK models. We show that if η(a, b,p) := (a/(1 − a −
b))min(

√
p(1 − a − b),1) → 0, then the LSD of the sample covariance matrix shares the

same limit as the i.i.d. case; see Theorem 1. We call this case the reducible case. On the other
hand, if η(a, b,p) is bounded away from zero, then the spectral distribution of the sample
covariance under the BEKK model is more heavy-tailed than the i.i.d. case; see Theorem 2.
We call this case the non-reducible case. Under the non-reducible case, reversing the M-P
law can not consistently estimate the population spectrum, and the NLS estimator of the
covariance matrix is not asymptotically optimal.
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FIG. 1. Empirical spectral distributions of sample covariance matrices under the BEKK model, compared with
the ESD based on i.i.d. data and the M-P distribution.

Next, we address the problem of population spectrum estimation under large BEKK mod-
els. We first estimate the parameters a and b using a quasi-maximum likelihood estimator
(QMLE) from univariate GARCH models. Next, we develop a time-variation tracking ma-
trix, Pt , which can track the time-variation in the conditional covariance matrices. We then
define time-variation adjusted returns, R̃t = P−1/2

t Rt , and a time-variation adjusted (TV-adj)
sample covariance matrix, S̃n = ∑n

t=1 R̃t R̃T
t /n. We prove that the TV-adj sample covariance

matrix shares the same LSD as the i.i.d. case; see Theorem 3. Using the TV-adj sample co-
variance matrix and existing M-P law reversing algorithms, we obtain a TV-adj shrinkage
estimator of the population spectrum, which we show is consistent; see Corollary 1 for the
exact statement.

Finally, we tackle the problem of unconditional covariance matrix estimation. We develop
a TV-adj nonlinear shrinkage (TV-Adj NLS) estimator and show that it consistently estimates
the asymptotically optimal shrinkage estimator; see Theorem 5.

In summary, our contributions lie in the following aspects. First, we establish the condition
under which the LSD of the sample covariance matrix under large BEKK models is different
from the i.i.d. case. Second, we propose a TV-adj sample covariance matrix and develop an
estimator that can consistently recover the population spectral distribution. Third, we develop
a TV-adj NLS estimator and prove that it is asymptotically optimal.

The rest of this paper is organized as follows. The main theoretical results are given in
Section 2. Simulation studies are presented in Section 3. We conclude in Section 4. The proof
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of Theorem 3 is presented in Section 5. The proofs of other main results and additional
simulation results are collected in the Supplementary Material (Ding and Zheng (2024)).

The following notation is used throughout the paper. For any matrix A = (Aij ), its spectral

norm is defined as ‖A‖ = max‖x‖≤1
√

xT AT Ax, where ‖x‖ =
√∑

x2
i for any vector x = (xi);

the Frobenius norm is defined as ‖A‖F =
√∑

i,j A2
ij . We write A ≥ 0(> 0) if the matrix A is

positive semi-definite (positive definite), and A ≥ B(> B) if A − B ≥ 0(> 0). If A ≥ 0, A1/2

is defined as the positive semi-definite matrix that satisfies (A1/2)2 = A. For any symmetric
matrix A with eigenvalues λ1, . . . , λp , its empirical spectral distribution (ESD) is defined as
F A(x) = ∑p

j=1 1[λj ,+∞)(x)/p, x ∈ R. For two sequences of positive real numbers (an) and

(bn), we write an 	 bn if an/bn → ∞, and an 
 bn if an/bn → 0. Finally, we use
P→ to

represent convergence in probability.

2. Main results.

2.1. Setting and assumptions. Under a dynamic volatility model, returns are modeled
as Rt = (�t )

1/2zt , where zt = (z1t , . . . , zpt )
T are i.i.d. with mean zero and covariance ma-

trix I. We suppose that (Rt ) follows the scalar BEKK model (1.1). Define R0
t = (�)1/2zt ,

t = 1, . . . , n, which share the same unconditional covariance matrix as Rt but are i.i.d. De-
note the corresponding sample covariance matrices as follows:

Sn = 1

n

n∑
t=1

RtRT
t and S0

n = 1

n

n∑
t=1

R0
t

(
R0

t

)T
.

We write λ̂1 ≥ · · · ≥ λ̂p as the eigenvalues of Sn, and λ̂0
1 ≥ · · · ≥ λ̂0

p as the eigenvalues of S0
n.

We impose the following assumptions.

ASSUMPTION 1.

(i) zt ∼
i.i.d.

N(0, I).

(ii) � is nonnegative definite and its ESD, F� , converges in distribution to a probability
distribution H on [0,∞) as p → ∞, and H �= δ(0), the Dirac measure at 0.

(iii) ‖�‖ < C for some constant C > 0.
(iv) The dimension p and the sample size n satisfy that p,n → ∞, and p/n → y > 0.

About the parameters a and b, we allow them to depend on p. Specifically, we denote
by ap and bp the coefficients in the BEKK model when the dimension is p.

2.2. Limiting properties of ESD of sample covariance matrix under large BEKK model.

2.2.1. Reducible case. Note that if ap = 0, then the BEKK model reduces to the i.i.d.
case with �t ≡ �. In general, if ap is close to 0, then the BEKK model will be similar to the
i.i.d. case.

Recall that for any two distributions, F1 and F2, the Levy distance between them is defined
as

L(F1,F2) := inf
{
ε > 0|F1(x − ε) − ε ≤ F2(x) ≤ F1(x + ε) + ε for all x ∈ R

}
.

It is well known that convergence in Levy distance implies convergence in distribution.
Define

(2.1) η(ap, bp,p) = ap

1 − ap − bp

min
(√

p(1 − ap − bp),1
)
.
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The next theorem shows that F Sn and F S0
n are asymptotically indistinguishable when

η(ap, bp,p) → 0.

THEOREM 1. Under model (1.1) and Assumption 1, if η(ap, bp,p) → 0 as p → ∞, then

(2.2) L
(
F Sn,F S0

n
) = op(1).

Theorem 1 implies that when η(ap, bp,p) → 0, the ESD of sample covariance matrix
under the BEKK model converges to the same M-P law as the i.i.d. case. For example,
when 1 − ab − bp is bounded away from zero, namely, the model is not near-integration,
then ap → 0 implies that the M-P law is retained. On the other hand, in the near-integration
case when 1 − ab − bp → 0, to retain the M-P law, ap needs to converge to zero at a faster

rate than min(
√

p/(1 − ap − bp),1/(1 − ap − bp)).
Below, we refer to the case when η(ap, bp,p) → 0 as the reducible case. Under the

reducible case, the population spectrum can be recovered by reversing the M-P law, and
the NLS estimator of the covariance matrix is asymptotically optimal.

2.2.2. Non-reducible case. When the reducible condition does not hold, what will
the ESD of the sample covariance matrix be like? We have seen in Figure 1 that when
a = 0.05 and b = 0.9, which is a typical setting calibrated from empirical data (Engle,
Ledoit and Wolf (2019)), the ESD under the BEKK model appears to be more heavy-tailed
than the i.i.d. case. We refer to the case when η(ap, bp,p) is bounded away from zero as
the non-reducible case. In practice, the two coefficients ap and bp learned from financial
data appear to fit the non-reducible case. Therefore, investigating the non-reducible case
is not only of theoretical interest but also practically relevant. It can be easily shown that
E(tr(Sn)) = E(tr(S0

n)). We compare the ESD’s under the BEKK model and the i.i.d. case by
their second moments:

M2 = M
p
2 = 1

p

p∑
i=1

λ̂2
i = 1

p
tr

(
(Sn)

2)
and M0

2 = M
0,p
2 = 1

p

p∑
i=1

(̂
λ0

i

)2 = 1

p
tr

((
S0

n

)2)
.

For the i.i.d. case, E(M
0,p
2 ) = yH 2

1 + H2 + o(1), where H1 = limp→∞ tr(�)/p and H2 =
limp→∞ tr(�

2
)/p; see equation (4.14) of Yin (1986). The next theorem states that E(M

p
2 ) >

E(M
0,p
2 ) when η(ap, bp,p) is bounded away from zero.

THEOREM 2. Under model (1.1) and Assumption 1, if η(ap, bp,p) > c for some con-
stant c > 0, then there exists δ > 0 such that for all p large enough,

(2.3) E
(
M

p
2

) ≥ E
(
M

0,p
2

) + δ.

2.3. Time-variation adjusted spectrum estimator. Theorems 1 and 2 suggest that, the
usual spectrum estimator based on the M-P law does not always work under the BEKK
model. To recover the population spectrum under the BEKK model, new estimators need
to be developed.

Zheng and Li (2011) study a similar problem under elliptical models. They propose a self-
normalization approach to remove the time-variation in the covariance matrices. Specifically,
under the elliptical model, �t = ξt�0, where (ξt ) is a one-dimensional process. The pro-
cess (ξt ) can be consistently estimated by (‖Rt‖2/p) as the dimension p → ∞. Therefore,
normalizing Rt by ‖Rt‖ removes the time-variation in the covariance matrix of Rt . Motivated
by this idea, we aim to adjust the dynamic volatilities of the nonlinearly dependent data so
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that the adjusted data behave asymptotically i.i.d. Under the BEKK model, the time-variation
is more complicated because the cross-sectional dependence is dynamic and nonlinearly de-
pendent on past returns. Removing the time-variation under the BEKK model relies on an
innovative way to reverse transform the observations.

Our approach is as follows. We first estimate the parameters ap and bp . Under the BEKK
model (1.1), each (Rit ) follows a univariate GARCH model:

(2.4) σ 2
i,t+1 = (1 − ap − bp)σ 2

i + apR2
it + bpσ 2

i,t ,

where σ 2
i,t = (�t )ii , and σ 2

i = (�)ii for 1 ≤ i ≤ p. As a result, ap and bp can be estimated
without knowing the whole unconditional covariance matrix. Specifically, we randomly select
one variable, say, i0, fit a univariate GARCH model to (Ri0t ) and get QMLE âp and b̂p:

(âp, b̂p, σ̂ i0) = argmax
(a,b,σ i0 )∈�

−
n∑

t=1

(
R2

i0t

σ 2
i0,t

+ log
(
σ 2

i0,t

))
,

where � = {(a, b, σ ) : 0 ≤ a, b ≤ a + b < 1, δ ≤ σ < C}, δ,C > 0 are constants. The QMLE
of the univariate GARCH model is consistent with a convergence rate of

√
n when ap + bp

is bounded away from one; see, for example, Theorems 2.1 and 2.2 of Francq and Zakoïan
(2004). Below, we give the convergence result for the case when ap is close to zero and bp is
close to one.

PROPOSITION 1. Suppose that there is a sequence of GARCH processes, (Rt ) = (Rt;p),
which satisfy Rt = σtzt , (zt )

′s are i.i.d., E(z2
t ) = 1, E(zK

t ) < ∞ for all K ≥ 1, σ 2
t+1 = (1 −

ap − bp)σ 2 + apR2
t + bpσ 2

t , and 0 < ap,bp < ap + bp < 1. Suppose in addition that ap , bp ,
and the sample size n satisfy that ap � 1−ap −bp → 0 as p → ∞, and (1−ap −bp) 	 n−υ

for some υ ∈ (0,1/4). Then there exists a local QMLE that satisfies, for all p large enough,

(2.5) âp − ap = Op

(
1

n1/2−ε

)
and b̂p − bp = Op

(
1

n1/2−ε

)
,

where ε is any positive constant.

We then use âp , b̂p and past returns to construct a time-variation tracking matrix:

(2.6) Pt = max
(

1 − âp − b̂p + âpb̂
Kp
p

1 − b̂p

, κ

)
I +

Kp∑
j=1

âpb̂j−1
p Rt−j RT

t−j ,

where Kp represents the number of lagged returns, which grows with p at a rate specified in
Theorem 3 below, and κ is a small positive constant. The intuition behind such a definition is
that, �t = (1 − ap − bp)/(1 − bp)� + ∑∞

j=1 apb
j−1
p Rt−j RT

t−j , hence an appropriate choice

of Kp will make P−1/2
t �tP

−1/2
t close to �; see equation (5.24) for the precise statement.

We use P−1/2
t to reverse transform the observed returns. Specifically, we define the time-

variation adjusted returns:

(2.7) R̃t = P−1/2
t Rt .

We will call P−1/2
t the reverse transformation matrix. Using R̃t , we construct the time-

variation adjusted (TV-adj) sample covariance matrix:

(2.8) S̃n = 1

n

n∑
t=1

R̃t (R̃t )
T .
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THEOREM 3. Under model (1.1) and Assumption 1, suppose that either one of the fol-
lowing conditions holds:

(i) app1/2 → ∞, bpp� → ∞, 1 − ap − bp > δ > 0 for some constants δ > 0 and � ∈
(0,1/2), and Kp satisfies that Kp → ∞ and Kp 
 p1/2−� ;

(ii) ap � 1 − ap − bp → 0 as p → ∞, 1 − ap − bp 	 n−υ for some υ ∈ (0,1/4), and Kp

satisfies that pυ logp 
 Kp 
 p1/2−ε for some ε > 0.

Then

(2.9) L
(
F S̃n,F S0

n
) = op(1).

REMARK 1. The proof of Theorem 3 relies on the rotational invariance of the distri-
bution of zt . This is the reason that we assume (zt ) follows a standard multivariate normal
distribution. In the RMT literature, observations are typically assumed to be �1/2zt , where zt

contains independent standardized entries. In this formulation, no rotational transformation
is allowed, namely, the observations can not be �1/2Otzt , where (Ot ) is a sequence of or-
thogonal matrices. If the M-P law can be proved for observations given by �1/2Otzt , then
the normality assumption can be removed in our setting. Numerical studies seem to support
this; see Appendix B.1 of the supplement material (Ding and Zheng (2024)) for more details.
We will leave the question of whether the normality assumption can be removed for future
research.

Theorem 3 implies that the time-variation adjusted sample covariance matrix has the

same LSD as the i.i.d. case. In particular, F S̃n
P→ F , where F is determined by H in that

its Stieltjes transform,

(2.10) mF (z) :=
∫
λ∈R

1

λ − z
dF (λ), z ∈ C

+ := {
z ∈ C, Im(z) > 0

}
,

solves the following equation:

(2.11) mF (z) =
∫
τ∈R

1

τ(1 − y(1 + zmF (z))) − z
dH(τ);

see, for example, Theorem 1 in Marčenko and Pastur (1967).
We can then consistently estimate the population spectrum by reversing the M-P equation.

Specifically, we denote the eigenvalues of S̃n by λ̃1 ≥ · · · ≥ λ̃p . We first regularize the eigen-
values of S̃n to be λ̃τ

i = min(̃λi,L) for some large constant L. We then apply the Quantized
Eigenvalues Sampling Transform (QuEST) algorithm in Ledoit and Wolf (2015) to (̃λτ

i )
′s

and obtain the estimated population spectrum. Denote by λ̂H
1 ≥ λ̂H

2 ≥ · · · ≥ λ̂H
p the estimated

eigenvalues and λH
1 ≥ λH

2 ≥ · · · ≥ λH
p the eigenvalues of �.

COROLLARY 1. Under the assumptions of Theorem 3, if in addition y �= 1, then

1

p

p∑
i=1

(
λH

i − λ̂H
i

)2 = op(1).

Corollary 1 guarantees that QuEST applied to the TV-adj sample covariance matrix con-
sistently estimates the population spectrum of the unconditional covariance matrix.
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2.4. Time-variation adjusted nonlinear shrinkage estimator of unconditional covariance
matrix. The NLS estimator (Ledoit and Wolf (2012, 2015, 2020)) is consistent in estimat-
ing the asymptotically optimal shrinkage estimator for i.i.d. data. In financial applications,
the NLS has gained popularity for large portfolio optimization; see, for example, Ledoit and
Wolf (2017), Ao, Li and Zheng (2019), De Nard, Ledoit and Wolf (2021) and Ding, Li and
Zheng (2021).

Motivated by the NLS developed under the i.i.d. case, to estimate the unconditional
covariance matrix under large BEKK models, we use the TV-adj sample covariance ma-
trix and consider rotation-equivariant shrinkage estimators in the form �̂ = ∑p

i=1 d̂i ũi ũ
T
i ,

where (ũi)1≤i≤p are eigenvectors of the TV-adj sample covariance matrix S̃n. The optimal
rotation-equivariant estimator finds (d̂i)1≤i≤p that minimize ‖�̂ − �‖F . Elementary algebra
shows that the optimal solution is d̂∗

i = ũT
i �ũi .

In search of the asymptotically optimal shrinkage formula under large BEKK models, we
study the following generalized empirical spectral distribution of the TV-adj sample covari-
ance matrix:

(2.12) F S̃n,g(�)(x) = 1

tr(g(�))

p∑
i=1

(
ũT

i g(�)ũi

) · 1[̃λi ,+∞)(x),

which generalizes the ESD of S̃n by replacing the weight 1/p with ũT
i g(�)ũi/ tr(g(�)) for

some bounded function g(·), and g(�) = ∑p
i=1 g(λH

i )viv
T
i , where vi ’s are the eigenvectors

of �. The limit of the generalized ESD of the sample covariance matrix under the i.i.d. case is
obtained in Ledoit and Péché (2011) and is used to derive the asymptotically optimal shrink-
age estimator. Parallel to the i.i.d. case, we study the limiting property of the generalized ESD
of the TV-adj sample covariance matrix via the following generalized Stieltjes transform:

(2.13) g
n(z) = 1

p
tr

(
(̃Sn − zI)−1g(�)

)
.

The following theorem gives the limit of 
g
n(z).

THEOREM 4. Under the assumptions of Theorem 3, if, in addition, the limiting distribu-
tion H is supported by [h1, h2] for some constants 0 < h1 ≤ h2 < ∞, and g is a bounded
function on [h1, h2] with finitely many points of discontinuity, then

g
n(z) − g(z) = op(1) for all z ∈C

+,

where

(2.14) g(z) =
∫ +∞
−∞

(
τ
(
1 − y−1 − y−1zmF (z)

) − z
)−1

g(τ) dH(τ).

The function g(z) is the limit of the generalized Stieltjes transform under the i.i.d. case;
see Theorem 2 of Ledoit and Péché (2011). Theorem 4 states that the generalized ESD based
on the time-variation adjusted sample covariance matrix converges to the same limit as the
i.i.d. case. Therefore, we can utilize the same nonlinear shrinkage algorithm that is developed
for i.i.d. case to obtain the time-variation adjusted nonlinear shrinkage estimator under BEKK
models.

Specifically, to estimate the unconditional covariance matrix, we perform the nonlin-
ear shrinkage algorithm by Ledoit and Wolf (2015) on S̃τ

n, where S̃τ
n = ∑p

i=1 λ̃τ
i ũi ũ

T
i ,

λ̃τ
i = min(̃λi,L), and L is a large constant. The truncation is applied to ensure that the
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support of the ESD is bounded. We denote by �̃ the resulting covariance matrix estima-
tor, which we call the time-variation adjusted nonlinear shrinkage (TV-adj NLS) estimator.
Define �̃

or = ∑p
i=1 dor

i (̃λτ
i )ũi ũ

T
i , where

(2.15) dor
i

(̃
λτ

i

) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

(y − 1)m̌F (0)
if λ̃τ

i = 0 and y > 1,

λ̃τ
i

(1 − y − yλ̃τ
i · m̌F (̃λτ

i ))
2

otherwise,

for i = 1, . . . , p,

F (x) = (1 − y)1{[0,∞)}(x) + yF(x), mF (z) = (y − 1)/z + ymF (z), m̌F (λ) =
limz∈C+→λ mF (z), and F(·) and mF (z) are given in equations (2.10) and (2.11), respec-
tively. By Theorem 4 and Theorem 4 of Ledoit and Péché (2011), �̃

or is the infeasible oracle
shrinkage estimator.

THEOREM 5. Under the assumptions of Theorem 4, if in addition y �= 1, then

1√
p

∥∥�̃ − �̃
or∥∥

F = op(1).

Theorem 5 guarantees that the TV-adj NLS consistently estimates the oracle shrinkage
estimator under dimension-normalized Frobenius norm. The convergence rate achieved by
the TV-adj NLS under BEKK models matches with that of the ordinary NLS under the i.i.d.
case; see Proposition 4.3 of Ledoit and Wolf (2012) and Theorem 3.1 of Ledoit and Wolf
(2015).

3. Simulation studies.

3.1. Simulation setup. We generate data from the BEKK model (1.1) with zt ∼
i.i.d.

N(0, I).

The unconditional covariance matrix is set to be � = (ρ|i−j |)1≤i,j≤p , where ρ = 0.4.1 The
dimension is set to be p = 100 or 500. We fix p/n = 0.8. Additional simulation results
for different p, n ratios and other simulation settings are collected in Appendix B of the
supplement material (Ding and Zheng (2024)).

About the parameters (a, b), first, we choose four cases: (a, b) ∈ {(0,0), (0.15,0.25),

(0.1,0.65), (0.05,0.9)}. The setting (a, b) = (0,0) corresponds to the i.i.d. case, which is
presented as a benchmark, and the other (a, b) pairs correspond to nontrivial BEKK cases
sorted with increasing magnitudes of η(a, b,p) defined in equation (2.1), representing in-
creasing levels of deviation from the i.i.d. case. The last configuration (a, b) = (0.05,0.9) is
the setting used in Engle, Ledoit and Wolf (2019). We simulate 100 replications under each
setting and present the results in Section 3.2.1.

Next, we examine more choices of (a, b). Specifically, we consider a grid of (a, b)’s in the
region {(a, b) : 0.05 ≤ a ≤ 0.5,0.05 ≤ b ≤ 0.90, a +b ≤ 0.95} and show the results from 100
replications in Section 3.2.2.

3.2. Simulation results.

3.2.1. Four (a, b) cases. In this subsection, we present the simulation results for four
(a, b) cases: (a, b) ∈ {(0,0), (0.15,0.25), (0.1,0.65), (0.05,0.9)}.

1The results for the settings where ρ = 0,0.2,0.6 and 0.8 are qualitatively similar.
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FIG. 2. ESDs of sample covariance matrices of the original data, the time-variation adjusted data, and the i.i.d.
data for p = 500, n = 625. The unconditional covariance matrix � = (0.4)|i−j |; (a, b) ∈ {(0,0), (0.15,0.25),

(0.1,0.65), (0.05,0.9)}.

Empirical spectral distribution of the sample covariance matrices. We compute the original
sample covariance matrix Sn = ∑n

t=1 RtRT
t /n and the TV-adj sample covariance matrix S̃n =∑n

t=1 R̃t R̃T
t /n, and compare their ESDs with that of the sample covariance matrix under the

i.i.d. case, namely, S0
n = ∑n

t=1 R0
t (R

0
t )

T /n.
We first illustrate the ESDs from one random realization for p = 500 in Figure 2. We see

that for all four cases, the ESDs of the TV-adj sample covariance matrix match remarkably
well with that of the i.i.d. case. On the other hand, under nontrivial BEKK models, the ESDs
of the original sample covariance matrices deviate from the M-P law, in particular, they are
more heavy-tailed.

We then perform 100 replications and summarize the Euclidean distance between the
eigenvalues of S0

n and S̃n or Sn in Table 1. We see from Table 1 that under nontrivial BEKK
settings, the distance between the ESD of the original sample covariance matrix and that un-
der the i.i.d. case increases with increasing magnitudes of η(a, b,p). The distance between
the ESD of the TV-adj sample covariance matrix and that under the i.i.d. case is smaller and
closer to zero under various nontrivial BEKK settings. Moreover, it decreases as p gets larger.

Population spectrum estimation. Next, we evaluate the estimators of the population eigen-
values. We compare the performance of the proposed time-variation adjusted NLS spectrum
estimator2 (TV-adj NLS-Spectrum) with that of the NLS spectrum estimator based on the
original sample covariance matrix (original NLS-Spectrum). We measure the estimation er-

ror by
√∑

1≤i≤p(λH
i − λ̂H

i )2, where λ̂H
1 ≥ λ̂H

2 ≥ · · · ≥ λ̂H
p are the estimated eigenvalues, and

λH
1 ≥ λH

2 ≥ · · · ≥ λH
p are the eigenvalues of �.

In Figure 3, we plot the distributions of the estimated eigenvalues from one random re-
alization with p = 500. We see that, under all four cases, the proposed TV-adj spectrum

2The function “tau_estimate” from R package “nlshrink” is used to compute the estimated eigenvalues.
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TABLE 1
Summary of the distance

√∑
1≤i≤p(̂λi − λ̂0

i )
2, where (̂λ0

i )1≤i≤p are eigenvalues of S0
n, and (̂λi )1≤i≤p are

eigenvalues of Sn or S̃n. The table shows the mean and standard deviation (in parenthesis) from 100 replications

(a, b) (0.15,0.25) (0.1,0.65) (0.05,0.9)

(p,n) = (100,125) Sn 0.277 0.413 0.907
(0.078) (0.106) (0.195)

S̃n 0.089 0.123 0.215
(0.034) (0.033) (0.079)

(p,n) = (500,625) Sn 0.279 0.429 1.046
(0.045) (0.050) (0.120)

S̃n 0.029 0.054 0.162
(0.017) (0.029) (0.056)

estimator is close to the population spectrum, and its performance is similar to the spectrum
estimator based on the i.i.d. data. On the other hand, the shrinkage spectrum estimator based
on the original sample covariance matrix significantly deviates from the population spec-
trum. Table 2 shows the Euclidean distances between the estimated population eigenvalues
and the true ones from 100 replications. We see from Table 2 that the error of the original
NLS-spectrum estimator increases with η(a, b,p). It also gets larger as the dimension gets
higher. The proposed TV-adj NLS-spectrum estimator dominantly outperforms the original
NLS-spectrum estimator with a substantially lower estimation error. The performance of the
TV-adj NLS-spectrum estimator is only slightly worse than the infeasible shrinkage estima-
tor based on i.i.d. data for the first two nontrivial BEKK settings. For the fourth setting when
(a, b) = (0.05,0.9), because a + b is close to one, the estimation error of the TV-adj NLS-

FIG. 3. Distributions of estimated eigenvalues. They are obtained by nonlinear shrinkage estimators applied
to the original data, the time-variation adjusted data, and the i.i.d. data. The dimension p = 500, n = 625.
� = (0.4)|i−j |; (a, b) ∈ {(0,0), (0.15,0.25), (0.1,0.65), (0.05,0.9)}.
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TABLE 2
Summary of the distance between the estimated eigenvalues and the population ones. We report the mean and

standard deviation (in parenthesis) from 100 replications. The pair (a, b) = (0,0) represents the i.i.d. case and is
presented as the benchmark. The remaining (a, b) pairs are for nontrivial BEKK cases

i.i.d. BEKK

(a, b) (0,0) (0.15,0.25) (0.1,0.65) (0.05,0.9)

(p,n) = (100,125) original NLS-Spectrum 0.136 0.411 0.566 1.109
(0.041) (0.094) (0.124) (0.209)

TV-adj NLS-Spectrum 0.143 0.217 0.251 0.313
(0.047) (0.071) (0.071) (0.100)

(p,n) = (500,625) original NLS-Spectrum 0.052 0.401 0.577 1.243
(0.026) (0.049) (0.053) (0.119)

TV-adj NLS-Spectrum 0.054 0.057 0.088 0.184
(0.027) (0.025) (0.026) (0.035)

spectrum estimator is larger. However, as the dimension p grows, the error decreases and
becomes closer to that of the shrinkage estimator under the i.i.d. case.

Unconditional covariance matrix estimation. Finally, we evaluate the unconditional co-
variance matrix estimation. We compute the NLS estimators3 based on the time-variation
adjusted sample covariance matrix (TV-adj NLS) and the original sample covariance matrix
(original NLS). The estimation error is measured by the Frobenius norm√∑

1≤i,j≤p(�ij − �̂ij )2, where �̂ is the estimated unconditional covariance matrix. The
results are summarized in Table 3. We see from Table 3 that the estimation error of the origi-
nal NLS increases sharply as η(a, b,p) gets large and as the dimension grows. The proposed
TV-adj NLS greatly improves over the original NLS with a substantially lower estimation
error. The performance of the TV-adj NLS is only slightly worse than that of the NLS un-
der the i.i.d. case for the first two nontrivial (a, b) settings. For the most challenging case

TABLE 3
Summary statistics of the estimation error of the estimated unconditional covariance matrix in Frobenius norm√∑

1≤i,j≤p(�̂ij − �ij )2. We report the mean and standard deviation (in parenthesis) from 100 replications.
The pair (a, b) = (0,0) corresponds to the i.i.d. case and is presented as the benchmark. The remaining (a, b)

pairs correspond to nontrivial BEKK cases

i.i.d. BEKK

(a, b) (0,0) (0.15,0.25) (0.1,0.65) (0.05,0.9)

(p,n) = (100,125) original NLS 5.079 6.668 7.933 12.810
(0.048) (0.558) (0.894) (1.824)

TV-adj NLS 5.080 5.219 5.308 6.433
(0.049) (0.096) (0.078) (0.711)

(p,n) = (500,625) original NLS 11.314 14.850 17.878 31.384
(0.021) (0.664) (0.866) (2.405)

TV-adj NLS 11.320 11.362 11.469 11.970
(0.026) (0.028) (0.050) (0.196)

3The function “nlshrink_cov” in R package “nlshrink” is used in computing the nonlinear shrinkage estimator
of the covariance matrix.
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(a, b) = (0.05,0.9), because a + b is close to one, the error of TV-adj NLS is larger. How-
ever, when p grows, the performance becomes closer to that of the NLS under the i.i.d.
case.

3.2.2. Performance under more choices of (a, b). In this subsection, we present the re-
sults for a grid of (a, b)’s in the region {(a, b) : 0.05 ≤ a ≤ 0.5,0.05 ≤ b ≤ 0.90, a + b ≤
0.95}.
Empirical spectral distribution of the sample covariance matrices. In Figure 4, we plot the
average Euclidean distance between the eigenvalues of S0

n and S̃n or Sn. We see that the
Euclidean distance between the ESD of the original sample covariance matrix and that under
the i.i.d. case grows substantially as a and a + b increase. By contrast, the distance of the
eigenvalues of the TV-adj sample covariance matrix to that under the i.i.d. case is close to
zero for various (a, b) settings. The distance surface for the TV-adj sample covariance matrix
is almost flat, except when a + b approaches one, but when the dimension p increases, it
again becomes flatter and closer to zero.

Population spectrum estimation. In Figure 5, we plot the average Euclidean distance be-
tween the estimated eigenvalues and the true eigenvalues. We compare the original NLS
estimator and the proposed TV-adj NLS estimator. We see that the error of the original NLS
estimator increases sharply as a and a + b increase. It also gets larger when the dimen-
sion is higher. By contrast, the TV-adj NLS performs robustly well for various (a, b) set-
tings and it dominantly outperforms the original NLS in all cases. The error surface for the
TV-adj NLS is almost flat except when a + b approaches one, but it gets closer to zero when
p grows.

Unconditional covariance matrix estimation. Finally, in Figure 6, we plot the average
Frobenius error of the NLS and TV-adj NLS in estimating the unconditional covariance ma-
trix. We see that the original NLS estimator performs poorly when (a, b) deviates from (0,0).
When p grows, the error also becomes larger. The TV-adj NLS dominantly outperforms
the NLS with a lower estimation error in all cases. The error surface for the TV-adj NLS
is almost flat and only slightly higher near the edge when a + b is close to one.

FIG. 4. Euclidean distance between the eigenvalues of the sample covariance matrix/TV-adj sample covariance
matrix under the BEKK model and the eigenvalues of the sample covariance matrix under the i.i.d. case for
p = 100 (left) and p = 500 (right). The unconditional covariance matrix is � = (0.4)|i−j |. The evaluation is
made for a grid of (a, b)’s in the region {(a, b) : 0.05 ≤ a ≤ 0.5,0.05 ≤ b ≤ 0.90, a + b ≤ 0.95}.
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FIG. 5. Estimation error of the population eigenvalues for p = 100 (left) and p = 500 (right). The
unconditional covariance matrix is � = (0.4)|i−j |. We compare the original NLS-spectrum estimator
and the TV-adj NLS-spectrum estimator. The evaluation is made for a grid of (a, b)’s in the region
{(a, b) : 0.05 ≤ a ≤ 0.5,0.05 ≤ b ≤ 0.90, a + b ≤ 0.95}.

4. Conclusion. We investigate the limiting spectral properties of high-dimensional sam-
ple covariance matrices under large BEKK models. We show that dynamic (co)volatilities
can impact the asymptotics and find the explicit condition under which the LSD is different
from the i.i.d. case. To eliminate the impact, we propose a way to reverse transform the obser-
vations and show that the resulting sample covariance matrix has the same LSD as the i.i.d.
case. Based on such a result, we develop consistent estimators of the spectral distribution and
the oracle nonlinear shrinkage estimator of the unconditional covariance matrix.

5. Proof of Theorem 3. We divide the proof of Theorem 3 into three steps. In the first
step, we show that replacing (âp, b̂p) with (ap, bp) in equation (2.6) does not change the LSD
of the TV-adj sample covariance matrices. In the second step, we show that the reverse trans-
formation defined in (2.7) asymptotically restores i.i.d.ness up to a suitable orthogonal trans-
formation. In the last step, we find the right orthogonal transformation.

FIG. 6. Estimation error of the unconditional covariance matrix in Frobenius norm. The unconditional co-
variance matrix is � = (0.4)|i−j |. We compare the original NLS estimator and the TV-adj NLS estimator. The
evaluation is made for a grid of (a, b)’s in the region {(a, b) : 0.05 ≤ a ≤ 0.5,0.05 ≤ b ≤ 0.90, a + b ≤ 0.95}.
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Step one: Define

P̌t = 1 − ap − bp + apb
Kp
p

1 − bp

I +
Kp∑
j=1

apbj−1
p Rt−j RT

t−j ,

Řt = (P̌t )
−1/2Rt and

Šn = 1

n

n∑
t=1

Řt ŘT
t .

By Corollary A.42 of Bai and Silverstein (2010),

(5.1) L4(
F S̃n,F Šn

) ≤ 2

p
tr(S̃n + Šn) · 1

pn
tr

(
(R̃ − Ř)(R̃ − Ř)T

)
,

where R̃ = (R̃1, . . . , R̃n), and Ř = (Ř1, . . . , Řn). Under condition (i) of Theorem 3, by The-
orems 2.1 and 2.2 of Francq and Zakoïan (2004) and Theorem 2 and Corollary 3 of Francq
and Zakoian (2007),

(5.2) âp − ap = Op

(
1√
n

)
and b̂p − bp = Op

(
1√
n

)
.

Under condition (ii) in Theorem 3, by Proposition 1, there exists a local MLE that satisfies
(2.5). Note that under both conditions, 1 − bp � 1 − ap − bp . Therefore, with probability
tending one, for all n large enough, ((1 − âp − b̂p)/(1 − b̂p)) > κ > 0. We have

(5.3) P

(
Pt = 1 − âp − b̂p + âpb̂

Kp
p

1 − b̂p

I +
Kp∑
j=1

âpb̂j−1
p Rt−j RT

t−j , for all t ≥ 1

)
→ 1.

Write

εn = max
(

max
1≤j≤Kp

(∣∣∣∣apb
j−1
p

âpb̂
j−1
p

− 1
∣∣∣∣, ∣∣∣∣ âpb̂

j−1
p

apb
j−1
p

− 1
∣∣∣∣),

∣∣∣∣(1 − âp − b̂p + âpb̂
Kp
p )(1 − bp)

(1 − ap − bp + apb
Kp
p )(1 − b̂p)

− 1
∣∣∣∣, ∣∣∣∣(1 − ap − bp + apb

Kp
p )(1 − b̂p)

(1 − âp − b̂p + âpb̂
Kp
p )(1 − bp)

− 1
∣∣∣∣).

By the assumption that Kp → ∞ under condition (i), and pυ(1 − ap − bp) → ∞, Kp 	
pυ logp under condition (ii), we have

(5.4) b
Kp
p = o(1 − ap − bp).

Using (5.2) and the assumptions that bpp� → ∞, Kp 
 p1/2−� under condition (i), or
(2.5) and Kp 
 p1/2−ε under condition (ii), we get

(5.5)

εn = Op

(
(Kp + 1)

∣∣∣∣ b̂p

bp

− 1
∣∣∣∣ + ∣∣∣∣ âp

ap

− 1
∣∣∣∣ + |̂ap − ap| + |b̂p − bp|

1 − ap − bp

)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Op

(
Kp + 1

bpp1/2 + 1

app1/2

)
= op(1) under condition (i),

Op

(
Kp + 1

p1/2−ε
+ 1

min(ap,1 − ap − bp)p1/2−ε

)
= op(1) under condition (ii).

Note that when εn < 1, under the event defined in (5.3), we have

0 < (1 − εn)P̌t ≤ Pt ≤ (1 + εn)P̌t ,
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hence

(5.6)
1

1 + εn

P̌−1
t ≤ P−1

t ≤ 1

1 − εn

P̌−1
t .

Because (1 − bp) � (1 − ap − bp), we have P̌t ≥ (1 − ap − bp)/(1 − bp)I ≥ cI for some
constant c > 0. By the definition of Pt in (2.6), Pt > κI. Hence

(5.7)
∥∥P̌−1/2

t

∥∥ ≤ (∥∥P̌−1
t

∥∥)1/2 ≤ 1√
c
,

and

(5.8)
∥∥P−1/2

t

∥∥ ≤ (∥∥P−1
t

∥∥)1/2 ≤ 1√
κ

.

Using the fact that if A ≥ 0 and B ≥ 0, then tr(AB) ≥ 0, we have, for all t ,

tr(�̌t ) ≤ 1

c
tr(�t ), tr(�̃t ) ≤ 1

κ
tr(�t ),

and

tr
(
Řt ŘT

t

) ≤ 1

c
tr

(
RtRT

t

)
, tr

(
R̃t R̃T

t

) ≤ 1

κ
tr

(
RtRT

t

)
.

Therefore,

tr(Šn) ≤ 1

c
tr(Sn) and tr(S̃n) ≤ 1

κ
tr(Sn).

By the independence between (zt ) and (�t ) and Assumption 1(iii), we have E(tr(Sn)) =
E(RT

t Rt ) = E(zT
t �tzt ) = E(tr(�t )) = tr(�) = O(p). It follows that

(5.9) tr(Šn) = Op(p) and tr(̃Sn) = Op(p).

By (5.6) and the Löwner–Heinz inequality,

1√
1 + εn

P̌−1/2
t ≤ P−1/2

t ≤ 1√
1 − εn

P̌−1/2
t .

By Weyl’s theorem, we get that

(5.10)
∥∥∥∥P−1/2

t − 1√
1 + εn

P̌−1/2
t

∥∥∥∥ ≤
(

1√
1 − εn

− 1√
1 + εn

)
· ∥∥P̌−1/2

t

∥∥.
By the triangle inequality, (5.5), (5.7) and (5.10), we get that

(5.11)

∥∥P−1/2
t − P̌−1/2

t

∥∥ ≤
∥∥∥∥P−1/2

t − 1√
1 + εn

P̌−1/2
t

∥∥∥∥ +
(

1 − 1√
1 + εn

)
· ∥∥P̌−1/2

t

∥∥
= Op

(
1√

1 − εn

− 1√
1 + εn

)
+ Op

(
1 − 1√

1 + εn

)
= Op(εn) = op(1).

Moreover,

tr
(
(R̃t − Řt )(R̃t − Řt )

T )
= RT

t

(
P−1/2

t − P̌−1/2
t

)2Rt

≤ ∥∥P−1/2
t − P̌−1/2

t

∥∥2 · ‖Rt‖2 = ∥∥P−1/2
t − P̌−1/2

t

∥∥2 · (
zT
t �tzt

)
.
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By (5.3) and (5.11), we then get that

(5.12) tr
(
(R̃t − Řt )(R̃t − Řt )

T ) = op(p).

By (5.7), (5.8), (5.12) and the dominated convergence theorem,

1

p
E

(
tr

(
(R̃t − Řt )(R̃t − Řt )

T )) = o(1),

hence

1

pn
E

(
tr

(
(R̃ − Ř)(R̃ − Ř)T

)) = 1

p
E

(
tr

(
(R̃t − Řt )(R̃t − Řt )

T )) = o(1).

By Markov’s inequality, we get

(5.13)
1

pn
tr

(
(R̃ − Ř)(R̃ − Ř)T

) = op(1).

By (5.1), (5.9) and (5.13), we have

(5.14) L
(
F S̃n,F Šn

) = op(1).

Step two: We denote by Ft the σ -algebra generated by {zs,∞ < s ≤ t}. For a p×p matrix
Ot to be determined, which satisfies that

(5.15) Ot is Ft−1-measurable and OtOT
t =OT

t Ot = I,

we perform orthogonal transformation on zt and get ζ t = Otzt . We then define

(5.16) R0
t = �

1/2
ζ t , R0 = (

R0
1, . . . ,R0

n

)
and S0

n = 1

n

n∑
t=1

R0
t

(
R0

t

)T
.

By (5.15) and the assumption that zt ∼
i.i.d.

N(0, I), we have

(5.17) ζ t ∼
i.i.d.

N(0, I).

By Theorem 1 of Marčenko and Pastur (1967), F S0
n

P→ F , and FS0
n

P→ F . Hence,

(5.18) L
(
F S0

n,FS0
n
) = op(1).

By (5.14), (5.18) and the triangle inequality, to show Theorem 3, it suffices to show that

(5.19) L
(
FS0

n,F Šn
) = op(1).

By Corollary A.42 of Bai and Silverstein (2010) again,

(5.20) L4(
F Šn,FS0

n
) ≤ 2

p
tr

(
Šn +S0

n

) · 1

pn
tr

((
Ř −R0)(

Ř −R0)T )
.

We have E(tr(S0
n/p)) = tr(�)/p = O(1), hence

(5.21)
1

p
tr

(
S0

n

) = Op(1).

Combining (5.9) and (5.21) yields

(5.22)
1

p
tr

(
Šn +S0

n

) = Op(1).



1044 Y. DING AND X. ZHENG

Define

(5.23) Qt = P̌−1/2
t �

1/2
t .

We have Řt = Qtzt , and �̌t = QtQT
t . We will show that for some Ot satisfying (5.15),

(5.24)
1

p
E

(
tr

((
QtOT

t − �
1/2)(

QtOT
t − �

1/2)T )) = o(1).

Then by the facts that �̌t and Ot are Ft−1-measurable, we have

1

np
E

(
tr

((
Ř −R0)(

Ř −R0)T ))
= 1

p
E

(
tr

((
Řt −R0

t

)(
Řt −R0

t

)T ))
= 1

p
E

(
tr

((
Qt − �

1/2Ot

)
ztzT

t

(
Qt − �

1/2Ot

)T ))
= 1

p
E

(
tr

((
QtOT

t − �
1/2)(

QtOT
t − �

1/2)T )) = o(1),

which implies that

(5.25)
1

pn
tr

((
Ř −R0)(

Ř −R0)T ) = op(1).

The desired bound (5.19) then follows from (5.20), (5.22) and (5.25).
Step three: It remains to show that there exists Ot satisfying (5.15) and (5.24). Because

Kp 
 p, with probability one, for all p large enough, rank(
∑Kp

j=1 b
j−1
p Rt−j RT

t−j ) = Kp .
Write

Kp∑
j=1

bj−1
p Rt−j RT

t−j = U�UT ,

where � = diag(λ1, . . . , λKp) and U = (u1, . . . ,uKp) are the nonzero eigenvalues and the

corresponding eigenvectors of
∑Kp

j=1 b
j−1
p Rt−j RT

t−j , respectively. Recall that

P̌t = 1 − ap − bp + apb
Kp
p

1 − bp

I +
Kp∑
j=1

apbj−1
p Rt−j RT

t−j

= 1 − ap − bp + apb
Kp
p

1 − bp

I + apU�UT .

We have

(5.26)

P̌−1/2
t = U

(
ap� + 1 − ap − bp + apb

Kp
p

1 − bp

I
)−1/2

UT

+
√√√√ 1 − bp

1 − ap − bp + apb
Kp
p

(
I − UUT )

.

By (1.1), we have

(5.27) �t = 1 − ap − bp

1 − bp

� +
∞∑

s=1

apbs−1
p Rt−sRT

t−s,
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which can be rewritten as

�t =
(

1 − ap − bp + apb
Kp
p

1 − bp

� + apU�UT

)
+

( ∞∑
j=Kp+1

apbj−1
p Rt−j RT

t−j − apb
Kp
p

1 − bp

�

)

=: It + IIt .

Define

�̃t = P−1/2
t �tP

−1/2
t and �̌t = P̌−1/2

t �t P̌
−1/2
t .

We have

�̌t = P̌−1/2
t It P̌

−1/2
t + P̌−1/2

t IIt P̌
−1/2
t .

By (5.26),

(5.28) P̌−1/2
t It P̌

−1/2
t = � − �UUT − UUT � + UUT �UUT + Et ,

where

Et = 1 − ap − bp + apb
Kp
p

1 − bp

U
(
ap� + 1 − ap − bp + apb

Kp
p

1 − bp

I
)−1/2

· UT �U
(
ap� + 1 − ap − bp + apb

Kp
p

1 − bp

I
)−1/2

UT

+
√√√√1 − ap − bp + apb

Kp
p

1 − bp

(
I − UUT )

�U
(
ap� + 1 − ap − bp + apb

Kp
p

1 − bp

I
)−1/2

UT

+
√√√√1 − ap − bp + apb

Kp
p

1 − bp

U
(
ap� + 1 − ap − bp + apb

Kp
p

1 − bp

I
)−1/2

UT �
(
I − UUT )

+ apU
(
ap� + 1 − ap − bp + apb

Kp
p

1 − bp

I
)−1/2

· �
(
ap� + 1 − ap − bp + apb

Kp
p

1 − bp

I
)−1/2

UT

=: E1t + E2t + E3t + E4t .

Because UT U = I, we have

tr(E2t ) = tr(E3t ) = 0.

Moreover, because Kp 
 p and ‖�‖ = O(1), we have

(5.29) 0 ≤ tr
(
UT �U

) =
Kp∑
i=1

uT
i �ui ≤ Kp‖�‖ = o(p).

Furthermore, by Kp 
 p and the fact that if A ≥ 0 and B ≥ 0, then tr(AB) ≥ 0, we have

0 ≤ tr(E1t ) ≤ tr
(
UT �U

) = o(p),

0 ≤ tr(E4t ) = tr
(
ap�

(
ap� + 1 − ap − bp + apb

Kp
p

1 − bp

I
)−1)

≤ Kp = o(p).
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Combining the results above yields

tr(Et ) = o(p).

Moreover, by (5.29) and that UT U = I, we have

0 ≤ tr
(
UUT �UUT ) = tr

(
UUT �

) = tr
(
�UUT ) = tr

(
UT �U

) = o(p).

Plugging the bounds above into (5.28) yields

(5.30) tr
(
P̌−1/2

t It P̌
−1/2
t

) − tr(�) = o(p).

About term P̌−1/2
t IIt P̌

−1/2
t , because P̌t ≥ ((1 − ap − bp)/(1 − bp))I, we have∣∣tr(P̌−1/2

t IIt P̌
−1/2
t

)∣∣
≤ apb

Kp
p

1 − ap − bp

tr(�) + b
Kp
p (1 − bp)

1 − ap − bp

tr

( ∞∑
s=1

apbs−1
p Rt−Kp−sRT

t−Kp−s

)

≤ apbKp

1 − ap − bp

tr(�) + b
Kp
p (1 − bp)

1 − ap − bp

tr(�t−Kp).

We have E(tr(�t−Kp)) = tr(�) = O(p), hence tr(�t−Kp) = Op(p). By (5.4), we have

(5.31)

∣∣tr(P̌−1/2
t IIt P̌

−1/2
t

)∣∣ = o(1)
(
tr(�) + tr(�t−Kp)

)
= op(p).

By (5.30) and (5.31),

(5.32)
1

p

∣∣tr(�̌t ) − tr(�)
∣∣ = op(1).

We now define Ot that satisfies (5.15) and (5.24). Let Gt =
√

(1 − ap − bp)/(1 − bp) ×
P̌−1/2

t �
1/2

. We have GtGT
t = ((1 − ap − bp)/(1 − bp))P̌−1/2

t �P̌−1/2
t . By (5.27), �t ≥ ((1 −

ap − bp)/(1 − bp))�. Hence

(5.33) �̌t ≥ GtGT
t .

Define

Qt = Gt

(
I + G−1

t

(
�̌t − GtGT

t

)(
GT

t

)−1)1/2
,

and

Ot = QT
t

(
QT

t

)−1
,

where, recall that, Qt is defined in (5.23). By definition, Ot is Ft−1-measurable. Moreover,
it is straightforward to verify that QtQT

t = QtQT
t = �̌t , from which we get that OtOT

t =
OT

t Ot = I. Therefore, Ot satisfies (5.15).
It remains to show that Ot satisfies (5.24). By (5.26),

(5.34) P̌−1/2
t ≥

√√√√ 1 − bp

1 − ap − bp + apb
Kp
p

(
I − UUT )

.



HIGH-DIM DYNAMIC COVARIANCE MATRICES 1047

By (5.33) and (5.34),

(5.35)

tr
(
QT

t �
1/2) = tr

(
Qt�

1/2)
=

√
1 − ap − bp

1 − bp

tr
((

I + G−1
t

(
�̌t − GtGT

t

)(
GT

t

)−1)1/2
�

1/2
P̌−1/2

t �
1/2)

≥
√

1 − ap − bp

1 − bp

tr
(
P̌−1/2

t �
)

≥
√√√√ 1 − ap − bp

1 − ap − bp + apb
Kp
p

tr
((

I − UUT )
�

)
= tr(�) + o(p),

where the last equation holds by (5.4) and (5.29). By the definition of Ot , (5.32) and (5.35),
we get that

0 ≤ 1

p
tr

((
QtOT

t − �
1/2)(

QtOT
t − �

1/2)T )
= 1

p
tr

((
Qt − �

1/2Ot

)(
Qt − �

1/2Ot

)T )
= 1

p
tr

((
Qt − �

1/2)(
Qt − �

1/2)T )
= 1

p

(
tr(�̌t ) − tr(�)

) + 1

p

(
tr(�) − tr

(
Qt�

1/2)) + 1

p

(
tr(�) − tr

(
QT

t �
1/2))

≤ op(1).

Hence, tr((QtOT
t − �

1/2
)(QtOT

t − �
1/2

)T )/p = op(1). In addition, we have

1

p
tr

((
Qt − �

1/2)(
Qt − �

1/2)T )
= 1

p

∑
1≤i,j≤p

(
(Qt )ij − (

�
1/2)

ij

)2

≤ 2

p

∑
1≤i,j≤p

(
(Qt )ij

)2 + 2

p

∑
1≤i,j≤p

((
�

1/2)
ij

)2

= 2

p
tr(�̌t ) + 2

p
tr(�).

By (5.7) and Assumption 1(iii), we have E(tr(�̌t /p)) ≤ CE(tr(�t /p)) = O(‖�‖) = O(1).
The bound (5.24) follows from the dominated convergence theorem.
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SUPPLEMENTARY MATERIAL
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